Непрерывность дифференцируемой функции. Дифференцируемость функций. непрерывность дифференцируемой функции Геометрический смысл производной

Содержание статьи

ПРОИЗВОДНАЯ –производной функции y = f (x ), заданной на некотором интервале (a , b ) в точке x этого интервала, называется предел, к которому стремится отношение приращения функции f в этой точке к соответствующему приращению аргумента, когда приращение аргумента стремится к нулю.

Производную принято обозначать так:

Широко употребляются и другие обозначения:

Мгновенная скорость.

Пусть точка M движется по прямой. Расстояние s движущейся точки, отсчитываемое от некоторого начального ее положения M 0 , зависит от времени t , т.е. s есть функция времени t : s = f (t ). Пусть в некоторый момент времени t движущаяся точка M находилась на расстоянии s от начального положения M 0, а в некоторый следующий момент t + Dt оказалась в положении M 1 – на расстоянии s + Ds от начального положения (см. рис .).

Таким образом, за промежуток времени Dt расстояние s изменилось на величину Ds . В этом случае говорят, что за промежуток времени Dt величина s получила приращение Ds .

Средняя скорость не может во всех случаях точно охарактеризовать быстроту перемещения точки M в момент времени t . Если, например, тело в начале промежутка Dt перемещалось очень быстро, а в конце очень медленно, то средняя скорость не сможет отразить указанных особенностей движения точки и дать представление об истинной скорости ее движения в момент t . Чтобы точнее выразить истинную скорость с помощью средней скорости, надо взять меньший промежуток времени Dt . Наиболее полно характеризует скорость движения точки в момент t тот предел, к которому стремится средняя скорость при Dt ® 0. Этот предел называют скоростью движения в данный момент:

Таким образом, скоростью движения в данный момент называется предел отношения приращения пути Ds к приращению времени Dt , когда приращение времени стремится к нулю. Так как

Геометрическое значение производной. Касательная к графику функции.

Построение касательных – одна из тех задач, которые привели к рождению дифференциального исчисления. Первый опубликованный труд, относящийся к дифференциальному исчислению и принадлежащий перу Лейбница, имел название Новый метод максимумов и минимумов, а также касательных, для которого не служат препятствием ни дробные, ни иррациональные величины, и особый для этого род исчисления .

Пусть кривая есть график функции y = f (x ) в прямоугольной системе координат (см . рис.).

При некотором значении x функция имеет значение y = f (x ). Этим значениям x и y на кривой соответствует точка M 0(x , y ). Если аргументу x дать приращение Dx , то новому значению аргумента x + Dx соответствует новое значение функции y+ Dy = f (x + Dx ). Соответствующей ему точкой кривой будет точка M 1(x + Dx , y + Dy ). Если провести секущую M 0M 1 и обозначить через j угол, образованный секущей с положительным направлением оси Ox , из рисунка непосредственно видно, что .

Если теперь Dx стремится к нулю, то точка M 1 перемещается вдоль кривой, приближаясь к точке M 0, и угол j изменяется с изменением Dx . При Dx ® 0 угол j стремится к некоторому пределу a и прямая, проходящая через точку M 0 и составляющая с положительным направлением оси абсцисс угол a, будет искомой касательной. Ее угловой коэффициент:

Следовательно, f ´(x ) = tga

т.е. значение производной f ´(x ) при данном значении аргумента x равняется тангенсу угла, образованного касательной к графику функции f (x ) в соответствующей точке M 0(x ,y ) с положительным направлением оси Ox .

Дифференцируемость функций.

Определение. Если функция y = f (x ) имеет производную в точке x = x 0, то функция дифференцируема в этой точке.

Непрерывность функции, имеющей производную. Теорема.

Если функция y = f (x ) дифференцируема в некоторой точке x = x 0, то она в этой точке непрерывна.

