Гармонические колебания. Уравнение гармонических колебаний В уравнении гармонического колебания q q

Гармоническое колебание - явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

где х - значение изменяющейся величины, t - время, остальные параметры - постоянные: А - амплитуда колебаний, ω - циклическая частота колебаний, - полная фаза колебаний, - начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде

(Любое нетривиальное решение этого дифференциального уравнения - есть гармоническое колебание с циклической частотой )

Виды колебаний

    Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия. Чтобы свободные колебания были гармоническими, необходимо, чтобы колебательная система была линейной (описывалась линейными уравнениями движения), и в ней отсутствовала диссипация энергии (последняя вызвала бы затухание).

    Вынужденные колебания совершаются под воздействием внешней периодической силы. Чтобы они были гармоническими, достаточно чтобы колебательная система была линейной (описывалась линейными уравнениями движения), а внешняя сила сама менялась со временем как гармоническое колебание (то есть чтобы зависимость от времени этой силы была синусоидальной).

Уравнение гармонических колебаний

Уравнение (1)

дает зависимость колеблющейся величины S от времени t; это и есть уравнение свободных гармонических колебаний в явном виде. Однако обычно под уравнением колебаний понимают иную запись этого уравнения, в дифференциальной форме. Возьмем для определенности уравнение (1) в виде

дважды продифференцируем его по времени:

Видно, что выполняется следующее соотношение:

которое и называется уравнением свободных гармонических колебаний (в дифференциальной форме). Уравнение (1) является решением дифференциального уравнения (2). Поскольку уравнение (2) - дифференциальное уравнение второго порядка, необходимы два начальных условия для получения полного решения (то есть определения входящих в уравнение (1) констант A и  ); например, положение и скорость колебательной системы при t = 0.

Математи́ческий ма́ятник - осциллятор, представляющий собой механическую систему, состоящую изматериальной точки, находящейся на невесомой нерастяжимой нити или на невесомом стержне в однородном поле сил тяготения. Период малых собственных колебаний математического маятника длины l неподвижно подвешенного в однородном поле тяжести с ускорением свободного падения g равен

и не зависит от амплитуды и массы маятника.

Физический маятник - осциллятор, представляющий собой твёрдое тело, совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной оси, перпендикулярной направлению действия сил и не проходящей через центр масс этого тела.


Уравнение гармонического колебания

Уравнение гармонического колебания устанавливает зависимость координаты тела от времени

График косинуса в начальный момент имеет максимальное значение, а график синуса имеет в начальный момент нулевое значение. Если колебание начинаем исследовать из положения равновесия, то колебание будет повторять синусоиду. Если колебание начинаем рассматривать из положения максимального отклонения, то колебание опишет косинус. Или такое колебание можно описать формулой синуса с начальной фазой .

Изменение скорости и ускорения при гармоническом колебании

Не только координата тела изменяется со временем по закону синуса или косинуса. Но и такие величины, как сила , скорость и ускорение , тоже изменяются аналогично. Сила и ускорение максимальные, когда колеблющееся тело находится в крайних положениях, где смещение максимально, и равны нулю, когда тело проходит через положение равновесия. Скорость, наоборот, в крайних положениях равна нулю, а при прохождении телом положения равновесия - достигает максимального значения.

Если колебание описывать по закону косинуса

Если колебание описывать по закону синуса

Максимальные значения скорости и ускорения

Проанализировав уравнения зависимости v(t) и a(t), можно догадаться, что максимальные значения скорость и ускорение принимают в том случае, когда тригонометрический множитель равен 1 или -1. Определяются по формуле

Основы теории Максвелла для электромагнитного поля

Вихревое электрическое поле

Из закона Фарадея ξ=dФ/dt следует, что любое изменение сцепленного с контуром потока магнитной индукции приводит к возникновению элек­тродвижущей силы индукции и вследствие этого появляется индукционный ток. Сле­довательно, возникновение э.д.с. электро­магнитной индукции возможно и в непод­вижном контуре, находящемся в перемен­ном магнитном поле. Однако э.д.с. в любой цепи возникает только тогда, когда в ней на носители тока действуют сторонние силы - силы неэлектростатического про­исхождения (см. § 97). Поэтому возника­ет вопрос о природе сторонних сил в дан­ном случае.

