Основные компоненты дыхательной цепи. Митохондриальная дыхательная цепь и окислительное фосфорилирование Цепь транспорта электронов в процессе дыхания

Митохондрии – органеллы клетки, функционирование которых для любой знающего человека четко ассоциируется с производством энергии. Действительно в матриксе митохондрий локализованы различные ферменты, необходимые для окисления субстратов.
Кроме того, внутренняя мембрана митохондрий содержит систему белков-переносчиков электронов, которые обеспечивают терминальный этап окисления субстратов и создают условия для синтеза АТФ.

Эта система белков-переносчиков имеет несколько названий: дыхательная цепь, электрон-транспортной цепи, цепь переноса электронов, редокс-цепь (окислительно-восстановительный цепь). Некоторые из этих названий более точно отражают суть процессов, которые происходят при участии этой цепи, но чаще всего используют более простое название – дыхательную цепь.
Доля белков дыхательной цепи существенная и составляет 30-40% общего белка внутренней мембраны митохондрий.
В составе дыхательной цепи находятся:

  • 1) пиридинзалежни дегидрогеназы (содержат НАД +);
  • 2) флавинзалежни дегидрогеназы (ФАД- и ФМН-содержащие);
  • 3) цитохромы (в, с, с1, а а3);
  • 4) зализосирчани белки;
  • 5) свободный кофермент – убихинон.

Именно такая последовательность компонентов не случайна, а обусловлена величинами их окислительно-восстановительного потенциала (Ео). Эта константа количественно характеризует способность окислительно-восстановительной пары, то есть способность окисленной и восстановленной форм определенной соединения обратно отдавать электрон. Чем ниже (негативный) величина ОВП пары, тем выше ее возможности отдавать электроны, то есть окисляться. И наоборот, пара с более высоким (положительным) значением Ео будет принимать электроны и восстанавливаться. Таким образом, электроны переходят от одной ОВ пары к другой в направлении более позитивного Ео. Такой перенос электронов сопровождается уменьшением свободной энергии.
Все участники цепи переноса электронов структурово объединены в четыре окислительно-восстановительные системы – мультиферменти комплексы I – IV.

Процесс окисления начинается с переноса протонов и электронов с субстрата, что окисляется, на НАД + или ФАД. Это зависит от природы субстрата. Каждый из комплексов способен катализировать определенную часть полной последовательности реакций цепи.
Эти комплексы являются частью внутренней мембраны митохондрий.

Комплекс I – НАДН-дегидрогеназа – флавопротеинами, содержащий ФМН. Этот фермент окисляет НАДН и передает два атома водорода (2Н + 2е-) на коэнзим Q. Комплекс также содержит FeS-белки. Комплекс II – сукцинатдегидрогеназа – флавопротеинами, содержащий ФАД. Этот фермент окисляет сукцинат и транспортирует два атома водорода (2Н + 2е-) на коэнзим Q. В составе комплекса присутствуют FeS-белки.
В матриксе митохондрий также содержатся и другие ФАД-зависимые дегидрогеназы, которые окисляют соответствующие субстраты (глицерол-3-фосфат, ацил-КоА) и далее передают атомы водорода на коэнзим Q.

Потоки атомов водорода объединяются на стадии образования восстановленного КоQН2.
Коэнзим Q является последним компонентом цепи, который способен транспортировать не только протоны, но и электроны (2Н + 2е-). Далее протоны (2Н +) переходят с внутренней поверхности мембраны митохондрии на внешнюю, а электроны (2е-) через цепь цитохромов переносятся на кислород.

Комплекс III – убихинондегидрогеназа – это ферментный комплекс, который включает цитохром b, FeS-белок и цитохром с1. Этот комплекс транспортирует электроны 2е- от восстановленного убихинона КоQН2 на цитохром с (небольшой по размерам водорастворимый белок, содержащийся на внешней стороне внутренней мембраны).

Комплекс IV – цитохром с-оксидаза – ферментный комплекс, состоящий из цитохромов а и а3. Эти ферменты осуществляют последнюю стадию биологического окисления – восстановления электронами (2е-) молекулярного кислорода.
Восстановленный кислород О2- реагирует со свободными протонами (2Н +) матрикса. В результате реакции образуется эндогенная, или метаболическая вода.