Таким образом, в точках разрыва функция не может иметь производной. Обратное заключение неверно, т.е. из того, что в какой-нибудь точке x = x 0 функция y = f (x ) непрерывна не следует, что она в этой точке дифференцируема. Например, функция y = |x | непрерывна для всех x (–Ґ х x = 0 не имеет производной. В этой точке не существует касательной к графику. Есть правая касательная и левая, но они не совпадают.

Некоторые теоремы о дифференцируемых функциях. Теорема о корнях производной (теорема Ролля). Если функция f (x ) непрерывна на отрезке [a ,b ], дифференцируема во всех внутренних точках этого отрезка и на концах x = a и x = b обращается в нуль (f (a ) = f (b ) = 0), то внутри отрезка [a ,b ] существует, по крайней мере одна, точка x = с , a c b, в которой производная f ў(x ) обращается в нуль, т.е. f ў(c ) = 0.

Теорема о конечных приращениях (теорема Лагранжа). Если функция f (x ) непрерывна на отрезке [a , b ] и дифференцируема во всех внутренних точках этого отрезка, то внутри отрезка [a , b ] найдется по крайней мере одна точка с , a c b, что

f (b ) – f (a ) = f ў(c )(b a ).

Теорема об отношении приращений двух функций (теорема Коши). Если f (x ) и g (x ) – две функции, непрерывные на отрезке [a , b ] и дифференцируемые во всех внутренних точках этого отрезка, причем g ў(x ) нигде внутри этого отрезка не обращается в нуль, то внутри отрезка [a , b ] найдется такая точка x = с , a c b, что

Производные различных порядков.

Пусть функция y = f (x ) дифференцируема на некотором отрезке [a , b ]. Значения производной f ў(x ), вообще говоря, зависят от x , т.е. производная f ў(x ) представляет собой тоже функцию от x . При дифференцировании этой функции получается так называемая вторая производная от функции f (x ), которая обозначается f ўў (x ).

Производной n- го порядка от функции f (x ) называется производная (первого порядка) от производной n- 1- го и обозначается символом y (n ) = (y (n – 1))ў.

Дифференциалы различных порядков.

Дифференциал функции y = f (x ), где x – независимая переменная, есть dy = f ў(x )dx , некоторая функция от x , но от x может зависеть только первый сомножитель f ў(x ), второй же сомножитель (dx ) является приращением независимой переменной x и от значения этой переменной не зависит. Так как dy есть функция от x , то можно определить дифференциал этой функции. Дифференциал от дифференциала функции называется вторым дифференциалом или дифференциалом второго порядка этой функции и обозначается d 2y :

d (dx ) = d 2y = f ўў(x )(dx ) 2 .

Дифференциалом n- го порядка называется первый дифференциал от дифференциала n- 1- го порядка:

d n y = d (d n –1 y ) = f (n )(x )dx (n ).

Частная производная.

Если функция зависит не от одного, а от нескольких аргументов x i (i изменяется от 1 до n , i = 1, 2,… n ), f (x 1, x 2,… x n ), то в дифференциальном исчислении вводится понятие частной производной, которая характеризует скорость изменения функции нескольких переменных, когда изменяется только один аргумент, например, x i . Частная производная 1-ого порядка по x i определяется как обычная производная, при этом предполагается, что все аргументы, кроме x i , сохраняют постоянные значения. Для частных производных вводятся обозначения

Определенные таким образом частные производные 1-ого порядка (как функции тех же аргументов) могут, в свою очередь, также иметь частные производные, это частные производные второго порядка и т.д. Взятые по разным аргументам такие производные называются смешанными. Непрерывные смешанные производные одного порядка не зависят от порядка дифференцирования и равны между собой.

Анна Чугайнова

Если функция y = f (x ) дифференцируема в некоторой точке x = x 0, то она в этой точке непрерывна.

Таким образом, в точках разрыва функция не может иметь производной. Обратное заключение неверно, т.е. из того, что в какой-нибудь точке x = x 0 функция y = f (x ) непрерывна не следует, что она в этой точке дифференцируема. Например, функция y = |x | непрерывна для всех x (–< х < ), но в точке x = 0 не имеет производной. В этой точке не существует касательной к графику. Есть правая касательная и левая, но они не совпадают.

