Сила под углом к горизонту. Движение тела, брошенного под углом к горизонту. Максимальные дальность и высота полета

Тело, брошенное под углом к горизонту, будем рассматривать как материальную точку, совершающую свободный полет в поле тяжести Земли, без учета сопротивления воздуха. Вектор ускорения в таком движении является постоянной величиной:

\[\overline{a}=\overline{g}\left(1\right).\]

Скорость движения такого тела можно выразить формулой:

\[\overline{v}\left(t\right)={\overline{v}}_0+\overline{g}t\ \left(2\right),\]

где ${\overline{v}}_0$ - скорость тела в момент броска. Формулу (2) можно рассматривать как результат сложения скоростей двух независимых движений по прямым линиям, в которых участвует тело, брошенное под углом к горизонту. Это равномерное перемещение с постоянной скоростью ${\overline{v}}_0$ в направлении горизонта и равноускоренного движения с ускорением $\overline{g}$ без начальной скорости в направлении вектора ускорения свободного падения.

Согласно принципу независимости перемещений при одновременном участии тела в этих двух движениях перемещение нашей материальной точки ($\Delta \overline{r}$) равно сумме векторов: ${\overline{v}}_0t$ и $\frac{\overline{g}t^2}{2}$. Если мы поместим начало отсчета в точку нахождения тела в момент начала наблюдения ($=0$), то вектор перемещения за промежуток времени от 0 до $t$ будет совпадать с радиус-вектором $\overline{r}(t)$:

\[\overline{r}\left(t\right)={\overline{v}}_0t+\frac{\overline{g}t^2}{2}\left(3\right),\]

где $\overline{g}$ направлен вертикально вниз и равен по величине приблизительно 9,8 $\frac{м}{с^2}.$

Траектория движения тела, брошенное под углом к горизонту

Не смотря на то, что каждое отдельное движение тела происходит по прямой, результирующей траекторией является парабола, лежащая в плоскости в которой находятся векторы ${\overline{v}}_0$ и $\overline{g}$.

Допустим, что тело при $t=0\ c$ было на высоте $h$, его бросили со скоростью ${\overline{v}}_0$, направленной под углом $\alpha $ к горизонту (рис.1).

Начальные условия при рассматриваемом движении точки таковы:

\[при\ t=0\ c\left\{ \begin{array}{c} x_0=0, \\ y_0=h, \\ v_{0x}=v_0{\cos \alpha ,\ } \\ v_{0y}=v_0{\sin \alpha .\ } \end{array} \right.(4)\]

Кроме этого мы знаем, что для рассматриваемого движения: $a_x=0;;\ a_y=-g.$ Выражения для проекции скорости (2) на оси принимают вид:

\[\left\{ \begin{array}{c} v_x=v_0{\cos \alpha ,\ } \\ v_y=v_0{\sin \alpha -gt\ } \end{array} \left(5\right).\right.\]

Уравнение перемещения при равнопеременном движении ($\overline{a}=\overline{g}$):

\[\overline{s}\left(t\right)={\overline{s}}_0+{\overline{v}}_0t+\frac{\overline{g}t^2}{2},\]

где ${\overline{s}}_0$ - смещение тела в начальный момент времени. В нашем случае $s_0=h$. Уравнения координат точки, брошенной под углом к горизонту из уравнения для перемещения:

\[\left\{ \begin{array}{c} x=v_0{\cos \left(\alpha \right)\cdot t,\ } \\ y={h+v}_0{\sin \left(\alpha \right)\cdot t-\frac{gt^2}{2}\ } \end{array} \left(6\right).\right.\]

Из систем уравнений (5) и (6) траектория движения материальной точки получается, задана уравнением:

По форме уравнения (7) видно, что траекторией движения является парабола.