Опыт показывает, что эти сторонние силы не связаны ни с тепловыми, ни с хи­мическими процессами в контуре; их воз­никновение также нельзя объяснить сила­ми Лоренца, так как они на неподвижные заряды не действуют. Максвелл высказал гипотезу, что всякое переменное магнит­ное поле возбуждает в окружающем про­странстве электрическое поле, которое

и является причиной возникновения ин­дукционного тока в контуре. Согласно представлениям Максвелла, контур, в ко­тором появляется э.д.с., играет второсте­пенную роль, являясь своего рода лишь «прибором», обнаруживающим это поле.

первое уравнение Максвелла утверждает, что изменения электрического поля порождают вихревое магнитное поле.

Второе уравнен ие Максвелла выражает закон электромагнитной индукции Фарадея: ЭДС в любом замкнутом контуре равна скорости изменения (т. е. производной по времени) магнитного потока. Но ЭДС равна касательной составляющей вектора напряженности электрического поля Е, помноженной на длину контура. Чтобы перейти к ротору, как и в первом уравнении Максвелла, достаточно разделить ЭДС на площадь контура, а последнюю устремить к нулю, т. е. взять маленький контур, охватывающий рассматриваемую точку пространства (рис. 9,в). Тогда в правой части уравнения будет уже не поток, а магнитная индукция, поскольку поток равен индукции, помноженной на площадь контура.
Итак, получаем: rotE = - dB/dt.
Таким образом, вихревое электрическое поле порождается изменениями магнитного, что и подано на рис. 9,в и представлено только что приведенной формулой.
Третье и четвертое уравнения Максвелла имеют дело с зарядами и порождаемыми ими полями. Они основаны на теореме Гаусса, утверждающей, что поток вектора электрической индукции через любую замкнутую поверхность равен заряду внутри этой поверхности.

На уравнениях Максвелла основана целая наука - электродинамика, позволяющая строгими математическими методами решить множество полезных практических задач. Можно рассчитать, например, поле излучения различных антенн как в свободном пространстве, так и вблизи поверхности Земли или около корпуса какого-либо летательного аппарата, например, самолета или ракеты. Электродинамика позволяет рассчитать конструкцию волноводов и объемных резонаторов - устройств, применяющихся на очень высоких частотах сантиметрового и миллиметрового диапазонов волн, где обычные линии передачи и колебательные контуры уже непригодны. Без электродинамики невозможно было бы развитие радиолокации, космической радиосвязи, антенной техники и многих других разделов современной радиотехники.

Ток смещения

ТОК СМЕЩЕ́НИЯ, величина, пропорциональная скорости изменения переменного электрического поля в диэлектрике или вакууме. Название «ток» связано с тем, что ток смещения, так же как и ток проводимости, порождает магнитное поле.

При построении теории электромагнитного поля Дж. К. Максвелл выдвинул гипотезу (впоследствии подтвержденную на опыте) о том, что магнитное поле создается не только движением зарядов (током проводимости, или просто током), но и любым изменением во времени электрического поля.

Понятие ток смещения введено Максвеллом для установления количественных соотношений между изменяющимся электрическим полем и вызываемым им магнитным полем.

В соответствии с теорией Максвелла, в цепи переменного тока, содержащей конденсатор, переменное электрическое поле в конденсаторе в каждый момент времени создает такое магнитное поле, какое создавал бы ток, (названный током смещения), если бы он протекал между обкладками конденсатора. Из этого определения следует, что J см = J (т. е., численные значения плотности тока проводимости и плотности тока смещения равны), и, следовательно, линии плотности тока проводимости внутри проводника непрерывно переходят в линии плотности тока смещения между обкладками конденсатора. Плотность тока смещения j см характеризует скорость изменения электрической индукции D во времени:

J см = + ?D/?t.

