Как найти время зная период колебаний. Изучение колебаний математического и пружинного маятников. Отрывок, характеризующий Период колебаний

В котором он находился в первоначальный момент, выбранный произвольно).

В принципе совпадает с математическим понятием периода функции , но имея в виду под функцией зависимость физической величины, совершающей колебания, от времени.

Это понятие в таком виде применимо как к гармоническим , так и к ангармоническим строго периодическими колебаниям (а приближенно - с тем или иным успехом - и непериодическим колебаниям, по крайней мере к близким к периодичности).

В случае, когда речь идет о колебаниях гармонического осциллятора с затуханием , под периодом понимается период его осциллирующей составляющей (игнорируя затухание), который совпадает с удвоенным временным промежутком между ближайшими прохождениями колеблющейся величины через ноль. В принципе, это определение может быть с большей или меньшей точностью и пользой распространено в некотором обобщении и на затухающие колебания с другими свойствами.

Обозначения: обычное стандартное обозначение периода колебаний: T (хотя могут применяться и другие, наиболее часто это \tau, иногда \Theta и т. д.).

T = \frac{1}{\nu},\ \ \ \nu = \frac{1}{T}.

Для волновых процессов период связан кроме того очевидным образом с длиной волны \lambda

v = \lambda \nu, \ \ \ T = \frac{\lambda}{v},

где v - скорость распространения волны (точнее - фазовая скорость).

В квантовой физике период колебаний прямо связан с энергией (поскольку в квантовой физике энергия объекта - например, частицы - есть частота колебаний его волновой функции).

Теоретическое нахождение периода колебаний той или иной физической системы сводится, как правило, к нахождению решения динамических уравнений (уравнения), описывающего эту систему. Для категории линейных систем (а приближенно - и для линеаризуемых систем в линейном приближении, которое зачастую является очень хорошим) существуют стандартные сравнительно простые математические методы, позволяющие это сделать (если известны сами физические уравнения, описывающие систему).

Для экспериментального определения периода используются часы , секундомеры , частотомеры , стробоскопы , строботахометры , осциллографы . Также применяются биения , метод гетеродинирования в разных видах, используется принцип резонанса . Для волн можно померить период косвенно - через длину волны, для чего применяются интерферометры , дифракционные решетки итп. Иногда требуются и изощренные методы, специально разработанные для конкретного трудного случая (трудность могут представлять как само измерение времени, особенно если речь идет о предельно малых или наоборот очень больших временах, так и трудности наблюдения колеблющейся величины).

Периоды колебаний в природе

Представление о периодах колебаний различных физических процессов дает статья Частотные интервалы (учитывая то, что период в секундах есть обратная величина частоты в герцах).

Некоторое представление о величинах периодов различных физических процессов также может дать шкала частот элетромагнитных колебаний (см. Электромагнитный спектр) .

Периоды колебаний слышимого человеком звука находятся в диапазоне

От 5·10 −5 до 0,2

(четкие границы его несколько условны).

Периоды электромагнитных колебаний, соответствующих разным цветам видимого света - в диапазоне

От 1,1·10 −15 до 2,3·10 −15 .

Поскольку при экстремально больших и экстремально маленьких периодах колебаний методы измерения имеют тенденцию становятся всё более косвенными (вплоть до плавного перетекания в теоретические экстраполяции), трудно назвать четкую верхнюю и нижнюю границы для периода колебаний, измеренного непосредственно. Какую-то оценку для верхней границы может дать время существования современной науки (сотни лет), а для нижней - период колебаний волновой функции самой тяжелой из известных сейчас частиц ().

В любом случае границей снизу может служить планковское время , которое столь мало, что по современным представлениям не только вряд ли может быть вообще как-то физически измерено , но и вряд ли в более-менее обозримом будущем представляется возможность приблизиться к измерению величин даже намного порядков больших, а границей сверху - время существования Вселенной - более десяти миллиардов лет.

Периоды колебаний простейших физических систем

Пружинный маятник

Математический маятник

T=2\pi \sqrt{\frac{l}{g}}

где l - длина подвеса (к примеру, нити), g - ускорение свободного падения .

Период малых колебаний (на Земле) математического маятника длиной 1 метр с хорошей точностью равен 2 секундам.

Физический маятник

T=2\pi \sqrt{\frac{J}{mgl}}

Крутильный маятник

T = 2 \pi \sqrt{\frac{I}{K}}

Эту формулу вывел в 1853 году английский физик У. Томсон .

