Случаи взаимного расположения плоскостей в пространстве. Взаимное расположение двух плоскостей. Признак параллельности плоскостей. Взаимное расположение прямой и плоскости

Для двух плоскостей возможны следующие варианты взаимного расположения: они параллельны или пересекаются по прямой линии.

Из стереометрии известно, что две плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости. Это условие называют признаком параллельности плоскостей .

Если две плоскости являются параллельными, то они пересекают какую-то третью плоскость по параллельным прямым. Исходя из этого у параллельных плоскостей Р и Q их следы являются параллельными прямыми (рис. 50).

В случае, когда две плоскости Р и Q параллельны оси х , их горизонтальные и фронтальные следы при произвольном взаимном расположении плоскостей будут параллельными оси х, т. е. взаимно параллельными. Следовательно, при таких условиях параллельность следов является достаточным признаком, характеризующим параллельность самих плоскостей. Для параллельности подобных плоскостей нужно убедиться в параллельности и профильных их следов P w и Q w . Плоскости Р и Q на рисунке 51 параллельны, а на рисунке 52 они не параллельны, несмотря на то что P v || Q v , и P h у || Q h .

В случае, когда плоскости параллельны, горизонтали одной плоскости параллельны горизонталям другой. Фронтали одной плоскости при этом должны быть параллельными фронталям другой, так как у этих плоскостей параллельны одноименные следы.

Для того чтобы построить две плоскости, пересекающиеся между собой, необходимо найти прямую, по которой пересекаются две плоскости. Для построения этой прямой достаточно найти две точки, принадлежащие ей.

Иногда, когда плоскость задана следами, найти данные точки легко с помощью эпюра и без дополнительных построений. Здесь известно направление определяемой прямой, и ее построение основывается на использовании одной точки на эпюре.

Конец работы -

Эта тема принадлежит разделу:

Начертательная геометрия. Конспект лекций лекция. Сведения о проекциях

Лекция сведения о проекциях понятие проекций чтение чертежа.. центральная проекция.. представление о центральной проекции можно получить если изучить изображение которое дает человеческий глаз..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятие проекций
Начертательной геометрией называют науку, которая является теоретическим фундаментом черчения. В данной науке изучаются способы изображения на плоскости различных тел и их элементо

Параллельная проекция
Параллельная проекция – это такой вид проекции, при построении которого используются параллельные проецирующиеся лучи. При построении параллельных проекций нужно задать на

Проекции точки на две плоскости проекций
Рассмотрим проекции точек на две плоскости, для чего возьмем две перпендикулярные плоскости (рис. 4), которые будем называть горизонтальной фронтальной и плоскостями. Линию пересечения данных плоск

Отсутствие оси проекций
Для пояснения получения на модели проекций точки на перпендикулярные плоскости проекций (рис. 4) необходимо взять кусок плотной бумаги в форме удлиненного прямоугольника. Его нужно согнуть между пр

Проекции точки на три плоскости проекций
Рассмотрим профильную плоскость проекций. Проекции на две перпендикулярные плоскости обычно определяют положение фигуры и дают возможность узнать ее настоящие размеры и форму. Но бывают случаи, ког

Координаты точки
Положение точки в пространстве может быть определено с помощью трех чисел, называемых ее координатами. Каждой координате соответствует расстояние точки от какой-нибудь плоскости пр

Проекции прямой
Для определения прямой необходимы две точки. Точку определяют две проекции на горизонтальную и фронтальную плоскости, т. е. прямая определяется с помощью проекций двух своих точек на горизонтальной

Следы прямой
След прямой – это точка пересечения ее с некоторой плоскостью или поверхностью (рис. 20). Горизонтальным следом прямой называется некоторая точка H

Различные положения прямой
Прямую называют прямой общего положения, если она не параллельна и не перпендикулярна ни одной плоскости проекций. Проекции прямой общего положения тоже не параллельны и не перпенд

Взаимное расположение двух прямых
Возможны три случая расположения прямых в пространстве: 1) прямые пресекаются, т. е. имеют общую точку; 2) прямые параллельны, т. е. не имеют общей точки, но лежат в одной плоскос

