Что такое система координат? Прямоугольная система координат на плоскости и в пространстве

Упорядоченная система двух или трёх пересекающихся перпендикулярных друг другу осей с общим началом отсчёта (началом координат) и общей единицей длины называется прямоугольной декартовой системой координат .

Общая декартова система координат (аффинная система координат ) может включать и не обязательно перпендикулярные оси. В честь французского математика Рене Декарта (1596-1662) названа именно такая система координат, в которой на всех осях отсчитывается общая единица длины и оси являются прямыми.

Прямоугольная декартова система координат на плоскости имеет две оси, а прямоугольная декартова система координат в пространстве - три оси. Каждая точка на плоскости или в пространстве определяется упорядоченным набором координат - чисел в соответствии единице длины системы координат.

Заметим, что, как следует из определения, существует декартова система координат и на прямой, то есть в одном измерении. Введение декартовых координат на прямой представляет собой один из способов, с помощью которого любой точке прямой ставится в соответствие вполне определённое вещественное число, то есть координата.

Метод координат, возникший в работах Рене Декарта, ознаменовал собой революционную перестройку всей математики. Появилась возможность истолковывать алгебраические уравнения (или неравенства) в виде геометрических образов (графиков) и, наоборот, искать решение геометрических задач с помощью аналитических формул, систем уравнений. Так, неравенство z < 3 геометрически означает полупространство, лежащее ниже плоскости, параллельной координатной плоскости xOy и находящейся выше этой плоскости на 3 единицы.

С помощью декартовой системы координат принадлежность точки заданной кривой соответствует тому, что числа x и y удовлетворяют некоторому уравнению. Так, координаты точки окружности с центром в заданной точке (a ; b ) удовлетворяют уравнению (x - a )² + (y - b )² = R ² .

Прямоугольная декартова система координат на плоскости

Две перпендикулярные оси на плоскости с общим началом и одинаковой масштабной единицей образуют декартову прямоугольную систему координат на плоскости . Одна из этих осей называется осью Ox , или осью абсцисс , другую - осью Oy , или осью ординат . Эти оси называются также координатными осями. Обозначим через M x и M y соответственно проекции произвольной точки М на оси Ox и Oy . Как получить проекции? Проведём через точку М Ox . Эта прямая пересекает ось Ox в точке M x . Проведём через точку М прямую, перпендикулярную оси Oy . Эта прямая пересекает ось Oy в точке M y . Это показано на рисунке ниже.

x и y точки М будем называть соответственно величины направленных отрезков OM x и OM y . Величины этих направленных отрезков рассчитываются соответственно как x = x 0 - 0 и y = y 0 - 0 . Декартовы координаты x и y точки М абсциссой и ординатой . Тот факт, что точка М имеет координаты x и y , обозначается так: M (x , y ) .

Координатные оси разбивают плоскость на четыре квадранта , нумерация которых показана на рисунке ниже. На нём же указана расстановка знаков координат точек в зависимости от их расположения в том или ином квадранте.

Помимо декартовых прямоугольных координат на плоскости часто рассматривается также полярная система координат. О способе перехода от одной системы координат к другой - в уроке полярная система координат .

Прямоугольная декартова система координат в пространстве

Декартовы координаты в пространстве вводятся в полной аналогии с декартовыми координатами на плоскости.

Три взаимно перпендикулярные оси в пространстве (координатные оси) с общим началом O и одинаковой масштабной единицей образуют декартову прямоугольную систему координат в пространстве .

Одну из указанных осей называют осью Ox , или осью абсцисс , другую - осью Oy , или осью ординат , третью - осью Oz , или осью аппликат . Пусть M x , M y M z - проекции произвольной точки М пространства на оси Ox , Oy и Oz соответственно.

Проведём через точку М Ox Ox в точке M x . Проведём через точку М плоскость, перпендикулярную оси Oy . Эта плоскость пересекает ось Oy в точке M y . Проведём через точку М плоскость, перпендикулярную оси Oz . Эта плоскость пересекает ось Oz в точке M z .

Декартовыми прямоугольными координатами x , y и z точки М будем называть соответственно величины направленных отрезков OM x , OM y и OM z . Величины этих направленных отрезков рассчитываются соответственно как x = x 0 - 0 , y = y 0 - 0 и z = z 0 - 0 .

Декартовы координаты x , y и z точки М называются соответственно её абсциссой , ординатой и аппликатой .

Попарно взятые координатные оси располагаются в координатных плоскостях xOy , yOz и zOx .

Задачи о точках в декартовой системе координат

Пример 1.

A (2; -3) ;

B (3; -1) ;

C (-5; 1) .

Найти координаты проекций этих точек на ось абсцисс.

Решение. Как следует из теоретической части этого урока, проекция точки на ось абсцисс расположена на самой оси абсцисс, то есть оси Ox , а следовательно имеет абсциссу, равную абсциссе самой точки, и ординату (координату на оси Oy , которую ось абсцисс пересекает в точке 0), равную нулю. Итак получаем следующие координаты данных точек на ось абсцисс:

A x (2; 0) ;

B x (3; 0) ;

C x (-5; 0) .

Пример 2. В декартовой системе координат на плоскости даны точки

A (-3; 2) ;

B (-5; 1) ;

C (3; -2) .

Найти координаты проекций этих точек на ось ординат.