Напишите отзыв о статье "Период колебаний"

Примечания

Ссылки

  • - статья из Большой советской энциклопедии

Отрывок, характеризующий Период колебаний

Ростов молчал.
– А вы что ж? тоже позавтракать? Порядочно кормят, – продолжал Телянин. – Давайте же.
Он протянул руку и взялся за кошелек. Ростов выпустил его. Телянин взял кошелек и стал опускать его в карман рейтуз, и брови его небрежно поднялись, а рот слегка раскрылся, как будто он говорил: «да, да, кладу в карман свой кошелек, и это очень просто, и никому до этого дела нет».
– Ну, что, юноша? – сказал он, вздохнув и из под приподнятых бровей взглянув в глаза Ростова. Какой то свет глаз с быстротою электрической искры перебежал из глаз Телянина в глаза Ростова и обратно, обратно и обратно, всё в одно мгновение.
– Подите сюда, – проговорил Ростов, хватая Телянина за руку. Он почти притащил его к окну. – Это деньги Денисова, вы их взяли… – прошептал он ему над ухом.
– Что?… Что?… Как вы смеете? Что?… – проговорил Телянин.
Но эти слова звучали жалобным, отчаянным криком и мольбой о прощении. Как только Ростов услыхал этот звук голоса, с души его свалился огромный камень сомнения. Он почувствовал радость и в то же мгновение ему стало жалко несчастного, стоявшего перед ним человека; но надо было до конца довести начатое дело.
– Здесь люди Бог знает что могут подумать, – бормотал Телянин, схватывая фуражку и направляясь в небольшую пустую комнату, – надо объясниться…
– Я это знаю, и я это докажу, – сказал Ростов.
– Я…
Испуганное, бледное лицо Телянина начало дрожать всеми мускулами; глаза всё так же бегали, но где то внизу, не поднимаясь до лица Ростова, и послышались всхлипыванья.
– Граф!… не губите молодого человека… вот эти несчастные деньги, возьмите их… – Он бросил их на стол. – У меня отец старик, мать!…
Ростов взял деньги, избегая взгляда Телянина, и, не говоря ни слова, пошел из комнаты. Но у двери он остановился и вернулся назад. – Боже мой, – сказал он со слезами на глазах, – как вы могли это сделать?
– Граф, – сказал Телянин, приближаясь к юнкеру.
– Не трогайте меня, – проговорил Ростов, отстраняясь. – Ежели вам нужда, возьмите эти деньги. – Он швырнул ему кошелек и выбежал из трактира.