Перпендикулярные прямые
Рассмотрим теорему: если одна сторона прямого угла параллельна плоскости проекций (или лежит в ней), то прямой угол проецируется на эту плоскость без искажения. Приведем доказательство для

Определение положения плоскости
Для произвольно расположенной плоскости проекции ее точек заполняют все три плоскости проекций. Поэтому не имеет смысла говорить о проекции всей плоскости целиком, нужно рассматривать лишь проекции

Следы плоскости
След плоскости Р – это линия пересечения ее с данной плоскостью или поверхностью (рис. 36). Линию пересечения плоскости Р с горизонтальной плоскостью называю

Горизонтали и фронтали плоскости
Среди прямых, которые лежат в некоторой плоскости, можно выделить два класса прямых, играющих большую роль при решении всевозможных задач. Это прямые, которые называют горизонталями

Построение следов плоскости
Рассмотрим построение следов плоскости Р, которая задана парой пересекающихся прямых I и II (рис. 45). Если прямая находится на плоскости Р, то ее следы лежат на одноименных следах

Различные положения плоскости
Плоскостью общего положения называется плоскость, не параллельная и не перпендикулярная ни одной плоскости проекций. Следы такой плоскости также не параллельны и не перпендикулярны

Прямая, параллельная плоскости
Может быть несколько положений прямой относительно некоторой плоскости. 1. Прямая лежит в некоторой плоскости. 2. Прямая параллельна некоторой плоскости. 3. Прямая пересе

Прямая, пересекающая плоскость
Для нахождения точки пересечения прямой и плоскости необходимо построить линии пересечения двух плоскостей. Рассмотрим прямую I и плоскость Р (рис. 54).

Призма и пирамида
Рассмотрим прямую призму, которая стоит на горизонтальной плоскости (рис. 56). Ее боковые гран

Цилиндр и конус
Цилиндр – это фигура, поверхность которого получается вращением прямой m вокруг оси i, расположенной в одной плоскости с этой прямой. В случае, когда прямая m

Шар, тор и кольцо
Когда некоторая ось вращения I является диаметром окружности, то получается шаровая поверхность (рис. 66).

Линии, применяемые в черчении
В черчении применяют три основных типа линий (сплошные, штриховые и штрихпунктирные) различной толщины (рис. 76).

Расположение видов (проекций)
В черчении применяются шесть видов, которые изображены на рисунке 85. На рисунке показаны проекции буквы «Л».

Отступление от приведенных правил расположения видов
В некоторых случаях допускаются отступления от правил построения проекций. Среди этих случаев можно выделить следующие: частичные виды и виды, расположенные без проекционной связи с другими видами.

Число проекций, определяющих данное тело
Положение тел в пространстве, форма и размеры определяются обычно небольшим числом соответствующим образом подобранных точек. Если при изображении проекции какого-то тела обращать внимание

Вращение точки около оси, перпендикулярной плоскости проекций
На рисунке 91 дана ось вращения I, которая перпендикулярна горизонтальной плоскости, и произвольно расположенная в пространстве точка А. При вращении около оси I эта точка опис

Определение натуральной величины отрезка путем вращения
Отрезок, параллельный какой-нибудь плоскости проекций, проецируется на нее без искажения. Если повернуть отрезок таким образом, чтобы он стал параллельным одной из плоскостей проекций, то можно опр

Построение проекций фигуры сечения можно выполнить двояко
1. Можно найти точки встречи ребер многогранника с секущей плоскостью, после чего соединить проекции найденных точек. В результате этого получатся проекции искомого многоугольника. В этом случае це

Пирамида
На рисунке 98 показано пересечение поверхности пирамиды фронтально-проектирующей плоскостью Р. На рисунке 98б изображена фронтальная проекция а точки встречи ребра KS с плоскостью

Косые сечения
Под косыми сечениями понимают круг задач на построение натуральных видов сечений рассматриваемого тела проецирующейся плоскостью. Для выполнения косого сечения необходимо расчленит