Время подъема и полета тела, брошенное под углом к горизонту

Время подъема тела, брошенное под углом к горизонту, при рассматриваемом движении легко определить из системы уравнений (5). В точке максимального подъема вектор скорости точки параллелен оси X, значит $v_y=0$, время подъема ($t_p$) равно:

Время, которое тело пребывало в воздухе (время полета($t_{pol}$)) определяют из второго уравнения системы (6), приравнивая координату $y$ к нулю, получают:

Дальность полета и высота подъема

Для того чтобы найти горизонтальную дальность полета тела, брошенное под углом к горизонту, ($s$) при заданных нами условиях в уравнение координаты $x$ системы уравнений (6) следует подставить время полета ($t_{pol}$) (9). При $h=0,$ дальность полета равна:

Из выражения (10) следует, что при данной скорости бросания дальность полета максимальна при $\alpha =\frac{\pi }{4}$.

Максимальную высоту подъема тела ($h_{max}$) находят из второго уравнения системы (6), подставляя в него время подъема ($t_p$) (8):

Выражение (11) показывает, что максимальная высота подъема тела прямо пропорциональна квадрату скорости бросания и увеличивается при росте угла бросания.

Примеры задач с решением

Пример 1

Задание: Чему равно время полета тела, которое бросили параллельно Земле с высоты $h_0$? Начальная скорость тела равна ${\overline{v}}_0$.

Решение: Сделаем рисунок.

Основой для решения задачи является уравнение:

\[\overline{r}\left(t\right)={\overline{h}}_0+{\overline{v}}_0t+\frac{\overline{g}t^2}{2}\left(1.1\right).\]

Проектируя его на оси X и Y получаем:

\[\left\{ \begin{array}{c} x=v_0t, \\ y=h_0-\frac{gt^2}{2} \end{array} \right.\left(1.2\right).\]

При падении тела на Землю при нашем выборе системы отсчета получаем, что $y=0$, зная это выразим искомое время:

Ответ: $t_{pol}=\sqrt{\frac{2h_0}{g}}$

Пример 2

Задание: Какой является траектория движения тела падающего с высоты $h_0$ в условиях первого примера?

Решение: В первом примере проектируя уравнение $\overline{r}\left(t\right)$ на оси координат, мы получили, что:

\[\left\{ \begin{array}{c} x=v_0t, \\ y=h_0-\frac{gt^2}{2} \end{array} \right..\]

Выразим из первого уравнения время

подставим его во второе уравнение:

Мы получили уравнение параболы. Траекторией движения падающего тела в наших условиях будет ветка параболы. Вершина этой ветки параболы будет находиться в точке бросания.

Ответ: $y=h_0-\frac{g}{2v^2_0}x^2,$ ветвь параболы (рис.3).

Рассмотрим движение тела в поле тяжести Земли, сопротивление воздуха учитывать не будем. Пусть начальная скорость брошенного тела направлена под углом к горизонту $\alpha $ (рис.1). Тело брошено с высоты ${y=h}_0$; $x_0=0$.

Тогда в начальный момент времени тело имеет горизонтальную ($v_x$) и вертикальную ($v_y$) составляющие скорости. Проекции скорости на оси координат при $t=0$ равны:

\[\left\{ \begin{array}{c} v_{0x}=v_0{\cos \alpha ,\ } \\ v_{0y}=v_0{\sin \alpha .\ } \end{array} \right.\left(1\right).\]

Ускорение тела равно ускорению свободного паления и все время направлено вниз:

\[\overline{a}=\overline{g}\left(2\right).\]

Значит, проекция ускорения на ось X равна нулю, а на ось Y равна $a_y=g.$

Так как по оси X составляющая ускорения равна нулю, то скорость движения тела в этом направлении является постоянной величиной и равна проекции начальной скорости на ось X (см.(1)). Движение тела по оси X равномерное.

При ситуации, изображенной на рис.1 тело по оси Y будет двигаться сначала вверх, а затем виз. При этом ускорение движения тела в обоих случаях равно ускорению $\overline{g}.$ На прохождение пути вверх от произвольной высоты ${y=h}_0$ до максимальной высоты подъема ($h$) тело тратит столько же времени, сколько на падение вниз от $h$ до ${y=h}_0$. Следовательно, точки симметричные относительно вершины подъема тела лежат на одинаковой высоте. Получается, что траектория движения тела симметрична относительно точки-вершины подъема - и это парабола.