21 Правила нахожд. производ. суммы

Правило 1. Если функции у = f(х) и у = g(х) имеют, производную в точке х, то и их сумма имеет производную в точке х, причем производная суммы равна сумме производных:
(f(х) + 8(х))" =f (х)+ (х).
На практике это правило формулируют короче: производная суммы равна сумме производных.
Например,
Правило 2. Если функция у = f(х) имеет, производную в точке х, то и функция у = кf(х) имеет производную в точке х, причем:

На практике это правило формулируют короче: постоянный множитель можно вынести за знак производной. Например,

Правило 3. Если функции у=f(х) и у =g(х) имеют производную в точке х, то и их произведение имеет производную в точке х, причем:

На практике это правило формулируют так: производная произведения двух функций равна сумме двух слагаемых. Первое слагаемое есть произведение производной первой функции на вторую функцию, а второе слагаемое есть произведение первой функции на производную второй функции.
Например:
Правило 4. Если функции у = f(x) и у=g(х) имеют производную в то и частное имеет производную в точке х, причем:

Таблица сложных производных


22 Диффир. функц. в точке

Функция y =f (x ) называется дифференцируемой в точке x 0, если ее приращение Δy (x 0,Δx ) может быть представлено в виде

Δy (x 0,Δx )=A Δx +o x ).

Главная линейная часть A Δx приращения Δy называется дифференциалом этой функции в точке x 0, соответствующим приращению Δx , и обозначается символом dy (x 0,Δx ).

Для того, чтобы функция y =f (x ) была дифференцируема в точке x 0, необходимо и достаточно, чтобы существовала производная f ′(x 0), при этом справедливо равенство A =f ′(x 0).

Выражение для дифференциала имеет вид

dy (x 0,dx )=f ′(x 0)dx ,

где dx x .

23 Производ. Слож. Функц

Производная сложной функции. Производная функции, заданной параметрически

Пусть y – сложная функция x , т.е. y = f (u ), u = g (x ), или

Если g (x ) и f (u ) – дифференцируемые функции своих аргументов соответственно в точках x и u = g (x ), то сложная функция также дифференцируема в точке x и находится по формуле

Производная функции заданной параметрически.

24 Произв и диффер. Высш.порядк

Пусть теперь производная -го порядка определена в некоторой окрестности точки и дифференцируема. Тогда

Если функция имеет в некоторой области D частную производную по одной из переменных, то названная производная, сама являясь функцией от может иметь в некоторой точке частные производные по той же или по любой другой переменной. Для исходной функции эти производные будут частными производными второго порядка (или вторыми частными производными).

Частная производная второго или более высокого порядка, взятая по различным переменным, называется смешанной частной производной. Например,

Дифференциалом порядка n , где n > 1 , от функции в некоторой точке называется дифференциал в этой точке от дифференциала порядка (n - 1) , то есть

Для функции, зависящей от одной переменной второй и третий дифференциалы выглядят так:

Отсюда можно вывести общий вид дифференциала n -го порядка от функции :

25 Теоремы Ферма, Ролля, Лангража

v Теорема Ферма: Пусть функция определена на и достигает своего наибольшего и наименьшего значения (M и m ) в некоторой из . Если существует производная в , то она обязательно равна 0.

Доказательство: Существует . Возможны два случая:

1) , => , => .

2) , => , => .

Из 1) и 2) следует, что

v Теорема Ролля (о корнях производной): Пусть функция непрерывна на и дифференцируема на и на концах отрезка принимает одинаковые значения: . Тогда существует хотя бы одна точка из , производная в которой .

v Доказательство: Непрерывная достигает на M и m . Тогда возможны два случая:

2) наибольшее значение достигается внутри интервала по теореме Ферма.

v Теорема Лангража (о конечных приращениях): Пусть функция непрерывна на и дифференцируема на . Тогда существует хотя бы одна из , для которой выполняется следующее равенство: .

