Понятие силы. Основные виды механических сил Такое сила ее виды

Существует ряд законов, которые характеризуют физические процессы при механических движениях тел.

Выделяют следующие основные законы сил в физике:

  • закон силы тяжести;
  • закон всемирного тяготения;
  • законы силы трения;
  • закон силы упругости;
  • законы Ньютона.

Закон силы тяжести

Замечание 1

Сила тяжести является одним из случаев проявления действия гравитационных сил.

Силу тяжести представляют в виде такой силы, которая действует на тело со стороны планеты и придает ему ускорение свободного падения.

Свободное падение можно рассмотреть в виде $mg = G\frac{mM}{r^2}$, откуда получаем формулу ускорения свободного падения:

$g = G\frac{M}{r^2}$.

Формула определения силы тяжести будет выглядеть следующим образом:

${\overline{F}}_g = m\overline{g}$

Сила тяжести имеет определенный вектор распространения. Он всегда направлен вертикально вниз, то есть по направлению к центру планеты. На тело действует силы тяжести постоянно и это означает, что оно совершает свободное падение.

Траектория движения при действии силы тяжести зависит от:

  • модуля начальной скорости объекта;
  • направления скорости движения тела.

С этим физическим явлением человек сталкивается ежедневно.

Силу тяжести можно также представить в виде формулы $P = mg$. При ускорении свободного падения учитываются также дополнительные величины.

Если рассматривать закон всемирного тяготения, который сформулировал Исаак Ньютон, все тела обладают определенной массой. Они притягиваются друг к другу с силой. Ее назовут гравитационной силой.

$F = G\frac{m_1m_2}{r^2}$

Эта сила прямо пропорциональна произведению масс двух тел и обратно пропорциональна квадрату расстояния между ними.

$G = 6,7\cdot {10}^{-11}\ {H\cdot m^2}/{{kg}^2\ }$, где $G$ - это гравитационная постоянная и она имеет по международной системе измерений СИ постоянное значение.

Определение 1

Весом называют силу, с которой тело действует на поверхность планеты после возникновения силы тяжести.

В случаях, когда тело находится в состоянии покоя или равномерно движется по горизонтальной поверхности, тогда вес будет равен силе реакции опоры и совпадать по значению с величиной силы тяжести:

При равноускоренном движении вертикально вес будет отличаться от силы тяжести, исходя из вектора ускорения. При направлении вектора ускорения в противоположную сторону возникает состояние перегрузки. В случаях, когда тело вместе с опорой двигаются с ускорением $а = g$, тогда вес будет равен нулю. Состояние с нулевым весом называют невесомостью.

Напряженность поля тяготения высчитывается следующим образом:

$g = \frac{F}{m}$

Величина $F$ - сила тяготения, которая действует на материальную точку массой $m$.

Тело помещается в определенную точку поля.

Потенциальная энергия гравитационного взаимодействия двух материальных точек, имеющих массы $m_1$ и $m_2$, должны находиться на расстоянии $r$ друг от друга.

Потенциал поля тяготения можно найти по формуле:

$\varphi = \Pi / m$

Здесь $П$ - потенциальная энергия материальной точки с массой $m$. Она помещена в определенную точку поля.

Законы силы трения

Замечание 2

Сила трения возникает при движении и направлена против скольжения тела.

Статическая сила трения будет пропорциональна нормальной реакции. Статическая сила трения не лежит в зависимости от формы и размеров трущихся поверхностей. От материала тел, которые соприкасаются и порождают силу трения, зависит статический коэффициент трения. Однако законы трения нельзя назвать стабильными и точными, поскольку часто наблюдаются в результатах исследований различные отклонения.

Традиционное написание силы трения предполагает использование коэффициента трения ($\eta$), $N$ – сила нормального давления.

Также выделяют внешнее трение, силу трения качения, силу трения скольжения, вязкую силу трения и другие виды трения.

Закон силы упругости

Сила упругости равна жёсткости тела, которую помножили на величину деформации:

$F = k \cdot \Delta l$

В нашей классической формуле силы по поиску силы упругости главное место занимают величины жесткости тела ($k$) и деформации тела ($\Delta l$). Единицей измерения силы является ньютон (Н).

