Случайная величина x задана следующим законом распределения. Дискретная случайная величина, закон распределения вероятностей

Дан ряд распределения дискретной случайной величины. Найти недостающую вероятность и построить график функции распределения. Вычислить математическое ожидание и дисперсию этой величины.

Случайная величина Х принимает только четыре значения: -4, -3, 1 и 2. Каждое из этих значений она принимает с определенной вероятностью. Так как сумма всех вероятностей должна быть равна 1, то недостающая вероятность равна:

0,3 + ? + 0,1 + 0,4 = 1,

Составим функцию распределения случайной величины Х. Известно, что функция распределения , тогда:


Следовательно,

Построим график функции F (x ) .

Математическое ожидание дискретной случайной величины равно сумме произведений значения случайной величины на соответствующую вероятность, т.е.

Дисперсию дискретной случайной величины найдем по формуле:

ПРИЛОЖЕНИЕ

Элементы комбинаторики


Здесь: - факториал числа

Действия над событиями

Событие – это всякий факт, который может произойти или не произойти в результате опыта.

    Объединение событий А и В – это событие С , которое состоит в появлении или события А , или события В , или обоих событий одновременно.

Обозначение:
;

    Пересечение событий А и В – это событие С , которое состоит в одновременном появлении обоих событий.

Обозначение:
;

Классическое определение вероятности

Вероятность события А – это отношение числа опытов
, благоприятствующих появлению события А , к общему числу опытов :

Формула умножения вероятностей

Вероятность события
можно найти по формуле:

- вероятность события А,

- вероятность события В,

Вероятность события В при условии, что событие А уже произошло.

Если события А и В – независимы (появление одного не влияет на появление другого), то вероятность события равна:

Формула сложения вероятностей

Вероятность события можно найти по формуле:

Вероятность события А,

Вероятность события В,

Вероятность совместного появления событий А и В .

Если события А и В – несовместны (не могут появиться одновременно), то вероятность события равна:

Формула полной вероятности

Пусть событие А может произойти одновременно с одним из событий , , …, - назовем их гипотезами. Также известны - вероятность выполнения i -ой гипотезы и - вероятность появления события А при выполнении i -ой гипотезы. Тогда вероятность события А может быть найдена по формуле:

Схема Бернулли

Пусть проводится n независимых испытаний. Вероятность появления (успеха) события А в каждом из них постоянна и равна p , вероятность неудачи (т.е. не появления события А ) q = 1 - p . Тогда вероятность появления k успехов в n испытаниях можно найти по формуле Бернулли:

Наивероятнейшее число успехов в схеме Бернулли – это число появлений некоторого события, которому соответствует наибольшая вероятность. Можно найти по формуле:

Случайные величины

дискретные непрерывные

(н-р, число девочек в семье с 5 детьми) (н-р, время исправной работы чайника)

Числовые характеристики дискретных случайных величин

Пусть дискретная величина задана рядом распределения:

Х
Р

, , …, - значения случайной величины Х ;

, , …, - соответствующие им значения вероятностей.

Функция распределения

Функцией распределения случайной величины Х называется функция , заданная на всей числовой прямой и равная вероятности того, что Х будет меньше х :

Вопросы к экзамену

    Событие. Операции над случайными событиями.

    Понятие вероятности события.

    Правила сложения и умножения вероятностей. Условные вероятности.

    Формула полной вероятности. Формула Байеса.

    Схема Бернулли.

    Случайная величина, ее функция распределения и ряд распределения.

    Основные свойства функции распределения.

    Математическое ожидание. Свойства математического ожидания.

    Дисперсия. Свойства дисперсии.

    Плотность распределения вероятностей одномерной случайной величины.

    Виды распределений: равномерное, экспоненциальное, нормальное, биномиальное и распределение Пуассона.

    Локальная и интегральные теоремы Муавра-Лапласа.

    Закон и функция распределения системы двух случайных величин.

    Плотность распределения системы двух случайных величин.

    Условные законы распределения, условное математическое ожидание.

    Зависимые и независимые случайные величины. Коэффициент корреляции.

    Выборка. Обработка выборки. Полигон и гистограмма частот. Эмпирическая функция распределения.

    Понятие оценки параметров распределения. Требования к оценке. Доверительный интервал. Построение интервалов для оценки математического ожидания и среднего квадратического отклонения.

    Статистические гипотезы. Критерии согласия.