Направление переноса протонов и электронов определяют окислительно-восстановительные потенциалы. Для обеспечения спонтанного переноса компоненты окислительно-восстановительного ряда должны располагаться согласно увеличением величин потенциалов.
Редокс-потенциал пары НАД + / НАДН = – 0,32 В, что свидетельствует о высокой способности отдавать электроны. Редокс-потенциал пары кислород / вода = + 0,82 В, что свидетельствует о высокой сродство к электронов.

Общая разница редокс-потенциалов равна 1,14 В. Этому соответствует изменение свободной энергии DG = – 220 кДж / моль. Эта общая величина энергии реакции распределяется на небольшие и более удобные «пакеты», величины которых определяются по разнице окислительно-восстановительных потенциалов соответствующих промежуточных продуктов.

При прохождении по дыхательной цепи пары электронов высвобождается энергия, большая часть которой (60%) рассеивается в виде тепла, а другая аккумулируется в макроергичниз связях АТФ, а именно поглощается в реакции синтеза АТФ-окислительного фосфорилирования.
Это фосфорилирования называется окислительным, так как энергия, необходимая для образования макроэргической связи, генерируется в процессе окисления, то есть движения протонов и электронов по митохондриальной цепи транспорта электронов

Первая такая участок – это НАД ®ФМН, вторая – цитохром b ®цитохром с1, третья – цитохром Аа3 ® ?кисень. Эти участки называют пунктами фосфорилирования. Термин “пункт фосфорилирования” или “участок фосфорилирования” не надо понимать как конкретную стадию, на которой непосредственно происходит образование АТФ. Речь идет о том, что поток электронов через эти три участка цепи каким образом соединенный с образованием АТФ (перепад ООП здесь достаточен для синтеза 1 молекулы АТФ).

При окислении субстратов ФАД-зависимых дегидрогеназ (например, сукцината сукцинатдегидрогеназу) поток электронов от ФАДН2 к кислороду не проходит через первый пункт фосфорилирования. В этих случаях синтезируется на 1 молекулу АТФ менее, есть две. Выход АТФ при окислении различных субстратов и в разных условиях выражают отношением Р / О, которое соответствует количеству молекул неорганического фосфата, включенных в АТФ, в расчете на один атом потребленного (поглощенного) кислорода. Это соотношение называют также коэффициентом фосфорилирования. Таким образом, отношение Р / О при переносе пары электронов от НАДН к кислороду равна 3, а от ФАДН2 к кислороду – 2. При воздействии ингибиторов тканевого дыхания отношение Р / О снижается.

Главные компоненты дыхательной цепи (рис. 13.2) приведены последовательно в порядке возрастания окислительно-восстановительного потенциала в табл. 12.1. Атомы водорода или электроны перемещаются по цепи от более электроотрицательных компонентов к более электроположительному кислороду, изменение окислительно-восстановительного потенциала при переходе от системы к системе составляет 1,1 В.

Главная дыхательная цепь в митохондриях начинается от -зависимых дегидрогеназ, проходит через флавопротеины и цитохромы и заканчивается молекулярным кислородом. Не все субстраты связаны с дыхательной цепью через -зависимые дегидрогеназы; некоторые из них, имеющие относительно высокий окислительно-восстановительный потенциал (например, система фумарат/сукцинат, см. табл. 12.1), связаны с флавопротеиновыми дегидрогеназами, которые в свою очередь связаны с цитохромами дыхательной цепи (рис. 13.3).

В последнее время установлено, что в дыхательной цепи имеется еще один переносчик, связывающий флавопротеины с цитохромом b, обладающим самым низким среди цитохромов окислительновосстановительным потенциалом. Этот переносчик, названный убихиноном или коферментом Q (рис. 13.4), в аэробных условиях находится в митохондриях в форме окисленного хинона, а в анаэробных условиях - в восстановленной хинольной форме. Кофермент Q является компонентом митохондриальных липидов; среди других липидов преобладают

Рис. 13.1. Главные источники восстановительных эквивалентов и их связь с митохондриальной дыхательной цепью. Основным внемитохондриальным источником является NADH, который образуется в ходе гликолиза.