Доказательство: Введем функцию . (непрерывная на и дифференцируемая на ).

Функция удовлетворяет Теореме Ролля существует , для которой: , , , .

· функция называется стро́го возраста́ющей на , если

· функция называется убыва́ющей на , если

· функция называется стро́го убыва́ющей на , если

Задача о скорости движущейся точки

Пусть – закон прямолинейного движения материальной точки. Обозначим через путь, пройденный точкой за время , а через путь, пройденный за время . Тогда за время точка пройдет путь , равный: . Отношение называется средней скоростью точки за время от до . Чем меньше , т.е. чем короче промежуток времени от до , тем лучше средняя скорость характеризует движение точки в момент времени . Поэтому естественно ввести понятие скорости в данный момент , определив ее как предел средней скорости за промежуток от до , когда :

Величина называется мгновенной скоростью точки в данный момент .

Задача о касательной к данной кривой

Пусть на плоскости задана непрерывная кривая уравнением . Требуется провести невертикальную касательную к данной кривой в точке . Так как точка касания дана, то для решения задачи требуется найти угловой коэффициент касательной. Из геометрии известно, что , где – угол наклона касательной к положительному направлению оси (см. рис.). Через точки и проведем секущую , где – угол, образованный секущей с положительным направлением оси . Из рисунка видно, что , где . Угловой коэффициент касательной к данной кривой в точке может быть найден на основании следующего определения.

Касательной к кривой в точке называется предельное положение секущей , когда точка стремится к точке . Отсюда следует, что .

Определение производной

Математическая операция, требуемая для решения рассмотренных выше задач, одна и та же. Выясним аналитическую сущность этой операции, отвлекаясь от вызвавших ее конкретных вопросов.



Пусть функция определена на некотором промежутке. Возьмем значение из этого промежутка. Придадим какое-нибудь приращение (положительное или отрицательное). Этому новому значению аргумента соответствует и новое значение функции , где .

Составим отношение , оно является функцией от .

Производной функции по переменной в точке называется предел отношения приращения функции в этой точке к вызвавшему его приращению аргумента , когда произвольным образом:

Замечание. Считается, что производная функции в точке существует, если предел в правой части формулы существует и конечен и не зависит от того, как приращение переменной стремится к 0 (слева или справа).

Процесс нахождения производной функции называется ее дифференцированием.

Нахождение производных некоторых функций по определению

а) Производная постоянной.

Пусть , где – постоянная, т.к. значения этой функции при всех одинаковы, то ее приращение равно нулю и, следовательно,

.

Итак, производная постоянной равна нулю, т.е. .

б) Производная функции .

Составим приращение функции:

.

При нахождении производной использовали свойство предела произведения функций, первый замечательный предел и непрерывность функции .

Таким образом, .

Связь между дифференцируемостью функции и ее непрерывностью

Функция, имеющая производную в точке , называется дифференцируемой в этой точке. Функция, имеющая производную во всех точках некоторого промежутка, называется дифференцируемой на этом промежутке.

Теорема. Если функция дифференцируема в точке , то она непрерывна в этой точке.

Доказательство. Придадим аргументу произвольное приращение . Тогда функция получит приращение . Запишем равенство и перейдем к пределу в левой и правой частях при :

Поскольку у непрерывной функции бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции, то теорему можно считать доказанной.

Замечание. Обратное утверждение не имеет места, т.е. из непрерывности функции в точке, вообще говоря, не следует дифференцируемость в этой точке. Например, функция непрерывна при всех , но она не дифференцируема в точке . Действительно:

Предел бесконечен, значит, функция не дифференцируема в точке .

Таблица производных элементарных функций

Замечание. Напомним свойства степеней и корней, используемые при дифференцировании функций:

Приведем примеры нахождения производных.

1) .

2)

Производная сложной функции

Пусть . Тогда функция будет сложной функцией от x .

Если функция дифференцируема в точке x , а функция дифференцируема в точке u , то тоже дифференцируема в точке x , причем

.