Скорость движения тела, брошенного под углом к горизонту можно выразить формулой:

\[\overline{v}\left(t\right)={\overline{v}}_0+\overline{g}t\ \left(3\right),\]

где ${\overline{v}}_0$ - скорость тела в момент броска. Формулу (3) можно рассматривать как результат сложения скоростей двух независимых движений по прямым линиям, в которых участвует тело.

Выражения для проекции скорости на оси принимают вид:

\[\left\{ \begin{array}{c} v_x=v_0{\cos \alpha ,\ } \\ v_y=v_0{\sin \alpha -gt\ } \end{array} \left(4\right).\right.\]

Уравнение для перемещения тела при движении в поле тяжести:

\[\overline{s}\left(t\right)={\overline{s}}_0+{\overline{v}}_0t+\frac{\overline{g}t^2}{2}\left(5\right),\]

где ${\overline{s}}_0$ - смещение тела в начальный момент времени.

Проектируя уравнение (5) на оси координат X и Y, получим:

\[\left\{ \begin{array}{c} x=v_0{\cos \left(\alpha \right)\cdot t,\ } \\ y={h_0+v}_0{\sin \left(\alpha \right)\cdot t-\frac{gt^2}{2}\ } \end{array} \left(6\right).\right.\]

Тело, двигаясь вверх, имеет по оси Y сначала равнозамедленное перемещение, после того, как тело достигает вершины, движение по оси Y становится равноускоренным.

Траектория движения материальной точки получается, задана уравнением:

По форме уравнения (7) видно, что траекторией движения является парабола.

Время подъема и полета тела, брошенного под углом к горизонту

Время, затрачиваемое телом для того, чтобы достигнуть максимальной высоты подъема получают из системы уравнений (4). . В вершине траектории тело имеет только горизонтальную составляющую, $v_y=0.$ Время подъема ($t_p$) равно:

Общее время движения тела (время полета ($t_{pol}))$находим из второго уравнения системы (6), зная, что при падении тела на Землю $y=0$, имеем:

Дальность полета и высота подъема тела, брошенного под углом к горизонту

Для нахождения горизонтальной дальности полета тела ($s$) при заданных нами условиях в уравнение координаты $x$ системы уравнений (6) следует подставить время полета ($t_{pol}$) (9). При $h=0,$ дальность полета равна:

Из выражения (9) следует, что при заданной скорости бросания дальность полета максимальна при $\alpha =\frac{\pi }{4}$.

Максимальную высоту подъема тела ($h_{max}$) находят из второго уравнения системы (6), подставляя в него время подъема ($t_p$) (8):

Выражение (11) показывает, что максимальная высота подъема тела прямо пропорциональна квадрату скорости бросания и увеличивается при росте угла бросания.

Примеры задач с решением

Пример 1

Задание. Во сколько раз изменится время полета тела, которое бросили с высоты $h$ в горизонтальном направлении, если скорость бросания тела увеличили в $n$ раз?

Решение. Найдем формулу для вычисления времени полета тела, если его бросили горизонтально (рис.2).

В качестве основы для решения задачи используем выражение для равноускоренного движения тела в поле тяжести:

\[\overline{s}={\overline{s}}_0+{\overline{v}}_0t+\frac{\overline{g}t^2}{2}\left(1.1\right).\]

Используя рис.2 запишем проекции уравнения (1.1) на оси координат:

\[\left\{ \begin{array}{c} X:x=v_0t;; \\ Y:y=h_0-\frac{gt^2}{2} \end{array} \right.\left(1.2\right).\]

Во время падения тела на землю $y=0,$ используем этот факт и выразим время полета из второго уравнения системы (1.2), имеем:

Как мы видим, время полета тела не зависит от его начальной скорости, следовательно, при увеличении начальной скорости в $n$ раз время полета тела не изменится.

Ответ. Не изменится.

Пример 2

Задание. Как изменится дальность полета тела в предыдущей задаче, если начальную скорость увеличить в $n$ раз?