Решение. Как следует из теоретической части этого урока, проекция точки на ось ординат расположена на самой оси ординат, то есть оси Oy , а следовательно имеет ординату, равную ординате самой точки, и абсциссу (координату на оси Ox , которую ось ординат пересекает в точке 0), равную нулю. Итак получаем следующие координаты данных точек на ось ординат:

A y (0; 2) ;

B y (0; 1) ;

C y (0; -2) .

Пример 3. В декартовой системе координат на плоскости даны точки

A (2; 3) ;

B (-3; 2) ;

C (-1; -1) .

Ox .

Ox Ox Ox , будет иметь такую же абсциссу, что и данная точка, и ординату, равную по абсолютной величине ординате данной точки, и противоположную ей по знаку. Итак получаем следующие координаты точек, симметричных этим точкам относительно оси Ox :

A" (2; -3) ;

B" (-3; -2) ;

C" (-1; 1) .

Решить задачи на декартову систему координат самостоятельно, а затем посмотреть решения

Пример 4. Определить, в каких квадрантах (четвертях, рисунок с квадрантами - в конце параграфа "Прямоугольная декартова система координат на плоскости") может быть расположена точка M (x ; y ) , если

1) xy > 0 ;

2) xy < 0 ;

3) x y = 0 ;

4) x + y = 0 ;

5) x + y > 0 ;

6) x + y < 0 ;

7) x y > 0 ;

8) x y < 0 .

Пример 5. В декартовой системе координат на плоскости даны точки

A (-2; 5) ;

B (3; -5) ;

C (a ; b ) .

Найти координаты точек, симметричных этим точкам относительно оси Oy .

Продолжаем решать задачи вместе

Пример 6. В декартовой системе координат на плоскости даны точки

A (-1; 2) ;

B (3; -1) ;

C (-2; -2) .

Найти координаты точек, симметричных этим точкам относительно оси Oy .

Решение. Поворачиваем на 180 градусов вокруг оси Oy направленный отрезок, идущий от оси Oy до данной точки. На рисунке, где обозначены квадранты плоскости, видим, что точка, симметричная данной относительно оси Oy , будет иметь такую же ординату, что и данная точка, и абсциссу, равную по абсолютной величине абсциссе данной точки, и противоположную ей по знаку. Итак получаем следующие координаты точек, симметричных этим точкам относительно оси Oy :

A" (1; 2) ;

B" (-3; -1) ;

C" (2; -2) .

Пример 7. В декартовой системе координат на плоскости даны точки

A (3; 3) ;

B (2; -4) ;

C (-2; 1) .

Найти координаты точек, симметричных этим точкам относительно начала координат.

Решение. Поворачиваем на 180 градусов вокруг начала координат направленный отрезок, идущий от начала координат к данной точке. На рисунке, где обозначены квадранты плоскости, видим, что точка, симметричная данной относительно начала координат, будет иметь абсциссу и ординату, равные по абсолютной величине абсциссе и ординате данной точки, но противоположные им по знаку. Итак получаем следующие координаты точек, симметричных этим точкам относительно начала координат:

A" (-3; -3) ;

B" (-2; 4) ;

C (2; -1) .

Пример 8.

A (4; 3; 5) ;

B (-3; 2; 1) ;

C (2; -3; 0) .

Найти координаты проекций этих точек:

1) на плоскость Oxy ;

2) на плоскость Oxz ;

3) на плоскость Oyz ;

4) на ось абсцисс;

5) на ось ординат;

6) на ось апликат.

1) Проекция точки на плоскость Oxy расположена на самой этой плоскости, а следовательно имеет абсциссу и ординату, равные абсциссе и ординате данной точки, и апликату, равную нулю. Итак получаем следующие координаты проекций данных точек на Oxy :

A xy (4; 3; 0) ;

B xy (-3; 2; 0) ;

C xy (2; -3; 0) .

2) Проекция точки на плоскость Oxz расположена на самой этой плоскости, а следовательно имеет абсциссу и апликату, равные абсциссе и апликате данной точки, и ординату, равную нулю. Итак получаем следующие координаты проекций данных точек на Oxz :

A xz (4; 0; 5) ;

B xz (-3; 0; 1) ;

C xz (2; 0; 0) .

3) Проекция точки на плоскость Oyz расположена на самой этой плоскости, а следовательно имеет ординату и апликату, равные ординате и апликате данной точки, и абсциссу, равную нулю. Итак получаем следующие координаты проекций данных точек на Oyz :

A yz (0; 3; 5) ;

B yz (0; 2; 1) ;

C yz (0; -3; 0) .

4) Как следует из теоретической части этого урока, проекция точки на ось абсцисс расположена на самой оси абсцисс, то есть оси Ox , а следовательно имеет абсциссу, равную абсциссе самой точки, а ордината и апликата проекции равны нулю (поскольку оси ординат и апликат пересекают ось абсцисс в точке 0). Получаем следующие координаты проекций данных точек на ось абсцисс:

A x (4; 0; 0) ;

B x (-3; 0; 0) ;

C x (2; 0; 0) .

5) Проекция точки на ось ординат расположена на самой оси ординат, то есть оси Oy , а следовательно имеет ординату, равную ординате самой точки, а абсцисса и апликата проекции равны нулю (поскольку оси абсцисс и апликат пересекают ось ординат в точке 0). Получаем следующие координаты проекций данных точек на ось ординат:

A y (0; 3; 0) ;

B y (0; 2; 0) ;

C y (0; -3; 0) .