1.

Полагаем , тогда . Следовательно

При достаточном навыке промежуточную переменную u не пишут, вводя ее лишь мысленно.

2.

Дифференциал

К графику непрерывной функции в точке проведем касательную MT , обозначив через j ее угол наклона к положительному направлению оси Ох. Так как , то из треугольника MEF следует, что

Введем обозначение

.

Это выражение называется дифференциалом функции . Итак

Замечая, что , т.е. что дифференциал независимой переменной равен ее приращению, получим

Таким образом, дифференциал функции равен произведению ее производной на дифференциал (или приращение) независимой переменной.

Из последней формулы следует, что , т.е. производная функции равна отношению дифференциала этой функции к дифференциалу аргумента.

Дифференциал функции dy геометрически представляет собой приращение ординаты касательной, соответствующее приращению аргумента Dх .

Из рисунка видно, что при достаточно малом Dх по абсолютной величине можно взять приращение функции приближенно равным ее дифференциалу, т.е.

.

Рассмотрим сложную функцию , где , причем дифференцируема по u , а – по х . По правилу дифференцирования сложной функции

Умножим это равенство на dx :

Так как (по определению дифференциала), то

Таким образом, дифференциал сложной функции имеет тот же вид, если бы переменная u была не промежуточным аргументом, а независимой переменной.

Это свойство дифференциала называется инвариантностью (неизменяемостью) формы дифференциала .

Пример. .

Все правила дифференцирования можно записать для дифференциалов.

Пусть – дифференцируемы в точке х . Тогда

Докажем второе правило.

Производная неявной функции

Пусть дано уравнение вида , связывающее переменные и . Если нельзя явно выразить через , (разрешить относительно ) то такая функция называется неявно заданной . Чтобы найти производную от такой функции, нужно обе части уравнения продифференцировать по , считая функцией от . Из полученного нового уравнения найти .

Пример. .