Ток смещения не выделяет джоулевой теплоты, его основное физическое свойство - способность создавать в окружающем пространстве магнитное поле.

Вихревое магнитное поле создается полным током, плотность которого j , равна сумме плотности тока проводимости и тока смещения?D/?t. Именно поэтому для величины?D/?t и было введено название ток.

Гармоническим осциллятором называется система, которая совершает колебания, описываемые выражением вида d 2 s/dt 2 + ω 0 2 s = 0 или

где две точки сверху означают двукратное дифференцирование по времени. Колебания гармонического осциллятора есть важный пример периодического движения и служат точной или приближенной моделью во многих задачах классической и квантовой физики. В качестве примеров гармонического осциллятора могут быть пружинный, физический и математический маятники, колебательный контур (для токов и напряжений настолько малых, что можно было бы элементы контура считать линейными).

Гармонические колебания

Наряду с поступательными и вращательными движениями тел в механике значительный интерес представляют и колебательные движения. Механическими колебанияминазывают движения тел, повторяющиеся точно (или приблизительно) через одинаковые промежутки времени. Закон движения тела, совершающего колебания, задается с помощью некоторой периодической функции времени x = f (t ). Графическое изображение этой функции дает наглядное представление о протекании колебательного процесса во времени.

Примерами простых колебательных систем могут служить груз на пружине или математический маятник (рис. 2.1.1).

Механические колебания, как и колебательные процессы любой другой физической природы, могут быть свободными и вынужденными . Свободные колебания совершаются под действием внутренних сил системы, после того, как система была выведена из состояния равновесия. Колебания груза на пружине или колебания маятника являются свободными колебаниями. Колебания, происходящие под действием внешних периодически изменяющихся сил, называются вынужденными Простейшим видом колебательного процесса являются простые гармонические колебания , которые описываются уравнением

Частота колебаний f показывает, сколько колебаний совершается за 1 с. Единица частоты – герц (Гц). Частота колебаний f связана с циклической частотой ω и периодом колебаний T соотношениями:

дает зависимость колеблющейся величины S от времени t ; это и есть уравнение свободных гармонических колебаний в явном виде. Однако обычно под уравнением колебаний понимают иную запись этого уравнения, в дифференциальной форме. Возьмем для определенности уравнение (1) в виде

дважды продифференцируем его по времени:

Видно, что выполняется следующее соотношение:

которое и называется уравнением свободных гармонических колебаний (в дифференциальной форме). Уравнение (1) является решением дифференциального уравнения (2). Поскольку уравнение (2) - дифференциальное уравнение второго порядка, необходимы два начальных условия для получения полного решения (то есть определения входящих в уравнение (1) констант A и j 0); например, положение и скорость колебательной системы при t = 0.

Сложение гармонических колебаний одного направления и одинаковой частоты. Биения

Пусть совершаются два гармонических колебания одного направления и одинаковой частоты

Уравнение результирующего колебания будет иметь вид

Убедимся в этом, сложив уравнения системы (4.1)

Применив теорему косинусов суммы и сделав алгебраические преобразования:

Можно найти такие величины А и φ0 , чтобы удовлетворялись уравнения

Рассматривая (4.3) как два уравнения с двумя неизвестными А и φ0, найдем, возведя их в квадрат и сложив, а затем разделив второе на первое:

Подставляя (4.3) в (4.2), получим:

Или окончательно, используя теорему косинусов суммы, имеем:

Тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, совершает также гармоническое колебание в том же направлении и с той же частотой, что и складываемые колебания. Амплитуда результирующего колебания зависит от разности фаз (φ2-φ1) сгладываемых колебаний.

В зависимости от разности фаз (φ2-φ1):

1) (φ2-φ1) = ±2mπ (m=0, 1, 2, …), тогда A= А1+А2, т. е. амплитуда результирующего колебания А равна сумме амплитуд складываемых колебаний;

2) (φ2-φ1) = ±(2m+1)π (m=0, 1, 2, …), тогда A= |А1-А2|, т. е. амплитуда результирующего колебания равна разности амплитуд складываемых колебаний

Периодические изменения амплитуды колебания, возникающие при сложении двух гармонических колебаний с близкими частотами, называются биением.