Вечером того же дня на квартире Денисова шел оживленный разговор офицеров эскадрона.
– А я говорю вам, Ростов, что вам надо извиниться перед полковым командиром, – говорил, обращаясь к пунцово красному, взволнованному Ростову, высокий штаб ротмистр, с седеющими волосами, огромными усами и крупными чертами морщинистого лица.
Штаб ротмистр Кирстен был два раза разжалован в солдаты зa дела чести и два раза выслуживался.
– Я никому не позволю себе говорить, что я лгу! – вскрикнул Ростов. – Он сказал мне, что я лгу, а я сказал ему, что он лжет. Так с тем и останется. На дежурство может меня назначать хоть каждый день и под арест сажать, а извиняться меня никто не заставит, потому что ежели он, как полковой командир, считает недостойным себя дать мне удовлетворение, так…
– Да вы постойте, батюшка; вы послушайте меня, – перебил штаб ротмистр своим басистым голосом, спокойно разглаживая свои длинные усы. – Вы при других офицерах говорите полковому командиру, что офицер украл…
– Я не виноват, что разговор зашел при других офицерах. Может быть, не надо было говорить при них, да я не дипломат. Я затем в гусары и пошел, думал, что здесь не нужно тонкостей, а он мне говорит, что я лгу… так пусть даст мне удовлетворение…
– Это всё хорошо, никто не думает, что вы трус, да не в том дело. Спросите у Денисова, похоже это на что нибудь, чтобы юнкер требовал удовлетворения у полкового командира?
Денисов, закусив ус, с мрачным видом слушал разговор, видимо не желая вступаться в него. На вопрос штаб ротмистра он отрицательно покачал головой.
– Вы при офицерах говорите полковому командиру про эту пакость, – продолжал штаб ротмистр. – Богданыч (Богданычем называли полкового командира) вас осадил.
– Не осадил, а сказал, что я неправду говорю.
– Ну да, и вы наговорили ему глупостей, и надо извиниться.
– Ни за что! – крикнул Ростов.
– Не думал я этого от вас, – серьезно и строго сказал штаб ротмистр. – Вы не хотите извиниться, а вы, батюшка, не только перед ним, а перед всем полком, перед всеми нами, вы кругом виноваты. А вот как: кабы вы подумали да посоветовались, как обойтись с этим делом, а то вы прямо, да при офицерах, и бухнули. Что теперь делать полковому командиру? Надо отдать под суд офицера и замарать весь полк? Из за одного негодяя весь полк осрамить? Так, что ли, по вашему? А по нашему, не так. И Богданыч молодец, он вам сказал, что вы неправду говорите. Неприятно, да что делать, батюшка, сами наскочили. А теперь, как дело хотят замять, так вы из за фанаберии какой то не хотите извиниться, а хотите всё рассказать. Вам обидно, что вы подежурите, да что вам извиниться перед старым и честным офицером! Какой бы там ни был Богданыч, а всё честный и храбрый, старый полковник, так вам обидно; а замарать полк вам ничего? – Голос штаб ротмистра начинал дрожать. – Вы, батюшка, в полку без году неделя; нынче здесь, завтра перешли куда в адъютантики; вам наплевать, что говорить будут: «между павлоградскими офицерами воры!» А нам не всё равно. Так, что ли, Денисов? Не всё равно?
Денисов всё молчал и не шевелился, изредка взглядывая своими блестящими, черными глазами на Ростова.
– Вам своя фанаберия дорога, извиниться не хочется, – продолжал штаб ротмистр, – а нам, старикам, как мы выросли, да и умереть, Бог даст, приведется в полку, так нам честь полка дорога, и Богданыч это знает. Ох, как дорога, батюшка! А это нехорошо, нехорошо! Там обижайтесь или нет, а я всегда правду матку скажу. Нехорошо!
И штаб ротмистр встал и отвернулся от Ростова.
– Пг"авда, чог"т возьми! – закричал, вскакивая, Денисов. – Ну, Г"остов! Ну!
Ростов, краснея и бледнея, смотрел то на одного, то на другого офицера.
– Нет, господа, нет… вы не думайте… я очень понимаю, вы напрасно обо мне думаете так… я… для меня… я за честь полка.да что? это на деле я покажу, и для меня честь знамени…ну, всё равно, правда, я виноват!.. – Слезы стояли у него в глазах. – Я виноват, кругом виноват!… Ну, что вам еще?…
– Вот это так, граф, – поворачиваясь, крикнул штаб ротмистр, ударяя его большою рукою по плечу.
– Я тебе говог"ю, – закричал Денисов, – он малый славный.
– Так то лучше, граф, – повторил штаб ротмистр, как будто за его признание начиная величать его титулом. – Подите и извинитесь, ваше сиятельство, да с.
– Господа, всё сделаю, никто от меня слова не услышит, – умоляющим голосом проговорил Ростов, – но извиняться не могу, ей Богу, не могу, как хотите! Как я буду извиняться, точно маленький, прощенья просить?
Денисов засмеялся.
– Вам же хуже. Богданыч злопамятен, поплатитесь за упрямство, – сказал Кирстен.
– Ей Богу, не упрямство! Я не могу вам описать, какое чувство, не могу…
– Ну, ваша воля, – сказал штаб ротмистр. – Что ж, мерзавец то этот куда делся? – спросил он у Денисова.
– Сказался больным, завтг"а велено пг"иказом исключить, – проговорил Денисов.
– Это болезнь, иначе нельзя объяснить, – сказал штаб ротмистр.
– Уж там болезнь не болезнь, а не попадайся он мне на глаза – убью! – кровожадно прокричал Денисов.
В комнату вошел Жерков.
– Ты как? – обратились вдруг офицеры к вошедшему.
– Поход, господа. Мак в плен сдался и с армией, совсем.
– Врешь!
– Сам видел.
– Как? Мака живого видел? с руками, с ногами?
– Поход! Поход! Дать ему бутылку за такую новость. Ты как же сюда попал?
– Опять в полк выслали, за чорта, за Мака. Австрийской генерал пожаловался. Я его поздравил с приездом Мака…Ты что, Ростов, точно из бани?
– Тут, брат, у нас, такая каша второй день.
Вошел полковой адъютант и подтвердил известие, привезенное Жерковым. На завтра велено было выступать.
– Поход, господа!
– Ну, и слава Богу, засиделись.

Кутузов отступил к Вене, уничтожая за собой мосты на реках Инне (в Браунау) и Трауне (в Линце). 23 го октября.русские войска переходили реку Энс. Русские обозы, артиллерия и колонны войск в середине дня тянулись через город Энс, по сю и по ту сторону моста.

Так и к ангармоническим строго периодическими колебаниям (а приближенно - с тем или иным успехом - и непериодическим колебаниям, по крайней мере к близким к периодичности).

В случае, когда речь идет о колебаниях гармонического осциллятора с затуханием , под периодом понимается период его осциллирующей составляющей (игнорируя затухание), который совпадает с удвоенным временным промежутком между ближайшими прохождениями колеблющейся величины через ноль. В принципе, это определение может быть с большей или меньшей точностью и пользой распространено в некотором обобщении и на затухающие колебания с другими свойствами.

Обозначения: обычное стандартное обозначение периода колебаний: T {\displaystyle T} (хотя могут применяться и другие, наиболее часто это τ {\displaystyle \tau } , иногда Θ {\displaystyle \Theta } и т. д.).

T = 1 ν , ν = 1 T . {\displaystyle T={\frac {1}{\nu }},\ \ \ \nu ={\frac {1}{T}}.}

Для волновых процессов период связан кроме того очевидным образом с длиной волны λ {\displaystyle \lambda }

v = λ ν , T = λ v , {\displaystyle v=\lambda \nu ,\ \ \ T={\frac {\lambda }{v}},}

где v {\displaystyle v} - скорость распространения волны (точнее - фазовая скорость).

В квантовой физике период колебаний прямо связан с энергией (поскольку в квантовой физике энергия объекта - например, частицы - есть частота колебаний его волновой функции).