Гипербола как сечение поверхности конуса фронтальной плоскостью
Пусть требуется построить сечение поверхности конуса, стоящего на горизонтальной плоскости, плоскостью Р, которая параллельна плоскости V. На рисунке 103 показана фронтальная

Сечение поверхности цилиндра
Бывают следующие случаи сечения поверхности прямого кругового цилиндра плоскостью: 1) окружность, если секущая плоскость Р перпендикулярна оси цилиндра, причем она параллельна основ

Сечение поверхности конуса
В общем случае круговая коническая поверхность включает в себя две совершенно одинаковые полости, которые имеют общую вершину (рис. 107в). Образующие одной полости представляют собой продолжение об

Сечение поверхности шара
Любое сечение поверхности шара плоскостью является окружностью, которая проецируется без искажения только в том случае, если секущая плоскость параллельна плоскости проекций. В общем же случае мы б

Косые сечения
Пусть требуется построить натуральный вид сечения фронтально-проецирующей плоскостью тела. На рисунке 110а рассматривается тело, ограниченное тремя цилиндрическими поверхностями (1, 3 и 6), поверхн

Пирамида
Чтобы найти следы прямой на поверхности некоторого геометрического тела, нужно провести через прямую вспомогательную плоскость, затем найти сечение поверхности тела этой плоскостью. Искомыми будут

Цилиндрическая винтовая линия
Образование винтовой линии. Рассмотрим рисунок 113а на нем точка М двигается равномерно по некоторой окружности, которая представляет собой сечение круглого цилиндра плоскостью Р. Здесь эта плоскос

Два тела вращения
Метод проведения вспомогательных плоскостей применяется при построении линии пересечения поверхностей двух тел вращения. Суть этого метода заключается в следующем. Проводят вспомогательную плоскост

Сечения
Существуют некоторые определения и правила, которые относятся к сечениям. Сечение – это плоская фигура, которая была получена в результате пересечения данного тела некотор

Разрезы
Определения и правила, которые относятся к разрезам. Разрез – это такое условное изображение предмета, когда его часть, находящаяся между глазом наблюдателя и секущей плос

Частичный разрез или вырыв
Разрез называется полным, если изображаемый предмет рассекается целиком, остальные разрезы называются частичными, или вырывами. На рисунке 120 на виде слева и на плане сделаны полные разрезы. Приче

Пусть даны две плоскости

Первая плоскость имеет нормальный вектор (А 1 ;В 1 ;С 1), вторая плоскость (А 2 ;В 2 ;С 2).

Если плоскости параллельны, то векторы и коллинеарны, т.е. = l для некоторого числа l. Поэтому

─ условие параллельности плоскости.

Условие совпадения плоскостей:

,

так как в этом случае умножая второе уравнение на l = , получим первое уравнение.

Если условие параллельности не выполняется, то плоскости пересекаются. В частности, если плоскости перпендикулярны, то перпендикулярны и векторы , . Поэтому их скалярное произведение равно 0, т.е. = 0, или

А 1 А 2 + В 1 В 2 + С 1 С 2 = 0.

Это необходимое и достаточное условие перпендикулярности плоскостей.

Угол между двумя плоскостями.

Угол между двумя плоскостями

А 1 х + В 1 у +С 1 z + D 1 = 0,

А 2 х + В 2 у +С 2 z + D 2 = 0

это угол между их нормальными векторами и , поэтому

cosj = =
.

Прямая в пространстве.

Векторно-параметрическое уравнение прямой.

Определение. Направляющим вектором прямой называется любой вектор, лежащий на прямой или параллельный ей.

Составим уравнение прямой, проходящей через точку М 0 (х 0 ;у 0 ;z 0) и имеющей направляющий вектор = (а 1 ;а 2 ;а 3).

Отложим из точки М 0 вектор . Пусть М(х;у;z) ─ произвольная точка данной прямой, а ─ её радиус- вектор точки М 0 . Тогда , , поэтому . Это уравнение называется векторно-параметрическим уравнением прямой.