фосфолипиды, являющиеся частью митохондриальной мембраны. Структура кофермента Q сходна со структурой витаминов К и Е. Близкую структуру имеет и пластохинон, находящийся в хлоропластах. Все эти вещества имеют в своей структуре полиизопреноидную боковую цепь. Содержание кофермента Q значительно превосходит содержание других компонентов дыхательной цепи (по параметру стехиометрии); это позволяет предположить, что кофермент Q является подвижным компонентом дыхательной цепи, который получает восстановительные эквиваленты от фиксированных флавопротеиновых комплексов и передает их на цитохромы.

Дополнительным компонентом, находящимся в функционально активных препаратах дыхательной цепи, является железо-серный белок, FeS (негемовое железо). Он ассоциирован с флавопротеинами (металлофлавопротеинами) и с цитохромом b. Железо и сера, как полагают, участвуют в окислительновосстановительном процессе, протекающем по одноэлектронному механизму (рис. 13.5).

Современные представления о последовательности главных компонентов дыхательной цепи отражены на рис. 13.3. На электроотрицательном конце цепи дегидрогеназы катализируют перенос электронов от субстратов на NAD, находящийся в дыхательной цепи. Это происходит по двум путям. В тех случаях, когда субстратами служат а-кетокислоты, пируват и кетоглутарат, в переносе электронов на NAD участвуют сложные дегидрогеназные системы, содержащие липоат и FAD. Перенос электронов другими дегидрогеназами, использующими в качестве субстратов L(+)-3-гидроксиацил-СоA, D(-)-3-гидрокси-бутират, пролин, глутамат, малат и изоцитрат, происходит прямо на NAD дыхательной цепи.

Восстановленный NADH в дыхательной цепи в свою очередь окисляется металлофлавопротеином -дегидрогеназой. Этот фермент содержит и FMN и прочно связан с дыхательной цепью. Кофермент Q служит коллектором восстановительных эквивалентов, которые поставляются рядом субстратов через флавопротеиновые дегидрогеназы в дыхательную цепь. К числу этих субстратов относятся сукцинат, холин, глицерол-3-фосфат, саркозин, диметилглицин и ацил-СоА (рис. 13.3). Флавиновым компонентом этих дегидрогеназ является, по-видимому, FAD. Поток электронов от кофермента Q далее идет через ряд цитохромов к молекулярному кислороду (рис. 13.3). Цитохромы выстроены в порядке возрастания окислительно-восстановительного

Рис. 13.2. Транспорт восстановительных эквивалентов по дыхательной цепи.

Рис. 13.3. Компоненты дыхательной цепи митохондрий. FeS находится в цепи «на -стороне» ФП или Цит b. Цит- цитохром; ЭПФП-электронпереносящий флавопротеин; FeS-железо-серный белок; ФП-флавопротеин; Q-убихинон.

Рис. 13.4. Структура убихинона (Q); п-число изопреноидных звеньев, варьирующее от 6 до 10, т.е.

Рис. 13.5. Железо-серный центр железо-серного белка. -кислотолабильная сера; Рг-апобелок; остаток цистеина. Некоторые железо-серные белки содержат 2 атома железа и 2 атома серы потенциала. Терминальный цитохром (цитохромоксидаза) осуществляет конечную стадию процесса - перенос восстановительных эквивалентов на молекулярный кислород. Как уже упоминалось, эта ферментная система содержит медь - непременный компонент истинных оксидаз. Цитохромоксидаза имеет очень высокое сродство к кислороду, что позволяет дыхательной цепи функционировать с максимальной скоростью до тех пор, пока в ткани не будет практически исчерпан . Эта катализируемая цитохромоксидазой реакция является необратимой; она определяет направление движения восстановительных эквивалентов в дыхательной цепи, с которым сопряжено образование АТР.