6) Проекция точки на ось апликат расположена на самой оси апликат, то есть оси Oz , а следовательно имеет апликату, равную апликате самой точки, а абсцисса и ордината проекции равны нулю (поскольку оси абсцисс и ординат пересекают ось апликат в точке 0). Получаем следующие координаты проекций данных точек на ось апликат:

A z (0; 0; 5) ;

B z (0; 0; 1) ;

C z (0; 0; 0) .

Пример 9. В декартовой системе координат в пространстве даны точки

A (2; 3; 1) ;

B (5; -3; 2) ;

C (-3; 2; -1) .

Найти координаты точек, симметричных этим точкам относительно:

1) плоскости Oxy ;

2) плоскости Oxz ;

3) плоскости Oyz ;

4) оси абсцисс;

5) оси ординат;

6) оси апликат;

7) начала координат.

1) "Продвигаем" точку по другую сторону оси Oxy Oxy , будет иметь абсциссу и ординату, равные абсциссе и ординате данной точки, и апликату, равную по величине апликате данной точки, но противоположную ей по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно плоскости Oxy :

A" (2; 3; -1) ;

B" (5; -3; -2) ;

C" (-3; 2; 1) .

2) "Продвигаем" точку по другую сторону оси Oxz на то же расстояние. По рисунку, отображающему координатное пространство, видим, что точка, симметричная данной относительно оси Oxz , будет иметь абсциссу и апликату, равные абсциссе и апликате данной точки, и ординату, равную по величине ординате данной точки, но противоположную ей по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно плоскости Oxz :

A" (2; -3; 1) ;

B" (5; 3; 2) ;

C" (-3; -2; -1) .

3) "Продвигаем" точку по другую сторону оси Oyz на то же расстояние. По рисунку, отображающему координатное пространство, видим, что точка, симметричная данной относительно оси Oyz , будет иметь ординату и апликату, равные ординате и апликате данной точки, и абсциссу, равную по величине абсциссе данной точки, но противоположную ей по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно плоскости Oyz :

A" (-2; 3; 1) ;

B" (-5; -3; 2) ;

C" (3; 2; -1) .

По аналогии с симметричными точками на плоскости и точками пространства, симметричными данным относительно плоскостей, замечаем, что в случае симметрии относительно некоторой оси декартовой системы координат в пространстве, координата на оси, относительно которой задана симметрия, сохранит свой знак, а координаты на двух других осях будут теми же по абсолютной величине, что и координаты данной точки, но противоположными по знаку.

4) Свой знак сохранит абсцисса, а ордината и апликата поменяют знаки. Итак, получаем следующие координаты точек, симметричных данным относительно оси абсцисс:

A" (2; -3; -1) ;

B" (5; 3; -2) ;

C" (-3; -2; 1) .

5) Свой знак сохранит ордината, а абсцисса и апликата поменяют знаки. Итак, получаем следующие координаты точек, симметричных данным относительно оси ординат:

A" (-2; 3; -1) ;

B" (-5; -3; -2) ;

C" (3; 2; 1) .

6) Свой знак сохранит апликата, а абсцисса и ордината поменяют знаки. Итак, получаем следующие координаты точек, симметричных данным относительно оси апликат:

A" (-2; -3; 1) ;

B" (-5; 3; 2) ;

C" (3; -2; -1) .

7) По аналогии с симметрии в случае с точками на плоскости, в случае симметрии относительно начала координат все координаты точки, симметричной данной, будут равными по абсолютной величине координатам данной точки, но противоположными им по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно начала координат.

Пример 1. Вычислим на геоцентрической небесной сфере часовой угол Н и склонение тела, имеющего азимут (измеряемый в восточном направлении от точки севера) А и высоту а. При этом будем считать, что широта наблюдателя равна

На рис. 2.11 показана соответствующая небесная сфера, на которой X обозначает положение тела, а остальные символы имеют обычные значения.

Теорема косинусов, примененная к сферическому треугольнику PZX, дает

Отсюда можно вычислить . Воспользовавшись теоремой косинусов еще раз, получаем

откуда находим Н, так как б уже известно.

С другой стороны, используя формулу, связывающую четыре величины (90° - а), (360° - А), и H, получаем

Пример 2. Считая, что наклонение эклиптики равно преобразуем эклиптические координаты (небесную долготу К и небесную широту Р) космического аппарата в геоцентрические экваториальные координаты (прямое восхождение а и склонение ).

Как показано на рис. 2.12, в сферическом треугольнике КРХ (X - положение космического аппарата на небесной сфере) содержится вся необходимая информация.

Воспользовавшись по очереди теоремой косинусов, теоремой синусов и аналогом теоремы косинусов, получаем

откуда можно найти а и б.

Читателю предлагается в качестве упражнения провести преобразования, обратные рассмотренным в примерах 1 и 2.

Пример 3. По известным гелиоцентрическим прямоугольным координатам космического аппарата, обращающегося вокруг Солнца, определим его геоцентрическое расстояние , прямое восхождение а и склонение .