Пусть два колебания мало отличаются по частоте. Тогда амплитуды складываемых колебаний равны А, а частоты равны ω и ω+Δω, причем Δω намного меньше ω. Начало отсчета выберем так, чтобы начальные фазы обоих колебаний были равны нулю:

Решим систему

Решение системы:

Результирующее колебание можно рассматривать как гармоническое с частотой ω, амплитуда А, которого изменяется по следующему периодическому закону:

Частота изменения А в два раза больше частоты изменения косинуса. Частота биений равна разности частот складываемых колебаний: ωб = Δω

Период биений:

Определение частоты тона (звука определенной высоты биений эталонным и измеряемым колебаниями - наиболее широко применяемый на метод сравнения измеряемой величины с эталонной. Метод биений используется для настройки музыкальных инструментов, анализа слуха и т. д.


Похожая информация.


Выбор начальной фазы позволяет при описании гармонических колебаний перейти от функции синуса к функции косинуса:

Обобщенное гармоническое колебание в дифференциальном виде:

Для того чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению:

где – масса колеблющегося тела.

Физическую систему, в которой могут существовать гармонические колебания, называют гармоническим осциллятором, а уравнение гармонических колебаний – уравнением гармонического осциллятора.

1.2. Сложение колебаний

Неpедки случаи, когда система одновpеменно участвует в двух или нескольких независимых дpуг от дpуга колебаниях. В этих случаях обpазуется сложное колебательное движение, котоpое создается путем наложения (сложения) колебаний дpуг на дpуга. Очевидно, случаи сложения колебаний могут быть весьма pазнообpазны. Они зависят не только от числа складываемых колебаний, но и от паpаметpов колебаний, от их частот, фаз, амплитуд, напpавлений. Не пpедставляется возможным обозpеть все возможное pазнообpазие случаев сложения колебаний, поэтому огpаничимся pассмотpением лишь отдельных пpимеpов.

Сложение гармонических колебаний, направленных вдоль одной прямой

Рассмотрим сложение одинаково направленных колебаний одного периода, но отличающихся начальной фазой и амплитудой. Уравнения складываемых колебаний заданы в следующем виде:

где и – смещения; и – амплитуды; и – начальные фазы складываемых колебаний.

Рис.2.

Амплитуду результирующего колебания удобно определить с помощью векторной диаграммы (рис. 2), на которой отложены векторы амплитуд и складываемых колебаний под углами и к оси и по правилу параллелограмма получен вектор амплитуды суммарного колебания .

Если равномерно вращать систему векторов (параллелограмм) и проектировать векторы на ось , то их проекции будут совершать гармонические колебания в соответствии с заданными уравнениями. Взаимное расположение векторов , и при этом остается неизменным, поэтому колебательное движение проекции результирующего вектора тоже будет гармоническим.

Отсюда следует вывод, что суммарное движение - гармоническое колебание, имеющее заданную циклическую частоту. Определим модуль амплитуды А результирующего колебания. В угол (из равенства противоположных углов параллелограмма).

Следовательно,

отсюда: .

Согласно теореме косинусов ,

Начальная фаза результирующего колебания определяется из :

Соотношения для фазы и амплитуды позволяют найти амплитуду и начальную фазу результирующего движения и составить его уравнение: .

Биения

Рассмотрим случай, когда частоты двух складываемых колебаний мало отличаются друг от друга , и пусть амплитуды одинаковы и начальные фазы , т.е.