ЗАКОН РАСПРЕДЕЛЕНИЯ И ХАРАКТЕРИСТИКИ

СЛУЧАЙНЫХ ВЕЛИЧИН

Случайные величины, их классификация и способы описания.

Случайной называется величина, которая в результате опыта может принимать то или иное значение, но какое именно заранее не известно. Для случайной величины, таким образом, можно указать только значения, одно из которых она обязательно примет в результате опыта. Эти значения в дальнейшем будем называть возможными значениями случайной величины. Так как случайная величина количественно характеризует случайный результат опыта, она может рассматриваться как количественная характеристика случайного события.

Случайные величины обычно обозначаются заглавными буквами латинского алфавита, например, X..Y..Z, а их возможные значения- соответствующими малыми буквами.

Различают три типа случайных величин:

Дискретные; Непрерывные; Смешанные.

Дискретной называется такая случайная величина, число возможных значений которой образует счетное множество. В свою очередь, счетным называется множество, элементы которого можно пронумеровать. Слово «дискретный» происходит от латинского discretus , что означает «прерывистый, состоящий из отдельных частей» .

Пример 1. Дискретной случайной величиной является число бракованных деталей Х в партии из nтук. Действительно, возможными значениями этой случайной величины является ряд целых чисел от 0 до n.

Пример 2. Дискретной случайной величиной является число выстрелов до первого попадания в цель. Здесь, как и в примере 1, возможные значения можно пронумеровать, хотя в предельном случае возможное значение является бесконечно большим числом.

Непрерывной называется случайная величина, возможные значения которой непрерывно заполняют некоторый интервал числовой оси, называемый иногда интервалом существования этой случайной величины. Таким образом, на любом конечном интервале существования число возможных значений непрерывной случайной величины бесконечно велико.

Пример 3. Непрерывной случайной величиной является расход электроэнергии на предприятии за месяц.

Пример 4. Непрерывной случайной величиной является ошибка измерения высоты с помощью высотомера. Пусть из принципа работы высотомера известно, что ошибка лежит в пределах от 0 до 2 м. Поэтому интервалом существования данной случайной величины является интервал от 0 до 2 м.

Закон распределения случайных величин.

Случайная величина считается полностью заданной, если на числовой оси указаны ее возможные значения и установлен закон распределения.

Законом распределения случайной величины называется соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими вероятностями.

Про случайную величину говорят, что она распределена по данному закону, или подчинена данному закону распределения. В качестве законов распределения используются ряд вероятностей, функция распределения, плотность вероятности, характеристическая функция.

Закон распределения дает полное вероятное описание случайной величины. По закону распределения можно судить до опыта о том какие возможные значения случайной величины будут появляться чаще, а какие – реже.

Для дискретной случайной величины закон распределения может быть задан в виде таблицы, аналитически (в виде формулы) и графически.

Простейшей формой задания закона распределения дискретной случайной величины является таблица (матрица), в которой перечислены в порядке возрастания все возможные значения случайной величины и соответствующие их вероятности, т.е.

Такая таблица называется рядом распределения дискретной случайной величины. 1

События Х 1 , Х 2 ,..., Х n , состоящие в том, что в результате испытания случайная величина X примет соответственно значения х 1 , x 2 ,...х n являются несовместными и единственно возможными (ибо в таблице перечислены все возможные значения случайной величины), т.е. образуют полную группу. Следовательно, сумма их вероятностей равна 1. Таким образом, для любой дискретной случайной величины

(Эта единица как-то распределена между значениями случайной величины, отсюда и термин «распределение»).

Ряд распределения может быть изображен графически, если по оси абсцисс откладывать значения случайной величины, а по оси ординат - соответствующие их вероятности. Соединение полученных точек образует ломаную, называемую многоугольником или полигоном распределения вероятностей (рис. 1).

Пример В лотерее разыгрывается: автомобиль стоимостью 5000 ден. ед., 4 телевизора стоимостью 250 ден. ед., 5 видеомагнитофонов стоимостью 200 ден. ед. Всего продается 1000 билетов по 7 ден. ед. Составить закон распределения чистого выигрыша, полученного участником лотереи, купившим один билет.

Решение . Возможные значения случайной величины X - чистого выигрыша на один билет - равны 0-7 = -7 ден. ед. (если билет не выиграл), 200-7 = 193, 250-7 = 243, 5000-7 = 4993 ден. ед. (если на билет выпал выигрыш соответственно видеомагнитофона, телевизора или автомобиля). Учитывая, что из 1000 билетов число невыигравших составляет 990, а указанных выигрышей соответственно 5, 4 и 1, и используя классическое определение вероятности, получим.