Подобная формула может описать самый простой случай деформации. Его принято называть законом Гука. Он гласит, что при попытке любым доступным способом деформировать тело, сила упругости будет стремиться вернуть форму объекта в первоначальный вид.

Для понимания и точного процесса описания физического явления вводят дополнительные понятия. Коэффициент упругости показывает зависимость от:

  • свойств материала;
  • размеров стержня.

В частности, выделяют зависимость от размеров стержня или площади поперечного сечения и длины. Тогда коэффициент упругости тела записывают в виде:

$k = \frac{ES}{L}$

В такой формуле величина $E$ является модулем упругости первого рода. Также ее называют модулем Юнга. Она отражает механические характеристики определенного материала.

При проведении расчётов прямых стержней применяется запись закона Гука в относительной форме:

$\Delta l = \frac{FL}{ES}$

Отмечается, что применение закона Гука будет носить эффективный характер только при относительно небольших деформациях. Если идет превышение уровня предела пропорциональности, то связь между деформациями и напряжениями становится нелинейной. Для некоторых сред закон Гука нельзя применять даже при небольших деформациях.

В природе существует четыре типа сил: гравитационные, электромагнитные, ядерные и слабые.

Гравитационные силы, или силы тяготения, действуют между всеми телами. Но эти силы заметны, если хотя бы одно из тел имеет размеры, соизмеримые с размерами планет. Силы притяжения между обычными телами настолько малы, что ими можно пренебречь. Поэтому гравитационными можно считать силы взаимодействия между планетами, а также между планетами и Солнцем или другими телами, имеющими очень большую массу. Это могут быть звёзды, спутники планет и т.п.

Электромагнитные силы действуют между телами, имеющими электрический заряд.

Ядерные силы (сильные) являются самыми мощными в природе. Они действуют внутри ядер атомов на расстояниях 10 -13 см.

Слабые силы , как и ядерные, действуют на малых расстояниях порядка 10 -15 см. В результате их действия происходят процессы внутри ядра.

Механика рассматривает гравитационные силы, силы упругости и силы трения.

Гравитационные силы

Гравитация описывается законом всемирного тяготения. Этот закон был изложен Ньютоном в середине XVII в. в работе «Математические начала натуральной философии».

Гравитацией называют силу тяготения, с которой любые материальные частицы притягиваются друг у другу.

Сила, с которой материальные частицы притягиваются друг к другу, прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними .

G – гравитационная постоянная, численно равная модулю силы тяготения, с которой тело, имеющее единичную массу, действует на тело, имеющее такую же единичную массу и находящееся на единичном расстоянии от него.

G = 6,67384(80)·10 −11 м 3 ·с −2 ·кг −1 , или Н·м²·кг −2 .

На поверхности Земли сила гравитации (сила тяготения) проявляется в виде силы тяжести .

Мы видим, что любой предмет, брошенный в горизонтальном направлении, всё равно падает вниз. Падает вниз также и любой предмет, подброшенный вверх. Происходит это под действием силы тяжести, которая действует на любое материальное тело, находящееся вблизи поверхности Земли. Сила тяжести действует на тела и на поверхности других астрономических тел. Эта сила всегда направлена вертикально вниз.

Под действием силы тяжести тело движется к поверхности планеты с ускорением, которое называется ускорением свободного падения .

Ускорение свободного падения на поверхности Земли обозначается буквой g .

F t = mg ,

следовательно,

g = F t / m

g = 9, 81 м/с 2 на полюсах Земли, а на экваторе g = 9,78 м/с 2 .

При решении простых физических задач величину g принято считать равной 9,8 м/с 2 .

Классическая теория тяготения применима только для тел, имеющих скорость намного ниже скорости света.

Силы упругости

Силами упругости называются силы, которые возникают в теле в результате деформации, вызывающей изменение его формы или объёма. Эти силы всегда стремятся вернуть тело в его первоначальное положение.

При деформации происходит смещение частиц тела. Сила упругости направлена в сторону, противоположную направлению смещения частиц. Если деформация прекращается, сила упругости исчезает.

Английский физик Роберт Гук, современник Ньютона, открыл закон, устанавливающий связь между силой упругости и деформацией тела.

При деформации тела возникает сила упругости, прямо пропорциональная удлинению тела, и имеющая направление, противоположное перемещению частиц при деформации.