Параметрические уравнения прямой.

В векторно-параметрическом уравнении прямой перейдёт к координатным соотношениям (х;у;z) = (х 0 ;у 0 ;z 0) + (а 1 ;а 2 ;а 3)t. Отсюда получаем параметрические уравнения прямой

х = х 0 + а 1 t,

у = у 0 +а 2 t, (4)

Канонические уравнения прямой.

Из уравнений (4) выразим t:

t = , t = , t = ,

откуда получаем канонические уравнения прямой

= = (5)

Уравнение прямой, проходящей через две данные точки.

Пусть даны две точки М 1 (х 1 ;у 1 ;z 1) и М 2 (х 2 ;у 2 ;z 2). В качестве направляющего вектора прямой можно взять вектор = (х 2 – х 1 ;у 2 – у 1 ;z 2 – z 1). Поскольку прямая проходит через точка М 1 (х 1 ;у 1 ;z 1), то её канонические уравнения в соответствии с (5) запишутся в виде

(6)

Угол между двумя прямыми.

Рассмотрим две прямые с направляющими векторами = (а 1 ;а 2 ;а 3) и .

Угол между прямыми равен углу между их направляющими векторами, поэтому

cosj = =
(7)

Условие перпендикулярности прямых:

а 1 в 1 + а 2 в 2 + а 3 в 3 = 0.

Условие параллельности прямых:

l,

. (8)

Взаимное расположение прямых в пространстве.

Пусть даны две прямые
и
.

Очевидно, что прямые лежат в одной плоскости тогда и только тогда, когда векторы , и компланарны, т.е.

= 0 (9)

Если в (9) первые две строки пропорциональны, то прямые параллельны. Если все три строки пропорциональны, то прямые совпадают. Если условие (9) выполнено и первые две строки не пропорциональны, то прямые пересекаются.

Если же
¹ 0, то прямые являются скрещивающимися.

Задачи на прямую и плоскость в пространстве.

Прямая как пересечение двух плоскостей.

Пусть заданы две плоскости

А 1 х + В 1 у +С 1 z + D 1 = 0,

А 2 х + В 2 у +С 2 z + D 2 = 0

Если плоскости не являются параллельными, то нарушается условие

.

Пусть, например ¹ .

Найдём уравнение прямой, по которой пересекаются плоскости.

В качестве направляющего вектора искомой прямой можно взять вектор

= × = =
.

Чтобы найти точку, принадлежащую искомой прямой, фиксируем некоторое значение

z = z 0 и решая систему


,

получаем значения х = х 0 , у = у 0 . Итак, искомая точка М(х 0 ;у 0 ;z 0).

Искомое уравнение

.

Взаимное расположение прямой и плоскости.

Пусть задана прямая х = х 0 + а 1 t, y = y 0 + a 2 t, z = z 0 + a 3 t

и плоскость

А 1 х + В 1 у +С 1 z + D 1 = 0.

Чтобы найти общие точки прямой и плоскости, необходимо решить систему их уравнений

А 1 (х 0 + а 1 t) + B 1 (y 0 + a 2 t) + C 1 (z 0 + a 3 t) + D 1 = 0,

(A 1 a 1 + B 1 a 2 + C 1 a 3)t + (A 1 x 0 + B 1 y 0 + C 1 z 0 + D 1) = 0.

Если А 1 а 1 + В 1 а 2 + С 1 а 3 ¹ 0, то система имеет единственное решение

t = t 0 = -
.

В этом случае прямая и плоскость пересекаются в единственной точке М 1 (х 1 ;у 1 ;z 1), где

х 1 = х 0 + а 1 t 0 , y 1 = y 0 + a 2 t 0 , z 1 = z 0 + a 3 t 0 .

Если А 1 а 1 + В 1 а 2 + С 1 а 3 = 0, А 1 x 0 + В 1 y 0 + С 1 z 0 + D 1 ¹ 0, то прямая и плоскость не имеет общих точек, т.е. параллельны.