Определение 1

Случайная величина $Х$ называется дискретной (прерывной), если множество ее значений бесконечное или конечное, но счетное.

Другими словами, величина называется дискретной, если ее значения можно занумеровать.

Описать случайную величину можно с используя закона распределения.

Закон распределения дискретной случайной величины $Х$ может быть задан в виде таблицы, в первой строке которой указаны все возможные значения случайной величины в порядке возрастания, а во второй строке соответствующие вероятности этих значений:

Рисунок 1.

где $р1+ р2+ ... + рn = 1$.

Даная таблица является рядом распределения дискретной случайной величины .

Если множество возможных значений случайной величины бесконечно, то ряд $р1+ р2+ ... + рn+ ...$ сходится и его сумма будет равна $1$.

Закон распределения дискретной случайной величины $Х$ можно представить графически, для чего в системе координат (прямоугольной) строят ломаную линию, которая последовательно соединяет точки с координатами $(xi;pi), i=1,2, ... n$. Линию, которую получили называют многоугольником распределения .

Рисунок 2.

Закон распределения дискретной случайной величины $Х$ может быть также представлен аналитически (с помощью формулы):

$P(X=xi)= \varphi (xi),i =1,2,3 ... n$.

Действия над дискретными вероятностями

При решении многих задач теории вероятности необходимо проводить операции умножения дискретной случайной величины на константу , сложения двух случайных величин, их умножения, поднесения к степени. В этих случаях необходимо придерживаться таких правил над случайными дискретными величинами:

Определение 3

Умножением дискретной случайной величины $X$ на константу $K$ называется дискретная случайная величина $Y=KX,$ которая обусловлена равенствами: $y_i=Kx_i,\ \ p\left(y_i\right)=p\left(x_i\right)=p_i,\ \ i=\overline{1,\ n}.$

Определение 4

Две случайные величины $x$ и $y$ называются независимыми , если закон распределения одной из них не зависит от того, какие возможные значения приобрела вторая величина.

Определение 5

Суммой двух независимых дискретных случайных величин $X$ и $Y$ называют случайную величину $Z=X+Y,$ обусловлена равенствами: $z_{ij}=x_i+y_j$, $P\left(z_{ij}\right)=P\left(x_i\right)P\left(y_j\right)=p_ip"_j$, $i=\overline{1,n}$, $j=\overline{1,m}$, $P\left(x_i\right)=p_i$, $P\left(y_j\right)=p"_j$.

Определение 6

Умножением двух независимых дискретных случайных величин $X$ и $Y$ называют случайную величину $Z=XY,$ обусловлена равенствами: $z_{ij}=x_iy_j$, $P\left(z_{ij}\right)=P\left(x_i\right)P\left(y_j\right)=p_ip"_j$, $i=\overline{1,n}$, $j=\overline{1,m}$, $P\left(x_i\right)=p_i$, $P\left(y_j\right)=p"_j$.

Примем во внимание, что некоторые произведения $x_{i\ \ \ \ \ }y_j$ могут быть равными между собой. В таком случае вероятность сложения произведения равна сумме соответствующих вероятностей.

Например, если $x_2\ \ y_3=x_5\ \ y_7,\ $то вероятность $x_2y_3$ (или тоже самое $x_5y_7$) будет равна $p_2\cdot p"_3+p_5\cdot p"_7.$

Сказанное выше касается также и суммы. Если $x_1+\ y_2=x_4+\ \ y_6,$ то вероятность $x_1+\ y_2$ (или тоже самое $x_4+\ y_6$) будет равняться $p_1\cdot p"_2+p_4\cdot p"_6.$

Пусnm случайные величины $X$ и $Y$ заданы законами распределения:

Рисунок 3.

Где $p_1+p_2+p_3=1,\ \ \ p"_1+p"_2=1.$ Тогда закон распределения сумы $X+Y$ будет иметь вид

Рисунок 4.

А закон распределения произведения $XY$ будет иметь вид

Рисунок 5.

Фунция распределения

Полное описание случайной величины дает также функция распределения.

Геометрически функция распределения разъясняется как вероятность того, что случайная величина $Х$ принимает значение, которое на числовой прямой изображается точкой, лежащей с левой стороны от точки $х$.