Сложим эти уравнения аналитически:

Преобразуем

Рис. 3.
Так как, медленно изменяется, величину нельзя назвать амплитудой в полном смысле этого слова (амплитуда величина постоянная). Условно эту величину можно назвать переменной амплитудой. График таких колебаний показан на рис.3. Складываемые колебания имеют одинаковые амплитуды, но различны периоды, при этом периоды и отличаются незначительно друг от друга. При сложении таких колебаний наблюдаются биения. Число биений в секунду определяется разностью частот складываемых колебаний, т.е

Биения можно наблюдать при звучании двух камертонов, если частоты и колебаний близки друг к другу.

Сложение взаимно перпендикулярных колебаний

Пусть материальная точка одновременно участвует в двух гармонических колебаниях, совершающихся с одинаковыми периодами в двух взаимно перпендикулярных направлениях. С этими направлениями можно связать прямоугольную систему координат , расположив начало координат в положении равновесия точки. Обозначим смещение точки С вдоль осей и , соответственно, через и . (рис. 4).

Рассмотрим несколько частных случаев.

1). Начальные фазы колебаний одинаковы

Выберем момент начала отсчета времени таким образом, чтобы начальные фазы обоих колебаний были равны нулю. Тогда смещения вдоль осей и можно выразить уравнениями:

Поделив почленно эти равенства, получим уравнения траектории точки С:
или .

Следовательно, в результате сложения двух взаимно перпендикулярных колебаний точка С колеблется вдоль отрезка прямой, проходящей через начало координат (рис.4).

Рис. 4.
2). Начальная разность фаз равна :

Уравнения колебания в этом случае имеют вид:

Уравнение траектории точки:

Следовательно, точка С колеблется вдоль отрезка прямой, проходящей через начало координат, но лежащей в других квадрантах, чем в первом случае. Амплитуда А результирующих колебаний в обоих рассмотренных случаях равна:

3). Начальная разность фаз равна .

Уравнения колебаний имеют вид:

Разделим первое уравнение на , второе – на :

Возведем оба равенства в квадрат и сложим. Получим следующее уравнение траектории результирующего движения колеблющейся точки:

Колеблющаяся точка С движется по эллипсу с полуосями и . При равных амплитудах траекторией суммарного движения будет окружность . В общем случае при , но кратным, т.е. , при сложении, взаимно перпендикулярных колебаний колеблющаяся точка движется по кривым, называемым фигурами Лиссажу.

Фигуры Лиссажу

Фигу́ры Лиссажу́ – замкнутые траектории, прочерчиваемые точкой, совершающей одновременно два гармонических колебания в двух взаимно перпендикулярных направлениях.

Впервые изучены французским учёным Жюлем Антуаном Лиссажу. Вид фигур зависит от соотношения между периодами (частотами), фазами и амплитудами обоих колебаний (рис. 5).

Рис.5.

В простейшем случае равенства обоих периодов фигуры представляют собой эллипсы, которые при разности фаз или вырождаются в отрезки прямых, а при разности фаз и равенстве амплитуд превращаются в окружность. Если периоды обоих колебаний неточно совпадают, то разность фаз всё время меняется, вследствие чего эллипс всё время деформируется. При существенно различных периодах фигуры Лиссажу не наблюдаются. Однако, если периоды относятся как целые числа, то через промежуток времени, равный наименьшему кратному обоих периодов, движущаяся точка снова возвращается в то же положение – получаются фигуры Лиссажу более сложной формы.
Фигуры Лиссажу вписываются в прямоугольник, центр которого совпадает с началом координат, а стороны параллельны осям координат и расположены по обе стороны от них на расстояниях, равных амплитудам колебаний (рис. 6).

Колебаниями называют такие процессы, при которых система с большей или меньшей периодичностью многократно проходит через положение равновесия.

Классификация колебаний:

а) по природе (механические, электромагнитные, колебания концентрации, температуры и т.п.);

б) по форме (простые = гармонические; сложные, являющиеся суммой простых гармонических колебаний);

в) по степени периодичности = периодические (характеристики системы повторяются через строго определенный промежуток времени (период)) и апериодические;

г) по отношению ко времени (незатухающие = с постоянной амплитудой; затухающие = с уменьшающейся амплитудой);

г) по энергетике – свободные (однократное поступление энергии в систему извне = однократное внешнее воздействие); вынужденные (многократное (периодическое) поступление энергии в систему извне = периодическое внешнее воздействие); автоколебания (незатухающие колебания, возникающие за счет имеющейся у системы способности регулировать поступление энергии от постоянного источника).