В отношении структурной организации дыхательной цепи был выдвинут ряд предположений. Существенно то, что молярные соотношения между компонентами являются почти постоянными. Функционирующие компоненты дыхательной цепи встроены во внутреннюю митохондриальную мембрану

Рис. 13.6. Предполагаемые участки ингибирования дыхательной цепи специфическими лекарственными веществами, химическими реагентами и антибиотиками. Указаны участки, где предположительно происходит сопряжение с фосфорилированием. BAL-димеркапрол; TTFA - хелатобразующий реагент на железо. Комплекс I - NADH: убихинон-оксидоредуктаза; комплекс II - сукцинат: убихинон-оксидоредуктаза; комплекс III - убихинол: феррицитохром с-оксидоредуктаза; комплекс IV - ферроцитохром с: кислород-оксидоредуктаза. Другие сокращения - такие же, как и на рис. 13.3.

в виде четырех белково-липидных комплексов дыхательной цепи. На этом основании был сделан вывод об определенной пространственной ориентации этих комплексов в мембране. Цитохром с является единственным растворимым цитохромом и наряду с коферментом Q служит относительно мобильным компонентом дыхательной цепи, осуществляющим связь между фиксированными в пространстве комплексами (рис. 13.6).


Биологическая химия Лелевич Владимир Валерьянович

Структурная организация цепи тканевого дыхания

Компоненты дыхательной цепи во внутренней мембране михохондрий формируют комплексы:

1. I комплекс (НАДН-КоQН 2 -редуктаза) – принимает электороны от митохондриального НАДН и транспортирует их на КоQ. Протоны транспортируются в межмембранное пространство. Промежуточным акцептором и переносчиком протонов и электронов являются ФМН и железосерные белки. I комплекс разделяет поток электронов и протонов.

2. II комплекс – сукцинат – КоQ - редуктаза – включает ФАД- зависимые дегидрогеназы и железосерные белки. Он транспортирует электроны и протоны от флавинзависимых субстратов на убихинон, с образованием промежуточного ФАДН 2 .

Убихинон легко перемещается по мембране и передает электроны на III комплекс.

3. III комплекс – КоQН 2 - цитохром с - редуктаза – имеет в своем составе цитохромы b и с 1 , а также железосерные белки. Функционирование КоQ с III комплексом приводит к разделению потока протонов и электронов: протоны из матрикса перекачиваются в межмембранное пространство митохондрий, а электроны транспортируются далее по ЦТД.

4. IV комплекс – цитохром а - цитохромоксидаза – содержит цитохромоксидазу и транспортирует электроны на кислород с промежуточного переносчика цитохрома с, который является подвижным компонентом цепи.

Существует 2 разновидности ЦТД:

1. Полная цепь – в нее вступают пиридинзависимые субстраты и предают атомы водорода на НАД-зависимые дегидрогеназы

2. Неполная (укороченная или редуцированная) ЦТД в которой атомы водорода передаются от ФАД-зависимых субстратов, в обход первого комплекса.

Из книги Пранаяма. Сознательный способ дыхания. автора Гупта Ранджит Сен

Глава 1 Физиология дыхания Многие люди стараются постоянно поддерживать себя в «хорошей форме, занимаясь различными видами спорта, как-то: бег трусцой, плавание, акробатика, некоторые виды игр и так далее. В итоге они, естественно, подвергают себя более высокому ритму

Из книги Сон - тайны и парадоксы автора Вейн Александр Моисеевич

1.3. Шаблоны дыхания Как известно, газообмен между легкими и атмосферным воздухом называется дыханием. А шаблоны дыхания зависят от интенсивности вентиляции (насыщения крови кислородом). Это суммарный объем воздухообмена за единицу времени, и меняется он соответственно

Из книги Здоровье Вашей собаки автора Баранов Анатолий

4.2. Принципы дыхания Для чтения этого параграфа будет очень полезно сначала просмотреть динамику дыхательного механизма. Там объясняются три характерные функции дыхания, движение ребер, грудины и диафрагмы. Одновременное действие этих трех движений является основой

Из книги Служебная собака [Руководство по подготовке специалистов служебного собаководства] автора Крушинский Леонид Викторович