На этом примере будет проиллюстрирован ряд важных принципов. Для наблюдения аппарата с Земли или связи с ним в заданный момент времени нужно знать геоцентрические прямое восхождение, склонение и удаление аппарата. С другой стороны, межпланетный

планетный космический аппарат движется по орбите вокруг Солнца, а элементы такой орбиты определяются в гелиоцентрической системе. Зная элементы и время, можно определить прямоугольные координаты в системе с началом в центре Солнца. Ниже мы увидим, как это делается (см. гл. 4). В настоящем примере мы будем предполагать, что основой прямоугольной системы координат служат эклиптика и направление на Т. и покажем, как эти прямоугольные координаты можно преобразовать в геоцентрическое расстояние, прямое восхождение и склонение. В астрономии такое преобразование является стандартной процедурой. Обратная задача определения элементов орбиты по измерениям прямого восхождения и склонения тела также является стандартной процедурой.

Однако она сложнее и будет рассмотрена позже.

Задача решается в несколько этапов:

1) осуществляется переход от гелиоцентрической эклиптической прямоугольной системы координат к гелиоцентрической экваториальной прямоугольной системе;

2) от гелиоцентрической экваториальной прямоугольной системы переходим к геоцентрической экваториальной прямоугольной системе;

3) геоцентрические экваториальные прямоугольные координаты преобразуем в геоцентрическое расстояние, прямое восхождение и склонение.

Эти преобразования проводятся следующим образом:

1) На рис. 2.13 V обозначает положение аппарата относительно Солнца S. Относительно осей (образующих прямоугольную систему) аппарат имеет координаты так, что справедливо соотношение

SA (А - перигелий) пересекается со сферой в точке , а SV - в точке Q. Тогда имеем

В силу теоремы косинусов, примененной к сферическому треугольнику QTN, в котором угол равен 180° - i, получаем

следовательно,

Аналогично, применяя теорему косинусов к треугольнику QNB и вспоминая, что

получаем

Наконец, применение теоремы косинусов к треугольнику QKN дает

Чтобы перейти к гелиоцентрическим экваториальным прямоугольным координатам, заметим, что новые оси ST, SC и SP обладают следующими свойствами: ось SC лежит в экваториальной плоскости под углом 90° к ST, а ось SP перпендикулярна этой плоскости и направлена так, что три оси образуют правую тройку. Тогда новые оси SC и SP получаются из старых осей SB и SK поворотом последних вокруг на угол . Если гелиоцентрические

экваториальные прямоугольные координаты аппарата обозначить , то

Используя уравнения (2.4), (2.5) и (2.6), получаем

Введем ряд вспомогательных углов так, чтобы они удовлетворяли соотношениям

Тогда уравнения (2.7), (2.8) и (2.9) принимают вид

Этими формулами удобно пользоваться, если нужно вычислять прямоугольные координаты аппарата в нескольких положениях. Вспомогательные величины a, A, D, В, с, С являются функциями только элементов ; поэтому их можно вычислить один раз для всех положений. Переменные же и f должны вычисляться для каждого положения (способ их вычисления будет описан позднее - см. гл. 4). Следует, однако, заметить, что являются постоянными только в том случае, когда на аппарат не действуют никакие возмущения. Фактически такая ситуация наблюдается в большинстве межпланетных полетов на пассивных участках траектории.

2) Теперь начало координат переносится из центра Солнца в центр Земли. На рис. 2.14 Е - Земля, S - Солнце, и SP - оси гелиоцентрической экваториальной системы координат,

И - оси геоцентрической экваториальной прямоугольной системы координат, плоскость - плоскость земного экватора. Пусть координаты аппарата V относительно геоцентрических осей, так что

Гелиоцентрические экваториальные координаты Земли. Тогда

Если через (X, Y, Z) обозначить геоцентрические экваториальные координаты Солнца, то

Координаты - это величины, определяющие положение любой точки на поверхности или в пространстве в принятой системе координат. Система координат устанавливает начальные (исходные) точки, линии или плоскости для отсчета необходимых величин - начало отсчета координат и единицы их исчисления. В топографии и геодезии наиболь¬шее применение получили системы географических, прямоугольных, полярных и биполярных координат.
Географические координаты (рис. 2.8) применяются для определения положения точек поверхности Земли на эллипсоиде (шаре). В этой системе координат исходными являются плоскость начального меридиана и плос¬кость экватора. Меридианом называют линию сечения эллипсоида плоскостью, проходящей через данную точку и ось вращения Земли.

Параллелью называют линию сечения эллипсоида плоскостью, проходящей через данную точку и пер¬пендикулярную земной оси. Параллель, плоскость которой проходит через центр эллипсоида, называется экватором. Через каждую точку, лежащую на поверхности земного шара, можно провести только один меридиан и только одну параллель.
Географические координаты - это угловые величины: долгота l и широта j.
Географической долготой l называется двугранный угол, заключенный между плоскостью данного меридиана (проходящего через точку В) и плоскостью начального меридиана. За начальный (нулевой) меридиан принят меридиан, проходящий через центр главного зала Гринвичской обсерватории в пределах г. Лондона. Для точки В долгота определяется углом l = WCD. Счет долгот ведут от начального меридиана в обе стороны - на восток и на запад. В связи с этим различают западные и восточные долготы, которые изменяются от 0° до 180°.
Географической широтой j называется угол, составленный плоскостью экватора и отвесной линией, проходящей через данную точку. Если Землю принимать за шар, то для точки В (рис. 2.8) широта j определяется углом DCB. Широты, отсчитываемые от экватора к северу, называются северными, а к югу - южными, они изменяются от 0° на экваторе до 90° на полюсах.
Географические координаты могут быть получены на основании астрономических наблюдений или геодезических измерений. В первом случае их называют астрономическими, а во втором - геодезическими (L - долгота, B - широта). При астрономических наблюдениях проецирование точек на поверхность относимости осуществляется отвесными линиями, при геодезических измерениях - нормалями. Поэтому величины астрономических и геодезических координат отличаются на величину уклонения отвесной линии.
Использование разными государствами различных референц-эллипсоидов приводит к различиям координат одних и тех же пунктов, вычисленных относительно разных исходных поверхностей. Практически это выражается в общем смещении картографического изображения относительно меридианов и параллелей на картах крупного и среднего масштабов.
Прямоугольными координатами называются линейные величины - абсцисса и ордината, определяющие положение точки на плоскости относительно исходных направлений.