Если же А 1 а 1 + В 1 а 2 + С 1 а 3 = 0, А 1 x 0 + В 1 y 0 + С 1 z 0 + D 1 = 0, то прямая принадлежит плоскости.

Угол между прямой и плоскостью.

Для двух плоскостей возможны следующие варианты взаимного расположения: они параллельны или пересекаются по прямой линии.

Из стереометрии известно, что две плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости. Это условие называют признаком параллельности плоскостей .

Если две плоскости являются параллельными, то они пересекают какую-то третью плоскость по параллельным прямым. Исходя из этого у параллельных плоскостей Р и Q их следы являются параллельными прямыми (рис. 50).

В случае, когда две плоскости Р и Q параллельны оси х , их горизонтальные и фронтальные следы при произвольном взаимном расположении плоскостей будут параллельными оси х, т. е. взаимно параллельными. Следовательно, при таких условиях параллельность следов является достаточным признаком, характеризующим параллельность самих плоскостей. Для параллельности подобных плоскостей нужно убедиться в параллельности и профильных их следов P w и Q w . Плоскости Р и Q на рисунке 51 параллельны, а на рисунке 52 они не параллельны, несмотря на то что P v || Q v , и P h у || Q h .

В случае, когда плоскости параллельны, горизонтали одной плоскости параллельны горизонталям другой. Фронтали одной плоскости при этом должны быть параллельными фронталям другой, так как у этих плоскостей параллельны одноименные следы.

Для того чтобы построить две плоскости, пересекающиеся между собой, необходимо найти прямую, по которой пересекаются две плоскости. Для построения этой прямой достаточно найти две точки, принадлежащие ей.

Иногда, когда плоскость задана следами, найти данные точки легко с помощью эпюра и без дополнительных построений. Здесь известно направление определяемой прямой, и ее построение основывается на использовании одной точки на эпюре.



Прямая, параллельная плоскости

Может быть несколько положений прямой относительно некоторой плоскости.

Рассмотрим признак параллельности прямой и плоскости. Прямая является параллельной плоскости, когда она параллельна любой прямой, лежащей в этой плоскости. На рисунке 53 прямая АВ параллельна плоскости Р , так как она параллельна прямой MN , которая лежит в этой плоскости.

Когда прямая параллельна плоскости Р , в этой плоскости через какую-либо ее точку можно провести прямую, параллельную данной прямой. Например, на рисунке 53 прямая АВ параллельна плоскости Р . Если через точку М , принадлежащую плоскости Р , провести прямую NM , параллельную АВ , то она будет лежать в плоскости Р . На том же рисунке прямая CD не параллельна плоскости Р , потому что прямая KL , которая параллельна CD и проходит через точку К на плоскости Р , не лежит в данной плоскости.

Прямая, пересекающая плоскость

Для нахождения точки пересечения прямой и плоскости необходимо построить линии пересечения двух плоскостей. Рассмотрим прямую I и плоскость Р (рис. 54).

Рассмотрим построение точки пересечения плоскостей.

Через некоторую прямую I необходимо провести вспомогательную плоскость Q (проецирующую). Линия II определяется как пересечение плоскостей Р и Q . Точка К, которую и требуется построить, находится в пересечение прямых I и II. В этой точке прямая I пересекает плоскость Р .

В данном построении основным моментом решения является проведение вспомогательной плоскости Q , проходящей через данную прямую. Можно провести вспомогательную плоскость общего положения. Однако показать на эпюре проецирующую плоскость, используя данную прямую, проще, чем провести плоскость общего положения. При этом через любую прямую можно провести проецирующую плоскость. На основании этого вспомогательная плоскость выбирается проецирующей.


В планиметрии плоскость является одной из основных фигур, поэтому, очень важно иметь ясное представление о ней. Эта статья создана с целью раскрытия этой темы. Сначала дано понятие плоскости, ее графическое представление и показаны обозначения плоскостей. Далее плоскость рассматривается вместе с точкой, прямой или другой плоскостью, при этом возникают варианты из взаимного расположения в пространстве. Во втором и третьем и четвертом пункте статьи как раз разобраны все варианты взаимного расположения двух плоскостей, прямой и плоскости, а также точки и плоскости, приведены основные аксиомы и графические иллюстрации. В заключении даны основные способы задания плоскости в пространстве.