Звенья одной цепи В. П. Данилин решил узнать, как люди оценивают интервалы времени, прошедшие во сне. Он исходил из предположения, что адекватная оценка времени означает во всех случаях, что у человека в памяти фиксируется непрерывная последовательность событий,

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Определения частоты дыхания Владелец собаки должен также уметь определить частоту дыхания животного, что немаловажно как для установления заболевания, так и для лечения осложнений органов дыхания.Частоту дыхания можно установить, подсчитывая число вдохов или выдохов

Из книги Эмбрионы, гены и эволюция автора Рэфф Рудольф А

Нарушение дыхания При нарушении процесса дыхания у собаки резко изменяется состав крови, что неизбежно ведет к изменению функции жизненно важных центров и может закончиться смертью животного.У новорожденных щенят нарушение акта дыхания наблюдается сравнительно часто.

Из книги Теория адекватного питания и трофология [таблицы текстом] автора

Возбуждение дыхания Возбуждение дыхания необходимо применять при его расстройстве или отсутствии.Если нарушение дыхания у собаки произошло по причине расстройства мозгового кровообращения (солнечный или тепловой удары), необходимо сделать следующее: а) опрыскивать

Из книги Теория адекватного питания и трофология [таблицы картинками] автора Уголев Александр Михайлович

4. Система органов дыхания Дыханием называется процесс поглощения организмом кислорода и выделения углекислоты. Этот жизненно важный процесс заключается в обмене газами между организмом и окружающим его атмосферным воздухом. При дыхании организм получает из воздуха

Из книги Гены и семь смертных грехов автора Зорин Константин Вячеславович

Из книги Мир животных. Том 6 [Рассказы о домашних животных] автора Акимушкин Игорь Иванович

Глава 4 Эволюция и структурная организация яиц и зародышей Много еще и теперь из нее (Земли) выходит животных, Влагой дождей воплощенных и жаром горячего солнца. Не мудрено, что крупней были твари тогда, да и больше Их порождалось, землей молодой и эфиром взращенных... Ибо

Из книги Гены и развитие организма автора Нейфах Александр Александрович

Из книги Биология. Общая биология. 11 класс. Базовый уровень автора Сивоглазов Владислав Иванович

9.6. Трофические цепи и экология Одним из следствий развиваемого нами трофологического подхода (см. гл. 1) является признание того, что процветание вида во многом определяется его положением в трофической цепи. Это положение обеспечивается эффективностью взаимодействий

Из книги автора

Из книги автора

Лев на золотой цепи Даже царь зверей жил пленником у царей человеческих. В Египте сохранились древние тексты и барельефы, а на них фараоны с ручными львами. На одной из стен дворца в Карнаке изображен Рамзее II (годы его царствования 1324–1258 до нашей эры). Он во главе войска на

Из книги автора

2. «Метаболическая» и «структурная» гипотезы Группу «метаболических» гипотез составляют все те представления о природе стабильности, в которых фигурирует какое-то активирующее вещество: оно может некоторое время находиться вне ДНК, но оно должно быть способно

Из книги автора

6. Популяция как структурная единица вида Вспомните!Что такое популяция?Почему организмы большинства видов живут в природе группами?Вид представляет собой сложную систему внутривидовых групп, складывающуюся в процессе эволюции в определённых условиях. Наиболее

Система структурно и функционально связанных трансмембранных белков и переносчиков электронов. Она позволяет запасти энергию, выделяющуюся в ходе окисления NAD*H и ФАДН2 молекулярным кислородом в форме трансмембранного протонного потенциала за счёт последовательного переноса электрона по цепи,сопряжённого с перекачкой протонов через мембрану. Транспортная цепь у эукариот локализована на внутренней мембране митохондрий. В дыхат.цепи 4 мультиферментных комплекса. Также существует еще один комплекс, участвующий не в переносе электронов, а синтезирующий АТФ.

1ый- КоА-оксидоредуктаза.

1.Принимает электроны от НАДН и передает их на коэнзим Q (убихинон). 2.Переносит 4 иона Н+ на наружную поверхность внутренней митохондриальной мембраны.