(рис. 2.9)
В геодезии и топографии принята правая система прямоугольных координат. Это отличает ее от левой системы координат, используемой в математике. Исходными направлениями служат две взаимно перпендикулярные линии с началом отсчета в точке их пересечения О.
Прямая ХХ (ось абсцисс) совмещается с направлением меридиана, проходящего через начало координат, или с направлением, параллельным некоторому меридиану. Прямая YY (ось ординат) проходит через точку О перпендикулярную оси абсцисс. В такой системе положение точки на плоскости определяется кратчайшим расстоянием до нее от осей координат. Положение точки А определяется длиной перпендикуляров Xа и Yа. Отрезок Xа называется абсциссой точки А, а Yа - ординатой этой точки. Прямоугольные координаты обычно выражаются в метрах. Осями абсцисс и ординат участок местности в точке О делится на четыре четверти (рис. 2.9). Название четвертей определяется принятыми обозначениями стран света. Четверти нумеруются по направлению хода часовой стрелки: I - СВ; II - ЮВ; III - ЮЗ; IV - СЗ.
В табл. 2.3 показаны знаки абсцисс Х и ординат Y для точек, находящихся в разных четвертях и даны их названия.


Таблица 2.3
Абсциссы точек, расположенные вверх от начала координат считаются положительными, а вниз от нее - отрицательными, ординаты точек, расположенные вправо - положительными, влево - отрицательными. Система плоских прямоугольных координат применяется на ограниченных участках земной поверхности, которые могут быть приняты за плоские.
Координаты, началом отсчета которых является какая-либо точка местности, называются полярными. В данной системе координат производится измерение углов ориентирования. На горизонтальной плоскости (рис. 2.10) через произвольно выбранную точку О, называемую полюсом, проводят прямую ОХ - полярную ось.

Тогда положение любой точки, например, М будет определяться радиусом - вектором r1 и углом направления a1 , а точки N - соответственно r2 и a2. Углы a1 и a2 измеряют от полярной оси по ходу часовой стрелки до радиуса-вектора. Полярная ось может располагаться произвольно или совмещаться с направлением какого-либо меридиана, проходящего через полюс О.
Система биполярных координат (рис. 2.11) представляет собой два выбранных неподвижных полюса О1 и О2 , соединенные прямой - полярной осью. Данная система координат позволяет определить положение точки М относительно полярной оси на плоскости при помощи двух углов b1 и b2, двух радиусов-векторов r1 и r2 или их комбинаций. Если известны прямоугольные координаты точек О1 и О2 , то положение точки М можно вычислить аналитическим способом.


Рис. 2.11

Рис. 2.12
Высоты точек земной поверхности. Для определения положения точек физической поверхности Земли недостаточно знать только плановые координаты X, Y или l, j, необходима третья координата - высота точки Н. Высотой точки Н (рис. 2.12) называется расстояние по отвесному направлению от данной точки (А´; В´´) до принятой основной уровенной поверхности MN. Числовое значение высоты точки называется отметкой. Высоты, отсчитываемые от основной уровенной поверхности MN, называют абсолютными высотами (АА´; ВВ´´), а определяемые относительно произвольно выбранной уровенной поверхности - условными высотами (В´В´´). Разность высот двух точек или расстояние по отвесному направлению между уровенными поверхностями, проходящими через две любые точки Земли называется относительной высотой (В´В´´) или превышением этих точек h.
В Республике Беларусь принята Балтийская система высот 1977 г. Счет высот ведется от уровенной поверхности, совпадающей со средним уровнем воды в Финском заливе, от нуля Кронштадского футштока.

Вот еще

Прежде чем приступить к обсуждению механизмов преобразования изображения, дадим определение условий фиксации положения, дающих возможность показать соотношения между объектами (элементами) до и после выполнения преобразований.

Система правил, соотношений и изобразительных (графических) средств, позволяющая задать (определить) положение объекта внимания на плоскости или в пространстве, определяется как система отсчета, система координат (КС), по которой каждой точке пространства ставится в соответствие набор чисел (координат ). Число координат, которые требуются для описания положения точки, определяет размерность пространства и соответственно наличие двухмерной и трехмерной графики. Двухмерная графика использует два понятия – высота и ширина и не вызывает особых затруднений при работе с изображением. В понятии трехмерная графика заложено указание на то, что придется работать с тремя пространственными измерениями – высотой, шириной и глубиной. Не вдаваясь в тонкости понятия “трехмерная графика”, отметим, что при работе с графическими средствами компьютерной графики необходимо помнить - созданные изображения реальных объектов существуют только в памяти компьютера. Они не имеют физической формы, поскольку это не что иное, как совокупность математических уравнений и движение электронов в микросхемах. А так как эти объекты не могут существовать вне компьютера, то единственным способом их увидеть в реальном свете, является добавление новых уравнений, описывающих условия освещения и точки зрения.