Теоретическое нахождение периода колебаний той или иной физической системы сводится, как правило, к нахождению решения динамических уравнений (уравнения), описывающего эту систему. Для категории линейных систем (а приближенно - и для линеаризуемых систем в линейном приближении, которое зачастую является очень хорошим) существуют стандартные сравнительно простые математические методы, позволяющие это сделать (если известны сами физические уравнения, описывающие систему).

Для экспериментального определения периода используются часы , секундомеры , частотомеры , стробоскопы , строботахометры, осциллографы . Также применяются биения, метод гетеродинирования в разных видах, используется принцип резонанса . Для волн можно померить период косвенно - через длину волны, для чего применяются интерферометры , дифракционные решетки итп. Иногда требуются и изощренные методы, специально разработанные для конкретного трудного случая (трудность могут представлять как само измерение времени, особенно если речь идет о предельно малых или наоборот очень больших временах, так и трудности наблюдения колеблющейся величины).

Энциклопедичный YouTube

  • 1 / 5

    Представление о периодах колебаний различных физических процессов дает статья Частотные интервалы (учитывая то, что период в секундах есть обратная величина частоты в герцах).

    Некоторое представление о величинах периодов различных физических процессов также может дать шкала частот элетромагнитных колебаний (см. Электромагнитный спектр) .

    Периоды колебаний слышимого человеком звука находятся в диапазоне

    От 5·10 −5 до 0,2

    (четкие границы его несколько условны).

    Периоды электромагнитных колебаний, соответствующих разным цветам видимого света - в диапазоне

    От 1,1·10 −15 до 2,3·10 −15 .

    Поскольку при экстремально больших и экстремально маленьких периодах колебаний методы измерения имеют тенденцию становятся всё более косвенными (вплоть до плавного перетекания в теоретические экстраполяции), трудно назвать четкую верхнюю и нижнюю границы для периода колебаний, измеренного непосредственно. Какую-то оценку для верхней границы может дать время существования современной науки (сотни лет), а для нижней - период колебаний волновой функции самой тяжелой из известных сейчас частиц ().

    В любом случае границей снизу может служить планковское время , которое столь мало, что по современным представлениям не только вряд ли может быть вообще как-то физически измерено , но и вряд ли в более-менее обозримом будущем представляется возможность приблизиться к измерению величин даже намного порядков больших, а границей сверху - время существования Вселенной - более десяти миллиардов лет.

    Периоды колебаний простейших физических систем

    Пружинный маятник

    Математический маятник

    T = 2 π l g {\displaystyle T=2\pi {\sqrt {\frac {l}{g}}}}

    где l {\displaystyle l} - длина подвеса (к примеру, нити), g {\displaystyle g} - ускорение свободного падения .

    Период малых колебаний (на Земле) математического маятника длиной 1 метр с хорошей точностью равен 2 секундам.

    Физический маятник

    T = 2 π J m g l {\displaystyle T=2\pi {\sqrt {\frac {J}{mgl}}}}

    где J {\displaystyle J} - момент инерции маятника относительно оси вращения, m {\displaystyle m} -

    Колебательным называется любое периодически повторяющееся движение. Поэтому зависимости координаты и скорости тела от времени при колебаниях описываются периодическими функциями времени. В школьном курсе физики рассматриваются такие колебания, в которых зависимости и скорости тела представляют собой тригонометрические функции , или их комбинацию, где - некоторое число. Такие колебания на-зываются гармоническими (функции и часто называют гармоническими функциями). Для решения задач на колебания, входящих в программу единого государственного экзамена по физике, нужно знать определения основных характеристик колебательного движения: амплитуды, периода, частоты, круговой (или циклической) частоты и фазы колебаний. Дадим эти определения и свяжем перечисленные величины с параметрами зависимости координаты тела от времени , которая в случае гармонических колебаний всегда может быть представлена в виде

    где , и - некоторые числа.

    Амплитудой колебаний называется максимальное отклонение колеблющегося тела от положения равновесия. Поскольку максимальное и минимальное значение косинуса в (11.1) равно ±1, то амплитуда колебаний тела, совершающего колебания (11.1), равна величине . Период колебаний - это минимальное время, через которое движение тела повторяется. Для зависимости (11.1) период можно установить из следующих соображений. Косинус - периодическая функция с периодом . Поэтому движение полностью повторяется через такое значение , что . Отсюда получаем

    Круговой (или циклической) частотой колебаний называется число колебаний, совершаемых за единиц времени. Из формулы (11.3) заключаем, что круговой частотой является величина из формулы (11.1).

    Фазой колебаний называется аргумент тригонометрической функции, описывающей зависимость координаты от времени. Из формулы (11.1) видим, что фаза колебаний тела, движение которого описывается зависимостью (11.1), равна . Значение фазы колебаний в момент времени = 0 называется начальной фазой. Для зависимости (11.1) начальная фаза колебаний равна величине . Очевидно, начальная фаза колебаний зависит от выбора начала отсчета времени (момента = 0), которое всегда является условным. Изменением начала отсчета времени начальная фаза колебаний всегда может быть «сделана» равной нулю, а синус в формуле (11.1) «превращен» в косинус или наоборот.