Условия возникновения колебаний.

а) Наличие колебательной системы (маятник на подвесе, пружинный маятник, колебательный контур и т.п.);

б) Наличие внешнего источника энергии, который способен хотя бы 1 раз вывести систему из положения равновесия;

в) Возникновение в системе квазиупругой возвращающей силы (т.е. силы, пропорциональной смещению);

г) Наличие в системе инерции (инерциального элемента).

В качестве наглядного примера рассмотрим движение математического маятника. Математическим маятником называют тело небольших размеров, подвешенное на тонкой нерастяжимой нити, масса которой пренебрежимо мала по сравнению с массой тела. В положении равновесия, когда маятник висит по отвесу, сила тяжести уравновешивается силой натяжения нити
. При отклонении маятника от положения равновесия на некоторый уголα появляется касательная составляющая силы тяжести F =- mg sinα . Знак «минус» в этой формуле означает, что касательная составляющая направлена в сторону, противоположную отклонению маятника. Она является возвращающей силой. При небольших углах α (порядка 15-20 о) эта сила пропорциональна смещению маятника, т.е. является квазиупругой, а колебания маятника являются гармоническими.

При отклонении маятника он поднимается на определенную высоту, т.е. ему сообщается определенный запас потенциальной энергии (Е пот = mgh ). При движении маятника к положению равновесия происходит переход потенциальной энергии в кинетическую. В момент, когда маятник проходит положение равновесия, потенциальная энергия равна нулю, а кинетическая энергия максимальна. За счет наличия массы m (масса – физическая величина, определяющая инерционные и гравитационные свойства материи) маятник проходит положение равновесия и отклоняется в противоположном направлении. При отсутствии трения в системе колебания маятника будут продолжаться бесконечно долго.

Уравнение гармонического колебания имеет вид:

x(t) = x m cos (ω 0 t + φ 0 ),

где х – смещение тела от положения равновесия;

x m (А ) – амплитуда колебаний, то есть модуль максимального смещения,

ω 0 – циклическая (или круговая) частотаколебаний,

t – время.

Величина, стоящая под знаком косинуса φ = ω 0 t + φ 0 называется фазой гармонического колебания. Фаза определяет смещение в данный момент времени t . Фазу выражают в угловых единицах (радианах).

При t = 0 φ = φ 0 , поэтому φ 0 называют начальной фазой.

Промежуток времени, через который повторяются определенные состояния колебательной системы, называется периодом колебаний T.

Физическая величина, обратная периоду колебаний, называется частотой колебаний:
. Частота колебаний ν показывает, сколько колебаний совершается за в единицу времени. Единица измерения частоты – герц (Гц) – одноколебание в секунду.

Частота колебаний ν связана с циклической частотой ω и периодом колебаний T соотношениями:
.

То есть круговая частота - это число полных колебаний, совершающихся за 2π единиц времени.

Графически гармонические колебания можно изображать в виде зависимости х отt и методом векторных диаграмм.

Метод векторных диаграмм позволяет наглядно представить все параметры, входящие в уравнение гармонических колебаний. Действительно, если вектор амплитуды А расположен под углом φ к оси х , то его проекция на ось х будет равна: x = Acos(φ ) . Угол φ и есть начальная фаза. Если вектор А привести во вращение с угловой скоростью ω 0 , равной круговой частоте колебаний, то проекция конца вектора будет перемещаться по оси х и принимать значения, лежащие в пределах от -A до +A , причем координата этой проекции будет меняться со временем по закону: x (t ) = А cos 0 t + φ) . Время, за которое вектор амплитуды делает один полный оборот, равно периоду Т гармонических колебаний. Число оборотов вектора в секунду равно частоте колебаний ν .

Поделиться