Основным отличием двухмерной графики от трехмерной является полное отсутствие у двухмерных объектов (изображений) третьей координаты – глубины, величины, характеризующей пространственные свойства объекта. Рисунки на плоскости характеризуются только шириной и высотой. И если ваше изображение таково, что создает иллюзию наличия третьей компоненты, то любая попытка взглянуть на объект с иного ракурса всегда будет связана с необходимостью перерисовывания объекта заново.

Если при моделировании трехмерные объекты приобретают координату глубины, то однажды нарисовав такие объекты, потом имеется возможность рассматривать их под любым углом зрения, не перерисовывая.

Положение каждой точки в пространстве определяется тройкой чисел – координатами (шириной, высотой и глубиной). Таким образом, через каждую точку можно провести три координатные оси виртуального пространства. Координатная ось – это воображаемая линия пространства, определяющая направление изменения координаты. Точка пересечения трех осей, имеющая координаты (0,0,0) – это точка начала координат.

В машинной графике в зависимости от характера решаемых задач, от структуры представления изображений и от процесса обработки графических данных, используются различные координаты:

полярные, цилиндрические, сферические;

относительные;

пользователя;

физические;

нормализованные;

однородные.

Мировой координатой называют независимую от устройствадекартову координату, используемую в прикладной программе при задании графических входных и выходных данных. Будем говорить, что на плоскости задана декартова прямоугольная система координат, если определена пара взаимно перпендикулярных осей и при этом обусловлено какая из этих осей является осью ординат, какая - осью абсцисс, а также единичный (масштабный) отрезок по осям. На рис. 3.14 изображена декартова система координат и определенная на ней точкаM . Опустим из точкиM перпендикуляры на осиOX и OY . Точки пересечения этих перпендикуляров с осями координат обозначены соответственноL и K . Абсциссой точкиMназывается отрезок
осиOX, а ординатой – величина отрезка
осиY. Пару чиселx иy , гдеx =
,y =
называюткоординатами точки M в выбранной системе координат. Тот факт, что точкаMимеет координатыx иy записывается так:M (x , y ). При этом сначала пишется абсцисса, а затем ордината точкиM .

Таким образом, каждой точке M плоскости соответствует пара действительных чисел (x , y ) – координаты этой точки. Наоборот, каждой паре действительных чисел (x , y ) соответствует, и при том только одна, точкаM плоскости, для которой эти числа будут ее координатами.

Следовательно, введение на плоскости декартовой прямоугольной системы координат позволяет установить взаимно однозначное соответствие между множеством точек на плоскости и множеством пар 1 действительных чисел на плоскости. Это соответствие дает возможность сводить изучение множеств точек на плоскости к изучению множеств пар действительных чисел, то есть, применять к изучению вопросов геометрии алгебраические методы. Это же соответствие дает возможность давать геометрическую интерпретацию некоторым вопросам алгебры и других дисциплин.

Рассматривая прикладной аспект КС, необходимо отметить следующее. Поскольку координаты по своей природе являются безразмерными, позиционирование объектов выполняется в единицах, которые являются естественными для данного приложения и пользователя. Например, требуется показать график помесячного выхода продукции в течение года. Координаты в этой КС (x – месяц; y – выход продукции) называютсякоординатами пользователя , а поскольку они позволяют задавать объекты в двухмерном и трехмерном мире их также называютглобальными координатами.

Если в рассматриваемом векторном пространстве не предполагается возможным сравнение длин единичных векторов (орт), | e 1 |, | e 2 |, | e 3 |, то такое пространство называетсяаффинным . Аффинное векторное пространство позволяет изучать общие свойства фигур, изменяющиеся при произвольном преобразовании системы координат. Аффинная и декартова системы координат на плоскости устанавливают взаимно однозначное соответствие между точками и координатами.

Аффинная или декартова система координат называется правой, если совмещение положительной полуоси х с положительной полуосьюу осуществляется поворотом осиOx в направлении, противоположном направлению движения часовой стрелки на угол, меньший. В противном случае система координат называется левой.

Если отрезки равны (случай метрического векторного пространства), а угол между осями 90 0 КС называетсякосоугольной . То есть кроме декартовой КС существуют и другие системы координат, позволяющие определить положение точки на плоскости (пространстве) с помощью пар (троек) действительных чисел 2 . К таким КС относится, например,полярная система координат.

Полярная система координат. Определим на плоскости точку O и проходящую через нее ось OP . Точка O назовем полюсом, а полуось (луч), выходящую из точки O в положительном направлении 3 , - полярной осью . Задание полюса полярной оси OP и единичного (масштабного) отрезка OE определяет на плоскости полярную систему координат. Полярным радиусом любой точки M называется длина отрезка
.Полярным углом  точки M называется угол наклона направленного отрезка
к полярной осиOP . Угол определяется с учетом знака и с точностью до слагаемого вида 2 k , гдe k целое число.