2ой-ФАД-зависимые дегидрогеназы.

1.Восстановление ФАД 3ий-цитохром с-оксидоредуктаза.

2.Принимает электроны от коэнзима Q и передает их на цитохром с.

3.Переносит 2 иона Н+ на наружную поверхность внутренней митохондриальной мембраны.

4ый-цитохром с-кислород оксидоредуктаза.

1.Принимает электроны от цитохрома с и передает их на кислород с образованием воды.

2.Переносит 4 иона Н+ на наружную поверхность внутренней митохондриальной мембраны. Все атомы водорода, отщепленные дегидрогеназами от субстратов в аэробных условиях, достигают внутренней мембраны митохондрий в составе НАДН или ФАДН2.

Электроны по мере передвижения теряют энергию->энергия тратиться комплексами на перекачку протонов Н.Перенос ионов Н происходит в строго определённых участках->участках сопряжения.Результат: происходит наработка АТФ: ионы H+ теряют свою энергию, проходя через АТФ-синтазу.Часть этой энергии тратится на синтез АТФ. Другая часть рассеивается в виде тепла.

Дыхательная цепь митохондрий состоит из 5 мультифер-ментных комплексов, субъединицы которых кодируются как ядерными, так и митохондриальными генами. В переноске электронов участвуют коэнзим Q10 и цитохром с. Электроны поступают от молекул NAD*H и FAD"H и переносятся по дыхательной цепи. Высвобождаемая энергия используется для транспорта протонов к внешней мембране митохондрий, а возникающий электрохимический градиент - для синтеза АТФ с помощью комплекса V дыхательной цепи митохондрий

44. Последовательность и строение переносчиков электронов в дыхательной цепи

1 комплекс. НАДН-КоQ-оксидоредуктаза

Этот комплекс также имеет рабочее название НАДН-дегидрогеназа, содержит ФМН (флавинмононуклеотид), 22 белковых молекулы, из них 5 железосерных белков с общей молекулярной массой до 900 кДа.

Принимает электроны от НАДН и передает их на коэнзим Q (убихинон).

Переносит 4 иона Н+ на наружную поверхность внутренней митохондриальной мембраны.

2 комплекс. ФАД-зависимые дегидрогеназы

Он включает в себя ФАД-зависимые ферменты, расположенные на внутренней мембране – например, ацил-SКоА-дегидрогеназа (окисление жирных кислот), сукцинатдегидрогеназа (цикл трикарбоновых кислот), митохондриальная глицерол-3-фосфат-дегидрогеназа (челночный механизм переноса НАДН в митохондрию).

Восстановление ФАД в окислительно-восстановительных реакциях.

Обеспечение передачи электронов от ФАДН2 на железосерные белки внутренней мембраны митохондрий. Далее эти электроны попадают на коэнзим Q.

46. Биохимические механизмы разобщения окисления и фосфорилирования факторы их вызывающие Разобщение дыхания и фосфорилирования

Некоторые химические вещества (протонофоры) могут переносить протоны или другие ионы (ионофоры) из межмембранного пространства через мембрану в матрикс, минуя протонные каналы АТФ-синтазы. В результате этого исчезает электрохимический потенциал и прекращается синтез АТФ. Это явление называют разобщением дыхания и фосфорилирования. В результате разобщения количество АТФ снижается, а АДФ увеличивается. В этом случае скорость окисления NADH и FADH2возрастает, возрастает и количество поглощённого кислорода, но энергия выделяется в виде теплоты, и коэффициент Р/О резко снижается. Как правило, разобщители - липофильные вещества, легко проходящие через липидный слой мембраны. Одно из таких веществ - 2,4-динитрофенол (рис. 6-17), легко переходящий из ионизированной формы в неионизированную, присоединяя протон в межмембранном пространстве и перенося его в матрикс.

Примерами разобщителей могут быть также некоторые лекарства, например дикумарол - антикоагулянт (см. раздел 14) или метаболиты, которые образуются в организме, билирубин - продукт катаболизма тема (см. раздел 13), тироксин - гормон щитовидной железы (см. раздел 11). Все эти вещества проявляют разобщающее действие только при их высокой концентрации.