Навигация по странице.

Плоскость – основные понятия, обозначения и изображение.

Простейшими и основными геометрическими фигурами в трехмерном пространстве являются точка, прямая и плоскость. Мы уже имеем представление о точке и прямой на плоскости . Если поместить плоскость, на которой изображены точки и прямые, в трехмерное пространство, то мы получим точки и прямые в пространстве. Представление о плоскости в пространстве позволяет получить, к примеру, поверхность стола или стены. Однако, стол или стена имеют конечные размеры, а плоскость простирается за их границы в бесконечность.

Точки и прямые в пространстве обозначаются также как и на плоскости – большими и маленькими латинскими буквами соответственно. Например, точки А и Q , прямые а и d . Если заданы две точки, лежащие на прямой, то прямую можно обозначить двумя буквами, соответствующими этим точкам. К примеру, прямая АВ или ВА проходит через точки А и В . Плоскости принято обозначать маленькими греческими буквами, например, плоскости , или .

При решении задач возникает необходимость изображать плоскости на чертеже. Плоскость обычно изображают в виде параллелограмма или произвольной простой замкнутой области.

Плоскость обычно рассматривается вместе с точками, прямыми или другими плоскостями, при этом возникают различные варианты их взаимного расположения. Переходим к их описанию.

Взаимное расположение плоскости и точки.

Начнем с аксиомы: в каждой плоскости имеются точки. Из нее следует первый вариант взаимного расположения плоскости и точки – точка может принадлежать плоскости. Другими словами, плоскость может проходить через точку. Для обозначения принадлежности какой-либо точки какой-либо плоскости используют символ «». Например, если плоскость проходит через точку А , то можно кратко записать .

Следует понимать, что на заданной плоскости в пространстве имеется бесконечно много точек.

Следующая аксиома показывает, сколько точек в пространстве необходимо отметить, чтобы они определяли конкретную плоскость: через три точки, не лежащие на одной прямой, проходит плоскость, причем только одна. Если известны три точки, лежащие в плоскости, то плоскость можно обозначить тремя буквами, соответствующими этим точкам. Например, если плоскость проходит через точки А , В и С , то ее можно обозначить АВС .

Сформулируем еще одну аксиому, которая дает второй вариант взаимного расположения плоскости и точки: имеются по крайней мере четыре точки, не лежащие в одной плоскости. Итак, точка пространства может не принадлежать плоскости. Действительно, в силу предыдущей аксиомы через три точки пространства проходит плоскость, а четвертая точка может как лежать на этой плоскости, так и не лежать. При краткой записи используют символ «», который равносилен фразе «не принадлежит».

К примеру, если точка А не лежит в плоскости , то используют краткую запись .

Прямая и плоскость в пространстве.

Во-первых, прямая может лежать в плоскости. В этом случае, в плоскости лежат хотя бы две точки этой прямой. Это устанавливается аксиомой: если две точки прямой лежат в плоскости, то все точки этой прямой лежат в плоскости. Для краткой записи принадлежности некоторой прямой данной плоскости пользуются символом «». Например, запись означает, что прямая а лежит в плоскости .

Во-вторых, прямая может пересекать плоскость. При этом прямая и плоскость имеют одну единственную общую точку, которую называют точкой пересечения прямой и плоскости. При краткой записи пересечение обозначаю символом «». К примеру, запись означает, что прямая а пересекает плоскость в точке М . При пересечении плоскости некоторой прямой возникает понятие угла между прямой и плоскостью .

Отдельно стоит остановиться на прямой, которая пересекает плоскость и перпендикулярна любой прямой, лежащей в этой плоскости. Такую прямую называют перпендикулярной к плоскости. Для краткой записи перпендикулярности используют симовл «». Для более глубокого изучения материала можете обратиться к статье перпендикулярность прямой и плоскости .