Числаи, полярный радиус и полярный угол точкиM , называютсяполярными координатами. Точка с полярными координатами обозначается так:M (, ) или (, ) . 4

Таким образом, задание любой пары действительных чисел (, ),0 позволяет построить на плоскости одну точкуM , для которой эти числа являются ее полярными координатами.

При создании изображений достаточно часто приходится пользоваться одновременно декартовыми прямоугольными и полярными координатами точек. Практический интерес представляют формулы, позволяющие по декартовым координатам рассчитывать полярные координаты и наоборот.

Пусть точка M произвольная точка плоскости, x иy – ее декартовы координаты,, - полярные. Так как

Формулы (1) выражают прямоугольные декартовы координаты точки M через полярные координаты.

то есть,
, следовательно

Формулы (2) позволяют определить полярные координаты точки M по ее декартовым координатам. Если точкаM не лежит на осиOY, то из формул (2) следует соотношение

Физической координатой считают координату, заданнуюв системе координат, которая зависит от устройства.

Нормализованной координатой называют координату, заданную в промежуточной, независимой от устройств, системе координат и нормированную относительно некоторого диапазона, обычно от 0 до 1. При этом изображение, выраженное в нормализованных координатах, располагается в одной и той же относительной позиции при визуализации на любое устройство. Нормализованные координаты используются в случае, если область трехмерного пространства, ограниченная кубом, со сторонойh отображается в ту же область, ограниченную кубом со сторонойb", при этом используется нормирующий множитель, делением на который получают нормализованные координаты. Координаты мировой системы иногда приводятся к нормализованному виду.

Приборная система координат всегда нормирована. Координаты обычно задаются в десятичных долях в диапазоне от О до 1 илив целых единицах, например, растра экрана дисплея (размер 1024 X10*4 единиц растра).

Однородная система координат широко применяеся в машинной графике и позволяет n-мерный объект представить в (n +1) - мерном пространстве, путем добавления еще одной координаты - скалярного множителя. Однородные координаты являются основными в проективной геометрии, в машинной графике они удобный искусственный прием, позволяющий линеанизировать перспективные изображения. Однородные координаты дают возможность записывать несобственные (бесконечно удаленные) точки пространства, а также выражать аффинные преобразования в удобной матричной форме, избегая переполнения разрядной сетки ЭВМ за счет нормализации чисел.

Определяются однородные координаты следующим образом. Пусть на плоскости заданы система аффинных координат и произвольная точка Р с координатами(х, у). Введем в рассмотрение систему координат, в которой для описания вектора положения точки вводится третья компонента. Назовем однородной системой координат любую тройку одновременно не равных нулю чисел а 1 , а 2 , а 3 , связанных соотношением

При решении задач компьютерной графики однородные координаты обычно вводятся так: произвольной точке M (x , y ) на плоскости ставится в соответствие точка M ’(x , y ) в пространстве. Заметим, что произвольная точка на прямой, соединяющей начало координат 0(0, 0, 0) с точкой М(x, y, 1), может быть задана тройкой чисел hx , hy , h (hx , hy , h ) при h 0. Вектор, определяемый тройкой чисел hx , hy , h , является направляющим вектором прямой, соединяющим точки 0 иM’. Эта прямая пересекает плоскостьZ = h в точке (x , y , h ), которая однозначно определяет точкуx , y координатной плоскостиXOY . То есть, между точкойx , y и множеством точек (hx , hy , h ) h 0 устанавливается взаимно однозначное соответствие, что и позволяет считатьhx , hy , h ее координатами.

Однородное координатное воспроизведение неоднозначно, но равенство дополнительной координаты единице упрощает прямое и обратное преобразования и одновременно обеспечивает однозначность преобразований. Таким образом, описание точки на плоскости представляется вектором вида (x i , y i , 1 ) и однородные координаты можно представить как координаты двухмерной плоскости, рассматриваемой в трехмерном пространстве на уровне Z = 1. При помощи троек однородных координат можно описать любое аффинное преобразование на плоскости, то есть

Элементы произвольной матрицы аффинного преобразования не несут явно выраженного геометрического смысла. Поэтому, чтобы найти то или иное отображение, используется соответствующее геометрическое описание, необходимые приемы, заключающиеся в последовательном использовании матриц поворота, масштабирования, отражения и переноса поэтапно, так как эти преобразования обладают хорошо выраженными геометрическими свойствами.

Пойдем прямым логическим путем, не отвлекаясь на многие современные международные и отечественные научные термины. Систему координат можно изобразить как некую систему отсчета ориентированную на плоскости двумя направлениями, а в пространстве тремя. Если вспомнить математическую систему, то она представлена двумя взаимно перпендикулярными направлениями, имеющими названия осей абсцисс (X) и ординат (Y). Ориентированы они в горизонтальном и вертикальном направлениях соответственно. Пересечение этих линий является началом координат с нулевыми значениями в абсолютной величине. А местоположение точек на плоскости определяется при помощи двух координат X и Y. В геодезии ориентирование осей на плоскости отличается от математики. Плоскостная прямоугольная система определена осью X в вертикальном положении (в направлении на север) и осью Y в горизонтальном (в направлении на восток).

Классификация систем координат

К полярным системам можно отнести географическую, астрономическую и геодезическую, геоцентрические и топоцентрические системы.