Дифференцируем обе части уравнения по , помня, что есть функция от

Лекция 4. Производная и дифференциал функции одной переменной



Пусть функция у = f{x) определена на интервале (а, 6). Возьмем некоторое значение х € {а, Ь). Дадим х приращение Дя любое, но такое, чтобы х + Дя € (а, 6). Тогда функция у = f(x) получит прирашение Определение. Функция у = f(x) называется дифференцируемой в точке х £ (а, 6), если прирашение функции отвечающее прирашению Ах аргумента, можно представить в виде где А - некоторое число, которое не зависит от Ах (но, вообше говоря, зависит Пример. Рассмотрим функцию у = х2. Во всякой то»«е х и при любом Дх имеем Отсюда, в силу определения, функция у = х2 дифференцируема в любой точке х, причем Следующая теорема выражает необходимое и достаточное условие дифференци-руемости функции. Теорема 1. Для того чтобы функция у = fix) была дифференцируемой в точке х, необходимо и достаточно, чтобы fix) в этой точке имела конечную производную f\x). Необходимость. Пусть функция у = fix) дифференцируема в точке х. Докажем, что в этой точке существует производная fix). Действительно, из дифференцируемости функции у = fix) в точке х следует, что приращение функции Ду, отвечающее приращению Дх аргумента, можно представить в виде Дифференцируемость функции. Дифференциал функции Непрерывность дифференцируемой функции Понятие дифференциала функции Геометрический смысл дифференциала где величина А для данной точки х постоянна (не зависит от. По теореме о связи функции, имеющей предел, с ее пределом и бесконечно малой функцией, отсюда следует, что Существование производной доказано. Одновременно мы установили, что Достаточность. Пусть функция в точке х имеет конечную производную /"(х). Докажем, что fix) в этой точке дифференцируема. Действительно, существование производной /"(х) означает, что при Дх 0 существует предел отношения и что Отсюда, в силу теоремы о связи функции, имеющей предел, с ее пределом и бесконечно малой функцией, вытекает, что где, значит, Так как в правой части формулы (2) величина х) не зависит от, то равенство (2) доказывает, что функция у = /(х) дифференцируема в точке Теорема 1 устанавливает, что для функции /(х) дифференцируемостьв данной точке х и сушествованйе конечной производной в этой точке - понятия равносильные. Поэтому операцию нахождения производной функции называют также дифференцированием этой функции. В дальнейшем, когда мы говорим, что функция /(х) имеет производную в данной точке, мы подразумеваем наличие конечной производной, если не оговорено противное. 2.1. Непрерывность дифференцируемой функции Теорема 2. Если функция дифференцируема в данной точке х, то она непрерывна в этой точке. Действительно, если функция у = /(х) дифференцируема в точке х, то приращение Ду этой функции, отвечающее приращению Дх аргумента, может быть представлено в виде где А - постоянная для данной точки х, а а 0 при Дх 0. Из равенства (3) следует, что Дифференцируемость функции. Дифференциал функции Непрерывность дифференцируемой функции Понятие дифференциала функции Геометрический смысл дифференциала что и означает, согласно определению, непрерывность функции у = /(х) в данной точке х. Обратное заключение неверно: из непрерывности функции /(х) в некоторой точке х не следует дифференцируемость функции в этой точке. Пример. Например, функция /(х) = |х| непрерывна в точке х = 0, но, как мы показали выше (, не имеет производной в точке х = 0 и потому не является дифференцируемой в этой точке. Приведем еше пример. Пример. Функция непрерывна на интервале (-о#, +о#). Для всех х # 0 она имеет производную, но в точке х = 0 она не имеет ни правой, ни левой производной, потому что величина не имеет предела, как при В приведенных примерах производная отсутствует лишь в одной точке. Так и думали в XVIII и начале XIX в., когда считали, что непрерывная функция может не иметь производной самое большее в конечном числеточек. Позжебыли построены (Больца-но, Вейерштрасс, Пеано, Ван дер Варден) примеры непрерывных на отрезке [а, Ь\ функций, не имеющих производной ни в одной точке отрезка. Понятие дифференциала функции Пусть функция у - /(х) дифференцируема в точке х, т.е. прирашение Ду этой функции, отвечающее приращению Дх аргумента, представимо в виде Определение. Если функция у = f(x) дифференцируема в точке х, точасть приращения функции А Дх при Аф 0 называется дифференциаюм функции у = /(х) и обозначается символом dy или df{x): В случае А Ф 0 дифференциал функции называют главной линейной частью приращения Ду функции, поскольку при Дх 0 величина а(Дх)Дх в равенстве (4) есть бесконечно малая функция более высокого порядка, чем А Дх. В случае, когда >1 = 0, считают, что дифференциал dy равен нулю. В силу теоремы I имеем А = /"(х), так что формула (5) для dy принимает вид. Наряду с понятием дифференциала функции вводят понятие дифференциала dx независимой переменной х, полагая по определению Тогда формулу для дифференциала функции у = /(х) можно записать в более симметричной форме Отсюда в свою очередь имеем: /"(х) = Это еще одно обозначение производной (iобозначение Лейбница), которую можно рассматривать как дробь - отношение дифференциала функции dy к дифференциалу аргумента dx. Введем еше одно понятие. Будем говорить, что функция у = /(х) дифференцируема на интервале (а, Ь), если она дифференцируема в каждой точке этого интервала. Дифференцируемость функции. Дифференциал функции Непрерывность дифференцируемой функции Понятие дифференциала функции Геометрический смысл дифференциала Геометрический смысл дифференциала Пусть имеем кривую, заданную уравнением у = /(х),гдс /(х) - дифференцируемая в точке х € (а, 6). Проведем касательную к этой кривой в точке М(х,у) и отметим на кривой еще точку М\ с абсциссой х -f dx. Как известно, /"(х) есть угловой коэффициент касательной, т.е. Рассмотрим треугольник MPQ (рис.8). Из рисунка видно, что Таким образом, дифференциал dy = f"(x)dx функции у = f(x) есть приращение ординаты касательной, проведенной к кривой у = f(x) в точке с абсциссой ж, при переходе от точки касания к точке с абсциссой х + dx.