Дискретной называют случайную величину, которая может принимать отдельные, изолированные значения с определенными вероятностями.

ПРИМЕР 1. Число появлений герба при трех бросаниях монеты. Возможные значения: 0, 1, 2, 3, их вероятности равны соответственно:

Р(0) = ; Р(1) = ; Р(2) = ; Р(3) = .

ПРИМЕР 2. Число отказавших элементов в приборе, состоящем из пяти элементов. Возможные значения: 0, 1, 2, 3, 4, 5; их вероятности зависят от надежности каждого из элементов.

Дискретная случайная величина Х может быть задана рядом распределения или функцией распределения (интегральным законом распределения).

Рядом распределения называется совокупность всех возможных значений х i и соответствующих им вероятностей р i = Р ( Х = х i ), он может быть задан в виде таблицы:

х i

х n

р i

р n

При этом вероятности р i удовлетворяют условию

р i = 1 , потому, что

где число возможных значений n может быть конечным или бесконечным.

Графическое изображение ряда распределения называется многоугольником распределения . Для его построения возможные значения случайной величины (х i ) откладываются по оси абсцисс, а вероятности р i - по оси ординат; точки А i c координатами ( х i ,р i ) соединяются ломаными линиями.

Функцией распределения случайной величины Х называется функция F (х ), значение которой в точке х равно вероятности того, что случайная величина Х будет меньше этого значения х , то есть

F (х) = Р (Х< х).

ФункцияF (х ) для дискретной случайной величины вычисляется по формуле

F (х)= р i , (1.10.1)

где суммирование ведется по всем значениям i , для которых х i < х.

ПРИМЕР 3. Из партии, содержащей 100 изделий, среди которых имеется 10 дефектных, выбраны случайным образом пять изделий для проверки их качества. Построить ряд распределений случайного числа Х дефектных изделий, содержащихся в выборке.

Решение . Так как в выборке число дефектных изделий может быть любым целым числом в пределах от 0 до 5 включительно, то возможные значения х i случайной величины Х равны:

х 1 = 0, х 2 = 1, х 3 = 2, х 4 = 3, х 5 = 4, х 6 = 5.

Вероятность Р (Х = k ) того, что в выборке окажется ровно k (k = 0, 1, 2, 3, 4, 5) дефектных изделий, равна

Р (Х = k ) = .

В результате расчетов по данной формуле с точностью 0,001 получим:

р 1 = Р (Х = 0) @ 0,583; р 2 = Р (Х = 1) @ 0,340; р 3 = Р (Х = 2) @ 0,070;

р 4 = Р (Х = 3) @ 0,007; р 5 = Р (Х = 4) @ 0; р 6 = Р (Х = 5) @ 0.

Используя для проверки равенство р k =1, убеждаемся, что расчеты и округление произведены правильно (см. табл.).

х i

р i

ПРИМЕР 4. Дан ряд распределения случайной величины Х :

х i

р i

Найти функцию распределения вероятности F (х ) этой случайной величины и построить ее.

Решение . Если х £ 10, то F ( х ) = Р (Х < х ) = 0;

если 10 < х £ 20 , то F ( х ) = Р (Х <х ) = 0,2 ;

если 20 < х £ 30 , то F ( х ) = Р ( Х < х ) = 0,2 + 0,3 = 0,5 ;

если 30 < х £ 40 , то F ( х ) = Р (Х < х ) = 0,2 + 0,3 + 0,35 = 0,85 ;

если 40 < х £ 50 , то F ( х ) = Р (Х < х ) = 0,2 + 0,3 + 0,35 + 0,1=0,95 ;

если х > 50 , то F ( х ) = Р ( Х < х ) = 0,2 + 0,3 + 0,35 + 0,1 + 0,05 = 1.

Примеры решения задач на тему «Случайные величины».

Задача 1 . В лотерее выпущено 100 билетов. Разыгрывался один выигрыш в 50 у.е. и десять выигрышей по 10 у.е. Найти закон распределения величины X – стоимости возможного выигрыша.

Решение. Возможные значения величины X: x 1 = 0; x 2 = 10 и x 3 = 50. Так как «пустых» билетов – 89, то p 1 = 0,89, вероятность выигрыша 10 у.е. (10 билетов) – p 2 = 0,10 и для выигрыша 50 у.е. – p 3 = 0,01. Таким образом:

0,89

0,10

0,01

Легко проконтролировать: .