Решение. Дальность полета - это расстояние, которое пройдет тело по горизонтальной оси. Это означает, что нам потребуется уравнение:

из системы (1.2) первого примера. Подставив вместо $t,$ время полета, найденное в (1.3), мы получим дальность полета ($s_{pol}$):

Из формулы (2.2) мы видит, что при заданных условиях движения дальность полета прямо пропорциональна скорости бросания тела, следовательно, во сколько раз увеличим начальную скорость, во столько раз увеличится дальность полета тела.

Ответ. Дальность полета тела увеличится в $n$ раз.

Если сопротивлением воздуха можно пренебречь, то брошенное как угодно тело движется с ускорением свободного падения .

Рассмотрим сначала движение тела, брошенного горизонтально со скоростью v_vec0 с высоты h над поверхностью земли (рис. 11.1).

В векторном виде зависимость скорости тела от времени t выражается формулой

В проекциях на оси координат:

v x = v 0 , (2)
v y = –gt. (3)

1. Объясните, как из (2) и (3) получаются формулы

x = v 0 t, (4)
y = h – gt 2 /2. (5)

Мы видим, что тело как бы совершает одновременно два вида движения: вдоль оси x оно движется равномерно, а вдоль оси y – равноускоренно без начальной скорости.

На рисунке 11.2 показано положение тела через равные промежутки времени. Внизу показано положение в те же моменты времени тела, движущегося прямолинейно равномерно с той же начальной скоростью, а слева – положение свободно падающего тела.

Мы видим, что брошенное горизонтально тело находится все время на одной вертикали с движущимся равномерно телом и на одной горизонтали со свободно падающим телом.

2. Объясните, как из формул (4) и (5) получаются выражения для времени tпол и дальности полета тела l:


Подсказка. Воспользуйтесь тем, что в момент падения y = 0.

3. Тело бросают горизонтально с некоторой высоты. В каком случае дальность полета тела будет больше: при увеличении в 4 раза начальной скорости или при увеличении во столько же раз начальной высоты? Во сколько раз больше?

Траекторий движения

На рисунке 11.2 траектория движения тела, брошенного горизонтально, изображена красной штриховой линией. Она напоминает ветвь параболы. Проверим это предположение.

4. Докажите, что для тела, брошенного горизонтально, уравнение траектории движения, то есть зависимость y(x), выражается формулой

Подсказка. Используя формулу (4), выразите t через x и подставьте найденное выражение в формулу (5).

Формула (8) действительно представляет собой уравнение параболы. Ее вершина совпадает с начальным положением тела, то есть имеет координаты x = 0; y = h, а ветвь параболы направлена вниз (на это указывает отрицательный коэффициент перед x 2).

5. Зависимость y(x) выражается в единицах СИ формулой y = 45 – 0,05x 2 .
а) Чему равны начальная высота и начальная скорость тела?
б) Чему равны время и дальность полета?

6. Тело брошено горизонтально с высоты 20 м с начальной скоростью 5 м/с.
а) Сколько времени будет длиться полет тела?
б) Чему равна дальность полета?
в) Чему равна скорость тела непосредственно перед ударом о землю?
г) Под каким углом к горизонту будет направлена скорость тела непосредственно перед ударом о землю?
д) Какой формулой в единицах СИ выражается зависимость модуля скорости тела от времени?

2. Движение тела, брошенного под углом к горизонту

На рисунке 11.3 схематически изображено начальное положение тела, его начальная скорость 0 (при t = 0) и ускорение (ускорение свободного падения ).

Проекции начальной скорости

v 0x = v 0 cos α, (9)
v 0y = v 0 sin α. (10)

Для сокращения последующих записей и прояснения их физического смысла удобно до получения окончательных формул сохранять обозначения v 0x и v 0y .

Скорость тела в векторном виде в момент времени t и в этом случае выражается формулой

Однако теперь в проекциях на оси координат

v x = v 0x , (11)
vy = v 0y – gt. (12)

7. Объясните, как получаются следующие уравнения:

x = v 0x t, (13)
y = v 0y t – gt 2 /2. (14)

Мы видим, что и в этом случае брошенное тело как бы участвует одновременно в двух видах движения: вдоль оси x оно движется равномерно, а вдоль оси y – равноускоренно с начальной скоростью, как тело, брошенное вертикально вверх.