Особую значимость при решении задач, связанных с плоскостью, имеет так называемый нормальный вектор плоскости . Нормальным вектором плоскости является любой ненулевой вектор, лежащий на прямой, перпендикулярной этой плоскости.

В-третьих, прямая может быть параллельна плоскости, то есть, не иметь в ней общих точек. При краткой записи параллельности используют символ «». Например, если прямая а параллельна плоскости , то можно записать . Рекомендуем подробнее изучить этот случай, обратившись к статье параллельность прямой и плоскости .

Следует сказать, что прямая, лежащая в плоскости, делит эту плоскость на две полуплоскости. Прямая в этом случае называется границей полуплоскостей. Любые две точки одной полуплоскости лежат по одну сторону от прямой, а две точки разных полуплоскостей лежат по разные стороны от граничной прямой.

Взаимное расположение плоскостей.

Две плоскости в пространстве могут совпадать. В этом случае они имеют, по крайней мере, три общие точки.

Две плоскости в пространстве могут пересекаться. Пересечением двух плоскостей является прямая линия, что устанавливается аксиомой: если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.

В этом случае возникает понятие угла между пересекающимися плоскостями . Отдельный интерес представляет случай, когда угол между плоскостями равен девяноста градусам. Такие плоскости называют перпендикулярными. О них мы поговорили в статье перпендикулярность плоскостей .

Наконец, две плоскости в пространстве могут быть параллельными, то есть, не иметь общих точек. Рекомендуем ознакомиться со статьей параллельность плоскостей , чтобы получить полное представление об этом варианте взаимного расположения плоскостей.

Способы задания плоскости.

Сейчас мы перечислим основные способы задания конкретной плоскости в пространстве.

Во-первых, плоскость можно задать, зафиксировав три не лежащие на одной прямой точки пространства. Этот способ основан на аксиоме: через любые три точки, не лежащие на одной прямой, проходит единственная плоскость.

Если в трехмерном пространстве зафиксирована и задана плоскость с помощью указания координат трех ее различных точек, не лежащих на одной прямой, то мы можем написать уравнение плоскости, проходящей через три заданные точки .

Два следующих способа задания плоскости являются следствием из предыдущего. Они основаны на следствиях из аксиомы о плоскости, проходящей через три точки:

  • через прямую и не лежащую на ней точку проходит плоскость, притом только одна (смотрите также статью уравнение плоскости, проходящей через прямую и точку);
  • через две пересекающиеся прямые проходит единственная плоскость (рекомендуем ознакомиться с материалом статьи уравнение плоскости, проходящей через две пересекающиеся прямые).

Четвертый способ задания плоскости в пространстве основан на определении параллельных прямых . Напомним, что две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются. Таким образом, указав две параллельные прямые в пространстве, мы определим единственную плоскость, в которой эти прямые лежат.

Если в трехмерном пространстве относительно прямоугольной системы координат задана плоскость указанным способом, то мы можем составить уравнение плоскости, проходящей через две параллельные прямые .


В курсе средней школы на уроках геометрии доказывается следующая теорема: через фиксированную точку пространства проходит единственная плоскость, перпендикулярная к данной прямой. Таким образом, мы можем задать плоскость, если укажем точку, через которую она проходит, и прямую, перпендикулярную к ней.

Если в трехмерном пространстве зафиксирована прямоугольная система координат и задана плоскость указанным способом, то можно составить уравнение плоскости, проходящей через заданную точку перпендикулярно к заданной прямой .

Вместо прямой, перпендикулярной к плоскости, можно указать один из нормальных векторов этой плоскости. В этом случае есть возможность написать

Две плоскости в пространстве могут быть либо взаимно параллельны, в частном случае совпадая друг с другом, либо пересекаться. Взаимно перпендикулярные плоскости представляют собой частный случай пересекающихся плоскостей.

1. Параллельные плоскости. Плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости.

Это определение хорошо иллюстрируется задачей, через точку В провести плоскость параллельную плоскости, заданной двумя пересекающимися прямыми ab (рис.61).