F = k l ,

где к – жёсткость тела, или коэффициент упругости;

l – величина деформации, показывающая величину удлинения тела под воздействием сил упругости.

Закон Гука действует для упругих деформаций, когда удлинение тела мало, а тело восстанавливает свои первоначальные размеры после того, как исчезают силы, вызвавшие эту деформацию.

Если деформация велика, и тело не возвращается в свою исходную форму, закон Гука не применяется. При очень больших деформациях происходит разрушение тела.

Силы трения

Сила трения возникает, когда одно тело движется по поверхности другого. Она имеет электромагнитную природу. Это следствие взаимодействия между атомами и молекулами соприкасающихся тел. Направление силы трения противоположно направлению движения.

Различают сухое и жидкое трение. Сухим называют трение, если между телами нет жидкой или газообразной прослойки.

Отличительная особенность сухого трения – трение покоя, которое возникает при относительном покое тел.

Величина силы трения покоя всегда равна величине внешней силы и направлена в противоположную сторону. Сила трения покоя препятствует движению тела.

В свою очередь, сухое трение разделяется на трение скольжения и трение качения .

Если величина внешней силы превышает величину силы трения, то в этом случае появится проскальзывание, и одно из контактирующих тел начнёт поступательно перемещаться относительно другого тела. А сила трения будет называться силой трения скольжения . Её направление будет противоположно направлению скольжения.

Сила трения скольжения зависит от силы, с которой тела давят друг на друга, от состояния трущихся поверхностей, от скорости движения, но не зависит от площади соприкосновения.

Сила трения скольжения одного тела по поверхности другого вычисляется по формуле:

F тр. = k · N ,

где k – коэффициент трения скольжения;

N – сила нормальной реакции, действующая на тело со стороны поверхности.

Сила трения качения возникает между телом, которое перекатывается по поверхности, и самой поверхностью. Такие силы появляются, например, при соприкосновении шин автомобиля с дорожным покрытием.

Величина силы трения качения вычисляется по формуле

где F t – сила трения качения;

f – коэффициент трения качения;

R – радиус катящегося тела;

N – прижимающая сила.

Силы тяготения (гравитационные силы).

В системе отсчета связанной с Землей, на всякое тело массой m действует сила: , называемая силой тяжести – сила, с которой тело притягивается с Землей. Под действием силы притяжения к Земле все тела падают с одинаковым ускорением, называемым ускорением свободного падения.

Весом тела – называется сила, с которой тело вследствие тяготения к Земле действует на опору или натягивает нить подвеса.

Сила тяжести действует всегда, а вес проявляется лишь тогда, когда на тело кроме силы тяжести действуют другие силы. Сила тяжести равна весу тела только в том случае, когда ускорение тела относительно Земли равно нулю. В противном случае , где- ускорение тела с опорой относительно Земли. Если тело свободно движется в поле силы тяготения, тои вес равен нулю, т.е. тело будет невесомым.

Невесомость - это состояние тела, при котором оно движется только под действием силы тяжести.

Силы упругости возникают в результате взаимодействия тел, сопровождающегося их деформацией.

Упругая сила пропорциональна смещению частицы из положения равновесия и направлена к положению равновесия:

где – радиус-вектор, характеризующий смещение частицы из положения равновесия,- упругость. Примером такой силы является сила упругости деформации пружины при растяжении или сжатии.

Сила трения скольжения возникает при скольжении данного тела по поверхности другого:

где k – коэффициент трения скольжения, зависящий от природы и состояния соприкасающихся поверхностей; N - сила нормального давления, прижимающая трущиеся поверхности друг другу.

Сила трения направлена по касательной к трущимся поверхностям в сторону, противоположную движению данного тела относительно другого.

§ 13. Энергия. Работа и мощность

Энергия –это универсальная мера различных форм движения и взаимодействия. С различными формами движения материи связывают различные формы энергии: механическую, тепловую, электромагнитную, ядерную и т.д.

Изменение механического движения и энергии тела происходит в процессе силового взаимодействия этого тела с другими телами. Для количественной характеристики этого процесса в механике вводят понятие работы, совершаемой силой.