Траектория движения

На рисунке 11.4 схематически показано положение тела, брошенного под углом к горизонту, через равные промежутки времени. Вертикальные линии подчеркивают, что вдоль оси x тело движется равномерно: соседние линии находятся на равных расстояниях друг от друга.


8. Объясните, как получить следующее уравнение траектории тела, брошенного под углом к горизонту:

Формула (15) представляет собой уравнение параболы, ветви которой направлены вниз.

Уравнение траектории может многое рассказать нам о движении брошенного тела!

9. Зависимость y(x) выражается в единицах СИ формулой y = √3 * x – 1,25x 2 .
а) Чему равна горизонтальная проекция начальной скорости?
б) Чему равна вертикальная проекция начальной скорости?
в) Под каким углом к горизонту брошено тело?
г) Чему равна начальная скорость тела?

Параболическую форму траектории тела, брошенного под углом к горизонту, наглядно демонстрирует струя воды (рис. 11.5).

Время подъема и время всего полета

10. Используя формулы (12) и (14), покажите, что время подъема тела t под и время всего полета t пол выражаются формулами


Подсказка. В верхней точке траектории v y = 0, а в момент падения тела его координата y = 0.

Мы видим, что и в этом случае (так же, как для тела, брошенного вертикально вверх) все время полета t пол в 2 раза больше времени подъема t под. И в этом случае при обратном просмотре видеосъемки подъем тела будет выглядеть в точности как его спуск, а спуск – как подъем.

Высота и дальность полета

11. Докажите, что высота подъема h и дальность полета l выражаются формулами

Подсказка. Для вывода формулы (18) воспользуйтесь формулами (14) и (16) или формулой (10) из § 6. Перемещение при прямолинейном равноускоренном движении; для вывода формулы (19) воспользуйтесь формулами (13) и (17).

Обратите внимание: время подъема тела tпод, все время полета tпол и высота подъема h зависят только от вертикальной проекции начальной скорости.

12. До какой высоты поднялся после удара футбольный мяч, если он упал на землю через 4 с после удара?

13. Докажите, что


Подсказка. Воспользуйтесь формулами (9), (10), (18), (19).

14. Объясните, почему при одной и той же начальной скорости v 0 дальность полета l будет одинакова при двух углах α 1 и α 2 , связанных соотношением α 1 + α 2 = 90º (рис. 11.6).


Подсказка. Воспользуйтесь первым равенством в формуле (21) и тем, что sin α = cos(90º – α).

15. Два тела, брошенные одновременно и с одинаковой по модулю начальной око одну точку. Угол между начальными скоростями равен 20º. Под какими углами к горизонту были брошены тела?

Максимальные дальность и высота полета

При одной и той же по модулю начальной скорости дальность полета и высота определяются только углом α. Как выбрать этот угол, чтобы дальность или высота полета были максимальными?

16. Объясните, почему максимальная дальность полета достигается при α = 45º и выражается формулой

l max = v 0 2 /g. (22)

17.Докажите, что максимальная высота полета выражается формулой

h max = v 0 2 /(2g) (23)

18.Тело, брошенное под углом 15º к горизонту, упало на расстоянии 5 м от начальной точки.
а) Чему равна начальная скорость тела?
б) До какой высоты поднялось тело?
в) Чему равна максимальная дальность полета при той же по модулю начальной скорости?
г) До какой максимальной высоты могло бы подняться это тело при той же по модулю начальной скорости?

Зависимость скорости от времени

При подъеме скорость брошенного под углом к горизонту тела уменьшается по модулю, а при спуске – увеличивается.

19.Тело брошено под углом 30º к горизонту с начальной скоростью 10 м/с.
а) Как в единицах СИ выражается зависимость vy(t)?
б) Как в единицах СИ выражается зависимость v(t)?
в) Чему равна минимальная скорость тела во время полета?
Подсказка. Воспользуйтесь формулами (13) и (14), а также теоремой Пифагора.