Задача 2. Вероятность того, что покупатель ознакомился заранее с рекламой товара равна 0,6 (р=0,6 ). Осуществляется выборочный контроль качества рекламы путем опроса покупателей до первого, изучившего рекламу заранее. Составить ряд распределения количества опрошенных покупателей.

Решение. Согласно условию задачи р = 0,6. Откуда: q=1 -p = 0,4. Подставив данные значения, получим: и построим ряд распределения:

p i

0,24

Задача 3. Компьютер состоит из трех независимо работающих элементов: системного блока, монитора и клавиатуры. При однократном резком повышении напряжения вероятность отказа каждого элемента равна 0,1. Исходя из распределения Бернулли составить закон распределения числа отказавших элементов при скачке напряжения в сети.

Решение. Рассмотрим распределение Бернулли (или биномиальное): вероятность того, что в n испытаниях событие А появится ровно k раз: , или:

qn

pn

В ернёмся к задаче.

Возможные значения величины X (число отказов):

x 0 =0 – ни один из элементов не отказал;

x 1 =1 – отказ одного элемента;

x 2 =2 – отказ двух элементов;

x 3 =3 – отказ всех элементов.

Так как, по условию, p = 0,1, то q = 1 – p = 0,9. Используя формулу Бернулли, получим

, ,

, .

Контроль: .

Следовательно, искомый закон распределения:

0,729

0,243

0,027

0,001

Задача 4 . Произведено 5000 патронов. Вероятность того, что один патрон бракованный . Какова вероятность того, что во всей партии будет ровно 3 бракованных патрона?

Решение. Применим распределение Пуассона : это распределение используется для определения вероятности того, что при очень большом

количестве испытаний (массовые испытания), в каждом из которых вероятность события A очень мала, событие A наступитk раз: , где .

Здесь n = 5000, p = 0,0002, k = 3. Находим , тогда искомая вероятность: .

Задача 5 . При стрельбе до первого попадания с вероятностью попадания p = 0,6 при выстреле надо найти вероятность того, что попадание произойдет при третьем выстреле.

Решение. Применим геометрическое распределение: пусть производятся независимые испытания, в каждом из которых событие A имеет вероятность появления p (и непоявления q = 1 – p). Испытания заканчиваются, как только произойдет событие A.

При таких условиях вероятность того, что событие A произойдет на k-ом испытании, определяется по формуле: . Здесь p = 0,6; q = 1 – 0,6 = 0,4;k = 3. Следовательно, .

Задача 6 . Пусть задан закон распределения случайной величины X:

Найти математическое ожидание.

Решение. .

Заметим, что вероятностный смысл математического ожидания – это среднее значение случайной величины.

Задача 7 . Найти дисперсию случайной величины X со следующим законом распределения:

Решение. Здесь .

Закон распределения квадрата величины X 2 :

X2

Искомая дисперсия: .

Дисперсия характеризует меру отклонения (рассеяния) случайной величины от её математического ожидания.

Задача 8 . Пусть случайная величина задается распределением:

10м

Найти её числовые характеристики.

Решение: м, м 2 ,

М 2 , м.

Про случайную величину X можно сказать либо – ее математическое ожидание 6,4 м с дисперсией 13,04 м 2 , либо – ее математическое ожидание 6,4 м с отклонением м. Вторая формулировка, очевидно, нагляднее.

Задача 9. Случайная величина X задана функцией распределения:
.

Найти вероятность того, что в результате испытания величина X примет значение, заключенное в интервале .

Решение. Вероятность того, что X примет значение из заданного интервала, равно приращению интегральной функции в этом интервале, т.е. . В нашем случае и , поэтому

.

Задача 10. Дискретная случайная величина X задана законом распределения:

Найти функцию распределения F (x ) и построить ее график.

Решение. Так как функция распределения,

для , то

при ;

при ;

при ;

при ;

Соответствующий график:


Задача 11. Непрерывная случайная величина X задана дифференциальной функцией распределения: .

Найти вероятность попадания X в интервал

Решение. Заметим, что это частный случай показательного закона распределения.

Воспользуемся формулой: .

Задача 12. Найти числовые характеристики дискретной случайной величины X, заданной законом распределения:

–5

X 2 :

X 2

. , где – функция Лапласа.

Значения этой функции находятся с помощью таблицы.

В нашем случае: .

По таблице находим: , следовательно:

Поделиться