Рисунок 13.1

Если рассматриваемая сила постоянна, а тело, к которому она приложена, движется поступательно и прямолинейно, то работой, совершаемой силойпри прохождении телом пути, называют величину

где а - угол между силой и направлением движения тела.

Рисунок 13.2

Работа - скалярная величина. Если вектор силы и вектор перемещений образуют острый угол, т.е. , то, если, то, т.е. сила, действующая перпендикулярно к перемещению тела, работы не совершает.

В общем случае тело может двигаться произвольным, достаточно сложным образом (рис.13.2). Выделим элементарный участок пути dS , на котором силу можно считать постоянной, и перемещение прямолинейным. Элементарная работа на этом участке равна

Полная работа на пути определяется интегралом

Единица работы – джоуль (Дж ) – работа совершаемая силой 1Н на пути 1м: 1Дж-1Нс.

Рисунок 13.3

Силу , действующую на материальную точку, называют консервативной или потенциальной, если работа , совершаемая этой силой при перемещении этой точки из произвольного положения 1 в другое 2, не зависит от того, по какой траектории это перемещение произошло:

=

Изменение направления движения точки вдоль траектории на противоположное вызывает изменение знака консервативной силы, так как величина меняет знак. Поэтому при перемещении материальной точки вдоль замкнутой траектории, например 1- a -2- b -1 , работа консервативной силы равна нулю.

Примером консервативных сил могут служить силы всемирного тяготения, силы упругости, силы электростатического взаимодействия заряженных тел. Поле, работа сил которого по перемещению материальной точки вдоль произвольной замкнутой траектории равна нулю, называется потенциальным.

Чтобы охарактеризовать скорость совершения работы, вводят понятие мощности . Мощность равна скалярному произведению вектора силы на вектор скорости, с которой движется точка приложения этой силы.

Единица мощности - ватт (Вт): 1 Вт – мощность, при которой за время 1с совершается работа 1 Дж:=1Вт=1Дж/с.

Приведем сначала определения наиболее фундаментальных сил, лежащих в основе взаимодействия.

Сила тяжести. Это постоянная сила , действующая на любое тело, находящееся вблизи земной поверхности. Модуль силы тяжести равен весу тела.

Опытом установлено, что под действием силы тяжести любое тело при свободном падении на Землю (с небольшой высоты и в безвоздушном пространстве) имеет одно и то же ускорение , называемое ускорением свободного падения, а иногда ускорением силы тяжести:

Или . (4.7)

Эти равенства позволяют, зная массу тела, определить его вес (модуль действующей на него силы тяжести) или, зная вес тела, определить его массу. Вес тела или сила тяжести, как и величина , изменяются с изменением широты и высоты над уровнем моря; масса же является для данного тела величиной неизменной.

Сила трения. Так будем кратко называть силу трения скольжения, действующую (при отсутствии жидкой смазки) на тело движущееся по поверхности. Ее модуль определяется равенством:

где f - коэффициент трения, который будем считать постоянным; - нормальная сила прижимающая трущиеся поверхности. Более подробно, действие сил трения рассмотрены в главе «Статика».

Сила гравитационного притяжения. Это сила, с которой два материальных тела притягиваются друг к другу по закону всемирного тяготения, открытому Ньютоном. Сила тяготения зависит от расстояния и для двух материальных точек с массами m 1 и m 2 , находящихся на расстоянии r друг от друга, выражается равенством:

где - гравитационная постоянная (в СИ γ = 6,673-10 -11 м 3 /кгс 2).

Сила взаимодействия двух точечных зарядов в вакууме (кулоновская сила) прямо пропорциональна произведению зарядов и обратно пропорциональна квадрату расстояния между ними:

где k – коэффициент пропорциональности, зависящий от системы единиц,

(в СИ k – 9,0 10 9 Н*м 2 /Кл 2)

Сила упругости. Эта сила тоже зависит от расстояния. Ее значение можно определить исходя из закона Гука, согласно которому напряжение (сила, отнесенная к единице площади) пропорционально деформации. В частности, для силы упругости пружины получается значение:

где l - удлинение (или сжатие) пружины; с - так называемый коэффициент жесткости пружины (в СИ измеряется в Н/м).