Дополнительные вопросы и задания

20. Бросая камешки под разными углами, Саша обнаружил, что не может бросить камешек дальше чем на 40 м. На какую максимальную высоту Саша сможет забросить камешек?

21. Между сдвоенными шинами заднего колеса грузовика застрял камешек. На каком расстоянии от грузовика должен ехать следующий за ним автомобиль, чтобы этот камешек, сорвавшись, не причинил ему вреда? Оба автомобиля едут со скоростью 90 км/ч.
Подсказка. Перейдите в систему отсчета, связанную с любым из автомобилей.

22. Под каким углом к горизонту надо бросить тело, чтобы:
а) высота полета была равна дальности?
б) высота полета была в 3 раза больше дальности?
в) дальность полета была в 4 раза больше высоты?

23. Тело брошено с начальной скоростью 20 м/с под углом 60º к горизонту. Через какие промежутки времени после броска скорость тела будет направлена под углом 45º к горизонту?

Если тело бросить под углом к горизонту, то в полете на него действуют сила тяжести и сила сопротивления воздуха. Если силой сопротивления пренебречь, то остается единственная сила -- сила тяжести. Поэтому вследствие 2-го закона Ньютона тело движется с ускорением, равным ускорению свободного падения; проекции ускорения на координатные оси ах = 0, ау = - g.

Рисунок 1. Кинематические характеристики тела, брошенного под углом к горизонту

Любое сложное движение материальной точки можно представить как наложение независимых движений вдоль координатных осей, причем в направлении разных осей вид движения может отличаться. В нашем случае движение летящего тела можно представить как наложение двух независимых движений: равномерного движения вдоль горизонтальной оси (оси Х) и равноускоренного движения вдоль вертикальной оси (оси Y) (рис. 1).

Проекции скорости тела, следовательно, изменяются со временем следующим образом:

где $v_0$ - начальная скорость, ${\mathbf \alpha }$ - угол бросания.

При нашем выборе начала координат начальные координаты (рис. 1) $x_0=y_0=0$. Тогда получим:

(1)

Проанализируем формулы (1). Определим время движения брошенного тела. Для этого положим координату y равной нулю, т.к. в момент приземления высота тела равна нулю. Отсюда получаем для времени полета:

Второе значение времени, при котором высота равна нулю, равно нулю, что соответствует моменту бросания, т.е. это значение также имеет физический смысл.

Дальность полета получим из первой формулы (1). Дальность полета - это значение координаты х в конце полета, т.е. в момент времени, равный $t_0$. Подставляя значение (2) в первую формулу (1), получаем:

Из этой формулы видно, что наибольшая дальность полета достигается при значении угла бросания, равном 45 градусов.

Наибольшую высоту подъема брошенного тела можно получить из второй формулы (1). Для этого нужно подставить в эту формулу значение времени, равное половине времени полета (2), т.к. именно в средней точке траектории высота полета максимальна. Проводя вычисления, получаем

Из уравнений (1) можно получить уравнение траектории тела, т.е. уравнение, связывающее координаты х и у тела во время движения. Для этого нужно из первого уравнения (1) выразить время:

и подставить его во второе уравнение. Тогда получим:

Это уравнение является уравнением траектории движения. Видно, что это уравнение параболы, расположенной ветвями вниз, о чем говорит знак «-» перед квадратичным слагаемым. Следует иметь в виду, что угол бросания $\alpha $ и его функции -- здесь просто константы, т.е. постоянные числа.