Выключение фосфорилирования по исчерпании АДФ либо неорганического фосфата сопровождается торможением дыхания (эффект дыхательного контроля). Большое число повреждающих митохондриальную мембрану воздействий нарушает сопряжение между окислением и фосфорилированием, разрешая идти переносу электронов и в отсутствие синтеза АТФ (эффект разобщения)

1. Суммарный выход:

Для синтеза 1 молекулы АТФ необходимо 3 протона.

2. Ингибиторы окислительного фосфорилирования:

Ингибиторы блокируют V комплекс:

Олигомицин - блокируют протонные каналы АТФ-синтазы.

Атрактилозид, циклофиллин - блокируют транслоказы.

3. Разобщители окислительного фосфорилирования:

Разобщители - липофильные вещества, которые способны принимать протоны и переносить их через внутреннюю мембрану митохондрий минуя V комплекс(его протонный канал). Разобщители:

Естественные - продукты перекисного окисления липидов, жирных кислот с длинной цепью; большие дозы тиреоидных гормонов.

Искусственные - динитрофенол, эфир, производные витамина К, анестетики.

Ι. НАДН-убихинон-оксидоредуктаза. Принимает электроны и протоны от НАДН Н+;
протоны выбрасываются в межмембранное пространство, электроны передаются на КоQ.
ΙΙ. Сукцинат-убихинон-оксидоредуктаза. Принимает электроны и протоны от субстратов в матриксе и передает их на убихинон.
Убихинон - липофильная молекула, хинон, легко перемещается по мембране, принимает электроны и протоны от Ι и ΙΙ комплексов дыхательной цепи и передает электроны на ΙΙΙ комплекс.

Цитохромы, входящие в состав дыхательной цепи, представляют собой железосодержащие белки, простетическая группа которых представлена гемом. Цитохромы могут переносить только электроны за счет атома железа с переменной валентностью.

Ш. Убихинол-цитохром с-оксидоредуктаза. Переносит электроны с убихинола на цитохром с. Одновременно за счет энергии, выделившейся при переносе, из матрикса переносятся протоны в межмембранное пространство.
IV. Цитохром с-оксидаза. Переносит электроны с цитохрома с непосредственно на кислород. Цитохромы а и а3, помимо атомов железа, содержат атомы меди, поэтому этот комплекс одновременно осуществляет полное (4-электронное) восстановление молекулы кислорода. Энергия переноса электронов используется на перекачивание в межмембранное пространство протонов.
Как указывалось выше, для синтеза АТФ необходимо затратить около 32 кДж/моль энергии. Для этого достаточной является разность потенциалов между окислителем и восстановителем не менее 0,26 вольта. Чанс, Скулачев установили, что таких участков в дыхательной цепи три. Они соответствуют I, III и IV комплексам и названы пунктами сопряжения или фосфорилирования.
Чтобы понять связь между транспортом электронов по дыхательной цепи и синтезом АТФ, познакомимся с V комплексом внутренней мембраны митохондрий - ферментом, осуществляющим реакцию синтеза АТФ и называемым протонной АТФ-синтазой (см. рис.). Этот ферментативный комплекс состоит из двух частей: Fо (о – олигомицин), который встроен в мембрану и пронизывает ее насквозь, и F1, Последний по форме напоминает шляпку гриба или дверную ручку и обращен в матрикс митохондрии. В изолированном виде F1 не может синтезировать АТФ, но может проводить ее гидролиз до АДФ и фосфата.
Реакция синтеза АТФ, которую проводит V комплекс, носит название окислительного фосфорилирования и описывается уравнением: АДФ + Н3РО4= АТФ + Н2O.
Биохимики долго искали связь - промежуточные макроэргические соединения, которые могли бы служить посредником между процессом тканевого дыхания и окислительным фосфорилированием. Английский биохимик П. Митчелл предположил, что синтез АТФ V комплексом ВММ сопряжен с особым состоянием этой мембраны, и сформулировал хемиоосмотическую теорию окислительного фосфорилирования (Нобелевская премия 1978 г.).
Основные постулаты этой теории:
▪внутренняя митохондриальная мембрана (ВММ) непроницаема для ионов, в частности для Н+и ОН-;
▪за счет энергии транспорта электронов через I, III и IV комплексы дыхательной цепи из матрикса выкачиваются протоны;
▪возникающий на мембране электрохимический потенциал (ЭХП) и есть промежуточная форма запасания энергии;
▪возвращение (транслокация) протонов в матрикс митохондрии через протонный канал V комплекса за счет ЭХП является движущей силой синтеза АТФ.