Сила вязкого трения. Такая сила, зависящая от скорости, действует на тело при его медленном движении в очень вязкой среде (или при наличии жидкой смазки) и может быть выражена равенством:

где v - скорость тела; m - коэффициент сопротивления.



Зависимость этого вида можно получить, исходя из закона вязкого трения, открытого Ньютоном.

Сила аэродинамического (гидродинамического) сопротивления. Эта сила также зависит от скорости и действует на тело, движущееся в такой, например, среде, как воздух или вода. Обычно ее величину выражают равенством:

R=0,5с x ρSV 2 , (4.13)

где ρ - плотность среды; S - площадь проекции тела на плоскость, перпендикулярную направлению движения (площадь миделя); с х - безразмерный коэффициент сопротивления, определяемый обычно экспериментально и зависящий от формы тела и от того, как оно ориентировано при движении; V – скорость движения тела.

Физика насчитывает четыре вида фундаментальных взаимодействий. Два из них – гравитационное и электромагнитное имеют бесконечный радиус действия и проявляют себя как в макро-, так и в микромире. Еще два – сильное (ядерное) и слабое (отвечает за радиоактивный распад) вследствие малости радиуса действия проявляют себя только в микромире, «спрятавшись» внутри ядра атома, и никак себя не проявляет в макромире. Все механические взаимодействия сводятся к трем видам: силе гравитационной (тяжести), силе упругой и силе трения. Силы упругая и трения имеют электромагнитную природу: все тела состоят из атомов, в состав которых входят электрически заряженные частицы.

Гравитационное взаимодействие выражает закон всемирного тяготения :

G – гравитационная постоянная, она введена для согласования единиц измерения величин в обеих частях формулы, в СИ G = 6,67 . 10 -11 Н. м 2 /кг 2 = 6,67 . 10 -11 м 3 /(кг. с 2),т 1 ит 2 – массы материальных точек,r – расстояние между ними. Закон в форме (2.3.1) применим также для вычисления сил тяготения между материальной точкой и телом шарообразной формы, или двух тел шарообразной формы. В этом случаеr – расстояние от м.т. до центра шара, соответственно, между центрами шаров. Сила тяготения направлена вдольr . Масса, фигурирующая в законе всемирного тяготения, называется массой гравитационной или тяготеющей в отличие от массы инертной, измеряющей способность тела сопротивляться изменению состояния под воздействием другого тела. Экспериментально установлено, что эти массы равны друг другу (Р. Этвеш, 1894 г.). Этот опытный факт получил название принципа эквивалентности и лежит в основе общей теории относительности Эйнштейна (теории тяготения). Из принципа эквивалентности, в частности, следует, что сила тяготения со стороны одного тела сообщает всем другим телам одинаковое ускорение независимо от их масс. Например, все тела притягиваются к земле, действующая на них сила тяготения называетсясилой тяжести , определим ее, используя формулу (2.3.1):
. Здесь
– ускорение свободного падения,M 3 иR 3 соответственно масса земли и ее радиус. Форма Земли отличается от шара, к тому же плотность вещества неодинакова в разных местах ее объема, но влияние этих параметров столь незначительно, что им можно пренебречь, так что во всех точках поверхности Землиg 9,8 м/с 2 . Сила тяжести на поверхности земли выражается формулой:

(2.3.2)

Из рассмотренного понятно, что на разных планетах сила тяжести и сообщаемое ей ускорение свободного падения различны. Например, сила тяжести на Луне почти в 6 раз меньше, чем на Земле, а по мере удаления космического путешественника от поверхности Земли действующая на него сила тяжести уменьшается.

Сила тяжести является причиной того, что отсутствие опоры (подвеса) вызывает падение тела. Сила, действующая со стороны опоры (подвеса), называется реакцией опоры и направлена всегда перпендикулярно поверхности опоры к телу, т.е. от опоры. Понятно, почему вертикальная поверхность не может служить опорой. Весом тела называется сила, с которой тело давит на опору или тянет подвес, удерживающий его от падения на землю. В соответствии с третьим законом Ньютона вес и реакция опоры (сила действия и сила противодействия) равны друг другу. Понятие невесомости означает отсутствие этих сил, в частности, стоит нам подпрыгнуть, чтобы оторваться от опоры, как мы попадаем в состояние невесомости. В течение всего времени движения, пока мы вновь не приземлимся на опору, сила тяжести не перестает действовать, замедляя движение вверх и ускоряя движение вниз, а вот вес отсутствует. Космонавты в космическом корабле, движущемся с выключенными двигателями, также находятся в состоянии невесомости. Зато при разгоне корабля они испытывают перегрузки, когда вес значительно превышает силу тяжести: реакция опоры должна не только компенсировать силу тяжести, прижимающую космонавта к сиденью, но и сообщить ускорение, направленное от земли. Впрочем, с подобными перегрузками встречаются не только космонавты.