    В программу единого государственного экзамена входит также знание формул для частоты колебаний пружинного и математического маятников. Пружинным маятником принято называть тело, которое может совершать колебания на гладкой горизонтальной поверхности под действием пружины, второй конец которой закреплен (левый рисунок). Математическим маятником называется массивное тело, размерами которого можно пренебречь, совершающее колебания на длинной, невесомой и нерастяжимой нити (правый рисунок). Название этой системы – «математический маятник» связано с тем, что она представляет собой абстрактную математическую модель реального (физического ) маятника. Необходимо помнить формулы для периода (или частоты) колебаний пружинного и математического маятников. Для пружинного маятника

    где - длина нити, - ускорение свободного падения. Рассмотрим применение этих определений и законов на примере решения задач.

    Чтобы найти циклическую частоту колебаний груза в задаче 11.1.1 найдем сначала период колебаний, а затем воспользуемся формулой (11.2). Поскольку 10 м 28 с - это 628 с, и за это время груз совершает 100 колебаний, период колебаний груза равен 6,28 с. Поэтому циклическая частота колебаний равна 1 c -1 (ответ 2 ). В задаче 11.1.2 груз за 600 с совершил 60 колебаний, поэтому частота колебаний - 0,1 с -1 (ответ 1 ).

    Чтобы понять, какой путь пройдет груз за 2,5 периода (задача 11.1.3 ), проследим за его движением. Через период груз вернется назад в точку максимального отклонения, совершив полное колебание. Поэтому за это время груз пройдет расстояние, равное четырем амплитудам: до положения равновесия - одна амплитуда, от положения равновесия до точки максимального отклонения в другую сторону - вторая, назад в положение равновесия - третья, из положения равновесия в начальную точку - четвертая. За второй период груз снова пройдет четыре амплитуды, а за оставшиеся половину периода - две амплитуды. Поэтому пройденный путь равен десяти амплитудам (ответ 4 ).

    Величина перемещения тела - расстояние от начальной точки до конечной. За 2,5 периода в задаче 11.1.4 тело успеет совершить два полных и половину полного колебания, т.е. окажется на максимальном отклонении, но с другой стороны от положения равновесия. Поэтому величина перемещения равна двум амплитудам (ответ 3 ).

    По определению фаза колебаний - это аргумент тригонометрической функции, которой описывается зависимость координаты колеблющегося тела от времени. Поэтому правильный ответ в задаче 11.1.5 - 3 .

    Период - это время полного колебания. Это значит, что возвращение тела назад в ту же точку, из которой тело начало движение, еще не означает, что прошел период: тело должно вернуться в ту же точку с той же скоростью. Например, тело, начав колебания из положения равновесия, за период успеет отклониться на максимальную величину в одну сторону, вернуться назад, отклонится на максимум в другую сторону и снова вернуться назад. Поэтому за период тело успеет два раза отклониться на максимальную величину от положения равновесия и вернуться обратно. Следовательно, на прохождение от положения равновесия до точки максимального отклонения (задача 11.1.6 ) тело затрачивает четвертую часть периода (ответ 3 ).

    Гармоническими называются такие колебания, при которых зависимость координаты колеблющегося тела от времени описывается тригонометрической (синус или косинус) функцией времени. В задаче 11.1.7 таковыми являются функции и , несмотря на то, что входящие в них параметры обозначены как 2 и 2 . Функция же - тригонометрическая функция квадрата времени. Поэтому гармоническими являются колебания только величин и (ответ 4 ).

    При гармонических колебаниях скорость тела изменяется по закону , где - амплитуда колебаний скорости (начало отсчета времени выбрано так, чтобы начальная фаза колебаний равнялась бы нулю). Отсюда находим зависимость кинетической энергии тела от времени
    (задача 11.1.8 ). Используя далее известную тригонометрическую формулу, получаем

    Из этой формулы следует, что кинетическая энергия тела изменяется при гармонических колебаниях также по гармоническому закону, но с удвоенной частотой (ответ 2 ).

    За соотношением между кинетической энергий груза и потенциальной энергией пружины (задача 11.1.9 ) легко проследить из следующих соображений. Когда тело отклонено на максимальную величину от положения равновесия, скорость тела равна нулю, и, следовательно, потенциальная энергия пружины больше кинетической энергии груза. Напротив, когда тело проходит положение равновесия, потенциальная энергия пружины равна нулю, и, следовательно, кинетическая энергия больше потенциальной. Поэтому между прохождением положения равновесия и максимальным отклонением кинетическая и потенциальная энергия один раз сравниваются. А поскольку за период тело четыре раза проходит от положения равновесия до максимального отклонения или обратно, то за период кинетическая энергия груза и потенциальная энергия пружины сравниваются друг с другом четыре раза (ответ 2 ).