Определение: Производной от функции в точкеназывается предел, к которому стремится отношение ее приращенияв этой точке к соответствующему приращениюаргумента, когда последнее стремится к нулю:

Т.е., если определена в, то

Теорема 1:

График функции имеет невертикальную касательную тогда и только тогда, когда существует конечное значение производной этой функции в данной точке.

Доказательство:

Пусть существует значение f’()-конечное, тогда

Пусть существует невертикальная касательная => существует - конечный.

Секущая стремится к касательной.

Теорема доказана.

Билет 2 Непрерывность функции, имеющей производную.

Функция f (x), определенная в некоторой окрестности точки a, называется непрерывной в этой точке, если

Теорема: (необходимое условие существования производной)

Если функция имеет конечнуюв точке, тонепрерывна в точке.

Доказательство:

Следовательно - непрерывна в точке.

Теорема доказана.

Замечание : обратное утверждение неверно, если функция непрерывна в точке, то отсюда не следует, что она имеет производную в этой точке.

Утверждение : если функция имеет в точке правую и левую производную, то она непрерывна и справа и слева.

Билет 3

Производная суммы, произведения, частного.

Производная обратной функции.

Определение дифференцируемой функции. Необходимое и достаточное условие дифференцируемости.

Пусть функция имеет производную в точке(конечную):.

Тогда для достаточно малыхможно записать в виде суммыи некоторой функции, которую мы обозначим через, которая стремится к нулю вместе с:,

и приращение в точке может быть записано в виде:

или (1) ,

ведь выражение понимается как функция оттакая, что ее отношение кстремится к нулю вместе с.

Пояснение:

Определение .

Функция называется дифференцируемой в точке, если ее приращение можно представить в виде:(2),

где А не зависит от , но вообще зависит от.

Теорема 1:

Для того, чтобы функция была дифференцируемой в точке, необходимо и достаточно, чтобы она имела конечную производную в этой точке.

Доказательство:

Достаточность условия доказана выше: из существования конечной производной следовала возможность представленияв виде (1), где можно положить.

Необходимость условия . Пусть функция дифференцируема в точке. Тогда из (2), предполагая, получаем.

Предел правой части при существует и равен А:.

Это означает, что существует производная . Теорема доказана.

Билет 6 Дифференциал функции, его геометрический смысл.

Если функция f имеет производную f΄(x o ) в точке x o , то существует предел , где Δf=f(x o + Δx)-f(x o ) ,,или, гдеA=f΄(x o ) .

Определение:

Функция f дифференциируема в точке x o , если ее приращение представимо в виде:

Где A Δx=df . (*)

Дифференциал - это главная линейная часть приращения функции.

Если существует конечная производная f΄(x o ) в точке x o , то функция f(x) дифференцируема в этой точке.

Верно и обратное: если функция f дифференцируема в точке x o , т.е. ее приращение представимо в виде (*), то она имеет производную в точке x o , равную A :

Геометрический смысл дифференциала:

A и B – точки графика f(x) , соответствующие значениям x o и (x o + Δx) независимой переменной. Ординаты точек A и B соответственно равны f(x o ) и f(x o + Δx) . Приращение функции Δf=f(x o + Δx)-f(x o ) в точке x o равно длине отрезка BD и представимо в виде суммы Δf=BD=DC+CB , где DC=tgα Δx=f΄(x o ) Δx и α есть угол между касательной в точке A к графику и положительным направлением оси x . Отсюда видно, что DC есть дифференциал функции f в точке x o :

DC=df=f΄(x o ) Δx .

При этом на долю второго члена CB приращения Δf приходится величина . Эта величина, при больших Δx , может быть даже больше, чем главный член, но она есть бесконечно малая более высокого порядка, чем Δx , когда Δx→0 .

Поделиться