Задача. Дано: плоскость общего положения, заданную двумя пересекающимися прямыми ab и точка В.

Требуется через точку В провести плоскость, параллельную плоскости ab и задать её двумя пересекающимися прямыми c и d.

Согласно определения если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости то эти плоскости параллельны между собой.

Для того чтобы провести на эпюре параллельные прямые необходимо воспользоваться свойством параллельного проецирования - проекции параллельных прямых - параллельны между собой

d//a, с//b Þ d1//a1,с1//b1; d2//a2 ,с2//b2; d3//a3,с3//b3.

Рисунок 61. Параллельные плоскости

2. Пересекающиеся плоскости, частный случай – взаимно перпендикулярные плоскости. Линия пересечения двух плоскостей является прямая, для построения которой достаточно определить две её точки, общие обеим плоскостям, либо одну точку и направление линии пересечения плоскостей.

Рассмотрим построение линии пересечения двух плоскостей, когда одна из них проецирующая (рис.62).

Задача. Дано: плоскость общего положения задана треугольником АВС, а вторая плоскость - горизонтально проецирующая a.

Требуется построить линию пересечения плоскостей.

Решение задачи заключается в нахождении двух точек общих для данных плоскостей, через которые можно провести прямую линию. Плоскость, заданная треугольником АВС можно представить, как прямые линии (АВ), (АС), (ВС). Точка пересечения прямой (АВ) с плоскостью a - точка D, прямой (AС) -F. Отрезок определяет линию пересечения плоскостей. Так как a - горизонтально проецирующая плоскость, то проекция D1F1 совпадает со следом плоскости aП1, таким образом остается только построить недостающие проекции на П2 и П3.

Рисунок 62. Пересечение плоскости общего положения с горизонтально проецирующей плоскостью



Перейдем к общему случаю. Пусть в пространстве заданы две плоскости общего положения a(m,n) и b (ABC) (рис.63)

Рисунок 63. Пересечение плоскостей общего положения

Рассмотрим последовательность построения линии пересечения плоскостей a(m//n) и b(АВС). По аналогии с предыдущей задачей для нахождения линии пересечения данных плоскостей проведем вспомогательные секущие плоскости g и d. Найдем линии пересечения этих плоскостей с рассматриваемыми плоскостями. Плоскость g пересекает плоскость a по прямой (12), а плоскость b - по прямой (34). Точка К - точка пересечения этих прямых одновременно принадлежит трем плоскостям a, b и g, являясь таким образом точкой принадлежащей линии пересечения плоскостей a и b. Плоскость d пересекает плоскости a и b по прямым (56) и (7C) соответственно, точка их пересечения М расположена одновременно в трех плоскостях a, b, d и принадлежит прямой линии пересечения плоскостей a и b. Таким образом найдены две точки принадлежащие линии пересечения плоскостей a и b - прямая (КМ).

Некоторого упрощения при построении линии пересечения плоскостей можно достичь, если вспомогательные секущие плоскости проводить через прямые, задающие плоскость.

Взаимно перпендикулярные плоскости. Из стереометрии известно, что две плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой. Через точку А можно провести множество плоскостей перпендикулярных данной плоскости a(f,h). Эти плоскости образуют в пространстве пучок плоскостей, осью которого является перпендикуляр опущенный из точки А на плоскость a . Для того чтобы из точки А провести плоскость перпендикулярную плоскости заданной двумя пересекающимися прямыми hf необходимо из точки А провести прямую n перпендикулярную плоскости hf (горизонтальная проекция n перпендикулярна горизонтальной проекции горизонтали h, фронтальная проекция n перпендикулярна фронтальной проекции фронтали f). Любая плоскость проходящая через прямую n будет перпендикулярна плоскости hf, поэтому для задания плоскости через точки А проводим произвольную прямую m. Плоскость заданная двумя пересекающимися прямыми mn будет перпендикулярна плоскости hf (рис.64).



Рисунок 64. Взаимно перпендикулярные плоскости

Поделиться