    Амплитуду колебаний скорости (задача 11.1.10 ) проще всего найти по закону сохранения энергии. В точке максимального отклонения энергия колебательной системы равна потенциальной энергии пружины , где - коэффициент жесткости пружины, - амплитуда колебаний. При прохождении положения равновесия энергия тела равна кинетической энергии , где - масса тела, - скорость тела при прохождении положения равновесия, которая является максимальной скоростью тела в процессе колебаний и, следовательно, представляет собой амплитуду колебаний скорости. Приравнивая эти энергии, находим

    (ответ 4 ).

    Из формулы (11.5) заключаем (задача 11.2.2 ), что от массы математического маятника его период не зависит, а при увеличении длины в 4 раза период колебаний увеличивается в 2 раза (ответ 1 ).

    Часы - это колебательный процесс, который используется для измерения интервалов времени (задача 11.2.3 ). Слова часы «спешат» означают, что период этого процесса меньше того, каким он должен быть. Поэтому для уточнения хода этих часов необходимо увеличить период процесса. Согласно формуле (11.5) для увеличения периода колебаний математического маятника необходимо увеличить его длину (ответ 3 ).

    Чтобы найти амплитуду колебаний в задаче 11.2.4 , необходимо представить зависимость координаты тела от времени в виде одной тригонометрической функции. Для данной в условии функции это можно сделать с помощью введения дополнительного угла. Умножая и деля эту функцию на и используя формулу сложения тригонометрических функций, получим

    где - такой угол, что . Из этой формулы следует, что амплитуда колебаний тела - (ответ 4 ).

    ЧАСТОТА КОЛЕБАНИЙ, числоколебаний в 1 с. Обозначается. Если T -периодот колебаний, то= 1/T; измеряется в герцах (Гц).Угловая частотаколебаний= 2= 2/T рад/с.

    ПЕРИОД колебаний, наименьший промежуток времени, через который совершающая колебания системавозвращается в то же состояние, в котором она находилась в начальный момент, выбранный произвольно. Период -величина, обратная частоте колебаний.Понятие"период" применимо, например, в случае гармонических колебаний, однако часто применяется и для слабо затухающих колебаний.

    Круговая или циклическая частотаω

    При изменении аргумента косинуса, либо синуса на 2π эти функции возвращаются к прежнему значению. Найдем промежуток времени T, в течение которого фаза гармонической функции изменяется на 2π .

    ω(t + T) + α = ωt + α + 2π, или ωT = 2π.

    Время T одного полного колебания называется периодом колебания. Частотой ν называют величину, обратную периоду

    Единица измерения частоты - герц (Гц), 1 Гц = 1 с -1 .

    Круговая, или циклическая частоты ω в 2π раз больше частоты колебаний ν. Круговая частота - это скорость изменения фазы со временем. Действительно:

    .

    АМПЛИТУДА (от латинского amplitudo - величина), наибольшее отклонение от равновесного значения величины, колеблющейся по определенному, в том числе гармоническому, закону; смотри такжеГармонические колебания.

    ФАЗА КОЛЕБАНИЙ аргумент функцииcos (ωt + φ), описывающей гармонический колебательный процесс (ω - круговая частота, t - время, φ - начальная фаза колебаний, т. е. фаза колебаний вначальный момент времениt = 0)

    Смещение, скорость, ускорение колеблющейся системы частиц.



    Энергия гармонических колебаний.

    Гармонические колебания

    Важным частным случаем периодических колебаний являются гармонические колебания, т.е. такие изменения физической величины, которые идут по закону

    где . Из курса математики известно, что функция вида (1) меняется в пределах от А до -А, и что наименьший положительный период у нее. Поэтому гармоническое колебание вида (1) происходит с амплитудой А и периодом.

    Не следует путать циклическую частоту и частоту колебаний. Между ними простая связь. Так как, а, то.

    Величина называется фазой колебания. При t=0 фаза равна, потомуназывают начальной фазой.

    Отметим, что при одном и том же t:

    где - начальная фаза.Видно, что начальная фаза для одного и того же колебания есть величина, определенная с точнотью до. Поэтому из множества возможных значений начальной фазы выбирается обычно значение начальной фазы наименьшее по модулю или наименьшее положительное. Но делать это необязательно. Например, дано колебание, то его удобно записать в видеи работать в дальнейшем с последним видом записи этого колебания.

    Можно показать, что колебания вида:

    где имогут быть любого знака, с помощью простых тригонометрических преобразований всегда приводится к виду (1), причем,, ане равна, вообще говоря. Таким образом, колебания вида (2) являются гармоническими с амплитудойи циклической частотой. Не приводя общего доказательства, проиллюстрируем это на конкретном примере.

    Пусть требуется показать, что колебание

    будет гармоническим и найти амплитуду , циклическую частоту, периоди начальную фазу. Действительно,

    -

    Видим, что колебание величины S удалось записать в виде (1). При этом ,.

    Попробуйте самостоятельно убедится, что

    .

    Естественно, что запись гармонических колебаний в форме (2) ничем не хуже записи в форме (1), и переходить в конкретной задаче от записи в данной форме к записи в другой форме обычно нет необходимости. Нужно только уметь сразу находить амплитуду, циклическую частоту и период, имея перед собой любую форму записи гармонического колебания.