Географическая система координат

Замкнутая поверхность внешнего контура Земли представлена сфероидной геометрической формой. За основные направления ориентирования на ней можно принять дуги на поверхности шара. На упрощенно представленном уменьшенном макете нашей планеты в виде глобуса (фигура земли) можно зрительно увидеть принятые линии отсчета в виде Гринвичского меридиана и экваториальной линии.

В этом примере выражена общепринятая во всем мире именно пространственная система географических координат. В ней введены понятия долготы и широты. Имея градусные единицы измерения, они представляют угловую величину. Многим знакомы их определения. Следует напомнить, что географическая долгота конкретной точки представляет угол между двумя плоскостями, проходящими через нулевой (Гринвичский) меридиан и меридиан в определяемой точке расположения. Под географической широтой точки принят угол, образующийся между отвесной линией (или нормалью) к ней и плоскостью экватора.

Понятия астрономической и геодезической системы координат и их различия

Географическая система условно объединяет астрономическую и геодезическую системы. Для того чтобы было понятно какие все-таки существуют различия обратите внимание на определения геодезических и астрономических координат (долготы, широты, высоты). В астрономической системе широта рассматривается как угол между экваториальной плоскостью и отвесной линией в точке определения. А сама форма Земли в ней рассматривается как условный геоид, математически приближенно приравненный к сфере. В геодезической системе широта образовывается нормалью к поверхности земного эллипсоида в конкретной точке и плоскостью экватора. Третьи координаты в этих системах дают окончательное представление в их различиях. Астрономическая (ортометрическая) высота представляет собой превышение по отвесной линии между фактической и точкой на поверхности уровенного геоида. Геодезической высотой считается расстояние по нормали от поверхности эллипсоида до точки вычисления.

Система плоских прямоугольных систем координат Гаусса-Крюгера

Каждая система координат имеет свое теоретическое научное и практическое экономическое применение, как в глобальном, так и региональном масштабах. В некоторых конкретных случаях возможно использование референцных, местных и условных систем координат, но которые через математические расчеты и вычисления все равно могут быть объединены между собой.

Геодезическая прямоугольная плоская система координат является проекцией отдельных шестиградусных зон эллипсоида. Вписав эту фигуру внутрь горизонтально расположенного цилиндра, каждая зона отдельно проецируется на внутреннюю цилиндрическую поверхность. Зоны такого сфероида ограничиваются меридианами с шагом в шесть градусов. При развертывании на плоскости получается проекция, которая имеет название в честь немецких ученых её разработавших Гаусса-Крюгера. В таком способе проецирования углы между любыми направлениями сохраняют свои величины. Поэтому иногда ее называют еще равноугольной. Ось абсцисс в зоне проходит по центру, через условный осевой меридиан (ось X), а ось ординат по линии экватора (ось Y). Длины линий вдоль осевого меридиана передается без искажений, а вдоль экваториальной линии с искажениями к краям зоны.

Полярная система координат

Кроме выше описанной прямоугольной системы координат следует отметить наличие и использование в решении геодезических задач плоской полярной системы координат. За исходное отсчетное направление в ней применяется ось северного (полярного) направления, откуда и название. Для определения местоположения точек на плоскости используют полярный (дирекционный) угол и радиус-вектор (горизонтальное проложение) до точки. Напомним, что дирекционным углом считается угол, отсчитываемый от исходного (северного) направления до определяемого. Радиус-вектор выражается в определении горизонтального проложения. К пространственной полярной системе добавляется геодезические измерения вертикального угла и наклонного расстояния для определения 3D-положения точек. Этот способ практически ежедневно применяется в тригонометрическом нивелировании , топографической съемке и для развития геодезических сетей .

Геоцентрические и топоцентрические системы координат

По такому же полярному методу частично устроены и спутниковые геоцентрическая и топоцентрическая системы координат, с той лишь разницей, что основные оси трехмерного пространства (X, Y, Z) имеют отличные начала и направления. В геоцентрической системе началом координат является центр масс Земли. Ось X имеет направление по Гринвичскому меридиану к экватору. Ось Y располагают в прямоугольном положении на восток от X. Ось Z изначально имеет полярное направление по малой оси эллипсоида. Координатами в ней считаются:

  • в экваториальной плоскости геоцентрическое прямое восхождение спутника
  • в меридианной плоскости геоцентрическое склонение спутника
  • геоцентрический радиус-вектор расстояние от центра тяжести Земли до спутника.

При наблюдении за движением спутников из точки стояния на земной поверхности используют топоцентрическую систему, оси координат которой расположены параллельно осям геоцентрической системы, а ее началом считается пункт наблюдения. Координаты в такой системе:

  • топоцентрическое прямое восхождение спутника
  • топоцентрическое склонение спутника
  • топоцентрический радиус-вектор спутника
  • геоцентрический радиус вектор в точке наблюдений.

В современные спутниковые глобальные системы отсчета WGS-84 , ПЗ-90 входят не только координаты, но и другие параметры и характеристики важные для геодезических измерений, наблюдений и навигации. К ним относятся геодезические и другие константы:

  • исходные геодезические даты
  • данные земного эллипсоида
  • модель геоида
  • модель гравитационного поля
  • значения величины гравитационной постоянной
  • значение скорости света и другие.
Поделиться