Сила упругости возникает в упруго деформированном теле и противодействует внешней деформирующей силе. Деформации, т.е. изменение расстояний между точками тела в результате внешнего воздействия, называются упругими, если они исчезают после снятия воздействия. Упругими, как правило, бывают только малые деформации. Примером служит упругая деформация сжатой или растянутой пружины. На рис.7 а) показана недеформированная пружина, на рис.7 б) эта же пружина растянута внешней силойна величинуx , в результате в пружине возникает
.Величину упругой силы выражает закон Гука:

F = - kx (2.3.3)

k коэффициент упругости (жесткость), постоянная для данного тела величина, в СИ измеряется в ньютонах на метр (Н/м). Знак минус указывает на противоположность направлений упругой силы и деформации.

Сила трения препятствует движению тела. Различают трение сухое и трение жидкое.

Сила сухого трения возникает между твердыми телами, контактирующими друг с другом вдоль некоторой поверхности, и вызвана тем, что шероховатости поверхности одного тела, цепляясь за шероховатости поверхностидругого тела, препятствуют их скольжению друг относительно друга. Рис. 8 иллюстрирует рассматриваемую ситуацию: тело 1 движется со скоростьюпо поверхности тела 2. Опыт показывает, что сила трения скольженияF тр пропорциональна реакции опорыN и направлена в сторону, противоположную скорости:

F тр = N (2.3.4)

- коэффициент трения, безразмерная величина. Его значение зависит от материалов трущихся поверхностей, качества их обработки, загрязненности и обычно считается приблизительно постоянным для двух конкретных тел. В действительности, при стремлении скорости к нулю, отмечается некоторое возрастание силы трения до значенияF 0 . На рис. 9 приведен график модуля силы трения скольжения от величины скорости для движения, изображенного на рис.8.

Чтобы покоящееся тело 1 пришло в движение, к нему надо приложить силу, чуть превышающую F 0 . Если внешняя сдвигающая силаF < F 0 , то тело 1 останется неподвижным. Это значит, что внешняя сила не в состоянии преодолеть трение, и она уравновешивается силой трения покояF пок . Из законов Ньютона следует, что сила трения покоя численно равна и противоположно направленаF . Из сказанного ясно, что 0 F пок . F 0 . Для максимальной силы трения покоя иногда пользуются коэффициентом трения покоя 0 в формуле:

F 0 = 0 N (2.3.5)

Отметим, что формула (2.3.5) и 0 имеют смысл только применительно к максимальной силе трения покоя.

Трение жидкое или вязкое возникает при движении слоев жидкости или газа друг относительно друга. Оно встречается при движении твердого тела в жидкости или газе, а также при наличии жидкой (вязкой) смазки между трущимися поверхностями твердых тел. Особенностью жидкого трения является отсутствие трения покоя. Вам, вероятно, приходилось наблюдать, что тяжелое бревно в воде даже ребенок перемещает без труда, тогда как это же бревно, лежащее на суше, не всегда может сдвинуть даже сильный мужчина. Еще отличительной особенностью вязкого трения является возрастание силы трения с увеличением скорости, причем, для небольших скоростей эта зависимость линейная, а при больших скоростях она становится квадратичной. С силой вязкого трения мы встречаемся, плавая и ныряя в воде, а также в ветреную погоду.

Отметим, что действие на тело нескольких сил можно заменить одной. Она называется равнодействующей и равна векторной сумме всех действующих на тело сил:

(2.3.6)

Формула (2.3.6) есть выражение принципа суперпозиции, т.е. принципа независимого сложения. Этот же принцип позволяет одну силу представить в виде суммы ее проекций, например:

Поделиться