    Иногда полезно знать характер изменения первой и второй производных по времени от величины S, которая совершает гармонические колебания (колеблется по гармоническому закону). Если , то дифференцирование S по времени t дает,. Видно, что S" и S"" колеблются тоже по гармоническому закону с той же циклической частотой, что и величина S, и амплитудамии, соответственно. Приведем пример.

    Пусть координата x тела, совершающего гармонические колебания вдоль оси x, изменяется по закону , где х в сантиметрах, время t в секундах. Требуется записать закон изменения скорости и ускорения тела и найти их максимальные значения. Для ответа на поставленный вопрос заметим, что первая производная по времени от величины х есть проекция скорости тела на ось х, а вторая производная х есть проекция ускорения на ось х:,. Продифференцировав выражение для х по времени, получим,. Максимальные значения скорости и ускорения:.

    Разделы: Физика

    Цели урока:

    • познакомить учащихся с величинами, характеризующими колебательное движение: амплитуда, частота, период, фаза колебаний;
    • формировать умения анализировать, сравнивать явления, выделять основное, устанавливать связи между элементами содержания ранее изученного материала;
    • научить применять свои знания для решения учебных задач различного характера;
    • показать значимость данной темы и связь ее с другими науками;
    • развивать умения работы с дополнительной литературой, учебником;
    • воспитывать самостоятельность, трудолюбие, терпимость к мнению другого, прививать культуру умственного труда и интерес к предмету.

    Тип урока: изучение нового материала.

    Оборудование: нитяные маятники, презентация.

    Ход урока

    1. Орг. момент. Сообщение учащимся целей и задач урока.

    2. Проверка домашнего задания:

    Фронтальная беседа.

    • какое движение называется колебательным?
    • какие колебания называют свободными?
    • что такое колебательная система?
    • что называется маятником? Виды маятников.
    • примеры колебательных движений в природе.

    3. Новая тема.

    Слайд №1. Всюду в нашей жизни мы встречаемся с колебательными движениями: периодически движутся участки сердца и легких, колеблются ветви деревьев при порыве ветра, ноги и руки при ходьбе, колеблются струны гитар, колеблется спортсмен на батуте и школьник, пытающийся подтянуться на перекладине, пульсируют звезды (будто дышат), а возможно и вся Вселенная, колеблются атомы в узлах кристаллической решетки… Остановимся! На прошлом уроке мы начали знакомство с колебательным движением, а сегодня познакомимся с характеристиками этого движения.

    Эксперимент №1 с маятниками. Сравним колебания двух одинаковых маятников. Первый маятник колеблется с большим размахом, т. е. его крайние положения находятся дальше от положения равновесия, чем у второго маятника. Слайд №2.

    Наибольшее (по модулю) отклонение колеблющегося тела от положения равновесия называется амплитудой колебаний.

    Мы будем рассматривать колебания, происходящие с малыми амплитудами.

    Обычно амплитуду обозначают буквой А и измеряют в единицах длины - метрах (м), сантиметрах (см) и др. Амплитуду можно измерять также в единицах плоского угла, например в градусах, поскольку дуге окружности соответствует определенный центральный угол, т. е. угол с вершиной в центре окружности (в данном случае в точке О).

    Амплитуда колебаний пружинного маятника (см. рис. 49 ) равна длине отрезка ОВ или ОА.

    Если колеблющееся тело пройдет от начала колебаний путь, равный четырем амплитудам, то оно совершит одно полное колебание.

    Слайд №3. Пример, амплитуда колебаний вершины Останкинской башни в Москве (высота 540 м) при сильном ветре около 2,5 м.

    Слайд №4. Промежуток времени, в течение которого тело совершает одно полное колебание, называется периодом колебаний.

    Период колебаний обычно обозначается буквой Т и в СИ измеряется в секундах (с).

    Эксперимент №2. Подвесим к стойке два маятника - один длинный, другой короткий. Отклоним их от положения равновесия на одно и то же расстояние и отпустим. Мы заметим, что по сравнению с длинным маятником короткий за то же время совершает большее число колебаний.

    Число колебаний в единицу времени называется частотой колебаний.

    Обозначается частота буквой v (“ню”). За единицу частоты принято одно колебание в секунду. Эта единица в честь немецкого ученого Генриха Герца названа герцем (Гц).

    Если, например, маятник в одну секунду совершает 2 колебания, то частота его колебаний равна 2 Гц (или 2 с -1), а период колебаний (т. е. время одного полного колебания) равен 0,5 с. Чтобы определить период колебания, необходимо одну секунду разделить на число колебаний в эту секунду, т. е. на частоту.

    Таким образом, период колебания Т и частота колебаний v связаны следующей зависимостью:

    Т=1/ или =1/Т.

    На примере колебаний маятников разной длины приходим к выводу: частота и период свободных колебаний нитяного маятника зависят от длины его нити. Чем больше длина нити маятника, тем больше период колебаний и меньше частота. (Эту зависимость вы будете исследовать при выполнении лабораторной работы № 3.)