Дальнейшие исследования (Дж. Уокер, П. Бойер, Нобелевская премия 1997 г.) подтвердили предположения Митчелла. Ими показано, что энергия движения протонов используется на изменения конформации активного центра АТФ-синтазы, что сопровождается синтезом АТФ, а затем ее высвобождением. Образовавшаяся АТФ с помощью транслоказы перемещается в цитозоль; в ответ в матрикс митохондрии поступают АДФ и фосфат. Всего на процесс синтеза, высвобождения и выброса в цитозоль расходуется 4 протона.
При окислении НАД-зависимых субстратов в ММП выбрасывается 10 протонов (см. схему комплексов дыхательной цепи). Следовательно, в таком случае может быть синтезировано 2,5 моль АТФ (10:4), т. е. коэффициент фосфорилирования Р/О = 2,5. При окислении ФАД-зависимых субстратов в ММП выбрасывается 6 протонов в III и IV пунктах сопряжения. В таком случае может быть синтезировано 1,5 моль АТФ (6:4), т. е. коэффициент фосфорилирования Р/О = 1,5.
Теперь можно вернуться к пониманию энергетической функции цикла Кребса (см. предыдущую лекцию). В ЦТК происходят 4 реакции дегидрирования, причем 3 ДГ являются НАД-зависимыми и одна - ФАД-зависимой. За счет окисления водорода 3-х молекул НАДН.Н+ в дыхательной цепи синтезируется 7,5 моль АТФ, окисление водорода 1 моль ФАДН2 ведет к синтезу 1,5 моль АТФ. Помимо этого, в ЦТК имеет место одна реакция субстратного фосфорилирования. Таким образом, энергетический выход окисления ацетил-КоА в цикле Кребса равен 10 моль АТФ (7,5 + 1,5 + 1). Этой цифрой мы будем пользоваться в дальнейших расчетах.
Регулируется скорость работы дыхательной цепи энергетическим зарядом клетки, т. е. соотношением АТФ/АДФ. АДФ является стимулятором дыхательной цепи, АТФ – аллостерическим ингибитором.
Гипоэнергетические состояния возникают в организме вследствие дефицита АТФ в клетках. Причины их следующие:
алиментарные (голодание, гиповитаминозы РР, В2); гипоксические (нарушения доставки О2 в клетки); митохондриальные (действие ингибиторов и разобщителей).
Среди последних различают, во-первых, ингибиторы дыхательной цепи. Это яды,
которые блокируют перенос электронов через I, II, III, IV комплексы. Ротенон и барбитураты блокируют I комплекс, малонат - II, антимицин А – III, цианиды, угарный газ блокируют перенос электронов на кислород, осуществляемый IV комплексом дыхательной цепи.

Во-вторых, ингибиторы окислительного фосфорилирования (олигомицин), закрывающие протонный канал V комплекса.
В-третьих, разобщители окислительного фосфорилирования. Это вещества, которые подавляют окислительное фосфорилирование, не влияя при этом на процесс переноса электронов дыхательной цепью. Механизм действия разобщителей сводится к тому, что, являясь липофильными веществами, они обладают способностью связывать протоны и переносить их в матрикс, минуя протонный канал Н+ АТФ-синтазы. Выделяющаяся при переносе электронов энергия рассеивается в виде тепла. Различают:
разобщители естественные (продукты перекисного окисления липидов, жирные кислоты с длинной цепью, белки термогенины буровой жировой ткани, большие дозы йодсодержащих гормонов щитовидной железы);
разобщители искусственные (динитрофенол, производные витамина К, некоторые антибиотики).

Поделиться