    Частота свободных колебаний называется собственной частотой колебательной системы.

    Не только нитяной маятник, но и любая другая колебательная система имеет определенную частоту свободных колебаний, зависящую от параметров этой системы.

    Например, частота свободных колебаний пружинного маятника зависит от массы груза и жесткости пружины.

    Эксперимент №3. Теперь рассмотрим колебания двух одинаковых маятников, движущихся следующим образом. В один и тот же момент времени левый маятник из крайнего левого положения начинает движение вправо, а правый маятник из крайнего правого положения движется влево. Оба маятника колеблются с одной и той же частотой (поскольку длины их нитей равны) и с одинаковыми амплитудами. Однако эти колебания отличаются друг от друга: в любой момент времени скорости маятников направлены, в противоположные стороны. В таком случае говорят, что колебания маятников происходят в противоположных фазах.

    Если маятники колеблются с одинаковыми частотами, но скорости этих маятников в любой момент времени направлены одинаково, то говорят, что маятники колеблются в одинаковых фазах.

    Рассмотрим еще один случай. Если один момент скорости обоих маятников направлены в одну сторону, но через некоторое время они будут направлены в разные стороны, то в таком случае говорят, что колебания происходят с определенной разностью фаз.

    Физическая величина, называемая фазой, используется не только при сравнении колебаний двух или нескольких тел, но и для описания колебаний одного тела.

    Таким образом, колебательное движение характеризуется амплитудой, частотой (или периодом) и фазой.

    В природе и технике широко распространены колебания, называемые гармоническими. Слайд №5.

    Периодические изменения во времени физической величины, происходящие по закону синуса или косинуса, называются гармоническими колебаниями.

    Слайд №6. Рассмотрим график зависимости смещения от времени х(t), х – смещение, расстояние от положения устойчивого равновесия. Определим по графику амплитуду, период и частоту колебания.

    А=1м, Т=20с, =1/20 Гц.

    4. Закрепление темы. Решение задач.

    Слайд №7. Сердце - это орган, имеющий массу 300 г. С 15 до 50 лет оно бьется со скоростью 70 раз в минуту. В период между 60 и 80 годами оно ускоряет свое движение, достигая примерно 79 ударов в минуту. В среднем это составляет 4,5 тысячи пульсаций в час и 108 тысяч в день. Сердце велосипедиста может быть вдвое больше, чем у человека, не занимающегося спортом, - 1250 кубических сантиметров вместо 750. В обычном режиме этот орган перекачивает 360 литров крови в час, а за всю жизнь - 224 миллиона литров. Столько же, сколько река Сена за 10 минут!

    Чему равен период колебаний работы сердца? (0,86 с)

    Слайд №8. Небольшие размеры колибри и их способность сохранять постоянную температуру тела требуют интенсивного обмена веществ. Ускоряются все важнейшие функции в организме, сердце делает до 1260 ударов в минуту, увеличивается ритм дыхания - до 600 дыхательных движений за одну минуту. Высокий уровень обмена веществ поддерживается интенсивным питанием - колибри почти непрерывно кормятся нектаром цветов.

    Определите частоту колебаний сердца колибри. (21 Гц - частота сокращения сердца.)

    5. Домашнее задание: §26-27, упр. 24(3,4,5), подгов. к лаб. раб. №3. Слайд №8.

    6. Самостоятельная работа с самопроверкой. Слайды № 9-12.

    1 вариант

    2 вариант

    1. Колебания – это движения тела…
    1. Из положения равновесия.
    2. По кривой траектории.
    3. В вертикальной плоскости.
    4. Обладающее той или иной степенью повторяемости во времени.
    1. Интервал времени, за который совершается одно полное колебание, – это…
    1. Смещение.
    2. Частота.
    3. Период.
    4. Амплитуда.

    2. Число полных колебаний за 1 с определяет …

    1. Смещение.
    2. Частота.
    3. Период.
    4. Амплитуда.
    2. Наибольшее отклонение тела от положения равновесия – это…
    1. Смещение.
    2. Частота.
    3. Период.
    4. Амплитуда.
    3. Частота свободных колебаний пружинного маятника равен 10 Гц. Чему равен период колебаний?
    1. 0,1 с.
    2. 10 с.
    3. Период свободных колебаний нитяного маятника равен 5 с. Чему равна частота его колебаний?
    1. 0,2 Гц.
    2. 20 Гц
    3. 5 Гц.
    4. 10 Гц.
    4. За 6 секунд маятник совершает 12 колебаний. Чему равна частота колебаний?
    1. 0,5 Гц
    2. 72 Гц
    4. За 5 секунд маятник совершает 10 колебаний. Чему равен период колебаний?
    1. 0,5 с

    Слайд №13. Вариант 1: D, B, C, B. Вариант 2: C, D, A, A.

    7. Итоги урока. Оценки за урок.

    Литература, используемая при подготовке к уроку:

    1. Физика. 9 кл.: учебник для общеобразоват. учреждений / А.В. Перышкин, У.М. Гутник. – М.: Дрофа, 2011.
Поделиться