Тело брошено со скоростью v0 под углом ${\mathbf \alpha }$ к горизонту. Время полета $t = 2 с$. На какую высоту Hmax поднимется тело?

$$t_В = 2 с$$ $$H_max - ?$$

Закон движения тела имеет вид:

$$\left\{ \begin{array}{c} x=v_{0x}t \\ y=v_{0y}t-\frac{gt^2}{2} \end{array} \right.$$

Вектор начальной скорости образует с осью ОХ угол ${\mathbf \alpha }$. Следовательно,

\ \ \

С вершины горы бросают под углом = 30${}^\circ$ к горизонту камень с начальной скоростью $v_0 = 6 м/с$. Угол наклонной плоскости = 30${}^\circ$. На каком расстоянии от точки бросания упадет камень?

$$ \alpha =30{}^\circ$$ $$v_0=6\ м/с$$ $$S - ?$$

Поместим начало координат в точку бросания, ОХ -- вдоль наклонной плоскости вниз, OY -- перпендикулярно наклонной плоскости вверх. Кинематические характеристики движения:

Закон движения:

$$\left\{ \begin{array}{c} x=v_0t{cos 2\alpha +g\frac{t^2}{2}{sin \alpha \ }\ } \\ y=v_0t{sin 2\alpha \ }-\frac{gt^2}{2}{cos \alpha \ } \end{array} \right.$$ \

Подставив полученное значение $t_В$, найдём $S$:

Ниже размещены условия задач и отсканированные решения. Если вам нужно решить задачу на эту тему, вы можете найти здесь похожее условие и решить свою по аналогии. Загрузка страницы может занять некоторое время в связи с большим количеством рисунков. Если Вам понадобится решение задач или онлайн помощь по физике- обращайтесь, будем рады помочь.

Принцип решения этих задач заключается в разложении скорости свободно падающего тела на две составляющие - горизонтальную и вертикальную. Горизонтальная составляющая скорости постоянна, вертикальное движение происходит с ускорением свободного падения g=9.8 м/с 2 . Также может применяться закон сохранения механической энергии, согласно которому сумма потенциальной и кинетической энерги тела в данном случае постоянна.

Материальная точка брошена под углом к горизонту с начальной скоростью 15 м/с. Начальная кинетическая энергия в 3 раза больше кинетической энергии точки в верхней точке траектории. На какую высоту поднималась точка?

Тело брошено под углом 40 градусов к горизонту с начальной скоростью 10 м/с. Найти расстояние, которое пролетит тело до падения, высоту подъема в верхней точке траектории и время в полете.

Тело брошено с башни высотой H вниз, под углом α к горизонту, с начальной скоростью v. Найти расстояние от башни до места падения тела.

Тело массой 0,5 кг брошено с поверхност Земли под углом 30 градусов к горизонту, с начальной скоростью 10 м/с. Найти потенциальную и кинетическую энергии тела через 0,4 с.

Материальная точка брошена вверх с поверхности Земли под углом к горизонту с начальной скоростью 10 м/с. Определить скорость точки на высоте 3 м.

Тело брошено вверх с поверхности Земли под углом 60 градусов с начальной скоростью 10 м/с. Найти расстояние до точки падения, скорость тела в точке падения и время в полете.

Тело брошено вверх под углом к горизонту с начальной скоростю 20 м/с. Расстояние до точки падения в 4 раза больше максимальной высоты подъема. Найти угол, под которым брошено тело.

Тело брошено с высоты 5 м под углом 30 градусов к горизонту с начальной скоростью 22 м/с. Найти дальность полета тела и время полета тела.

Тело брошено с поверхности Земли под углом к горизонту с начальной скоростью 30 м/с. Найти тангенциальное и нормальное ускорения тела через 1с после броска.

Тело брошено с поверхности Зесли под углом 30 градусов к горизонту с начальной скоростью 14,7 м/с. Найти тангенциальное и нормальное ускорения тела через 1,25с после броска.

Тело брошено под углом 60 градусов к горизонту с начальной скоростью 20 м/с. Через какое время угол между скоростью и горизонтом станет равным 45 градусов?

Мяч, брошенный в спортзале под углом к горизонту, с начальной скоростью 20 м/с, в верхней точке траектории коснулся потолка на высоте 8м и упал на некотором расстоянии от места броска. Найти это расстояние и угол, под которым брошено тело.

Тело, брошеное с поверхности Земли под углом к горизонту, упало через 2,2с. Найти максимальную высоту подъема тела.

Камень брошен под углом 30 градусов к горизонту. На некоторой высоте камень побывал дважды - через время 1с и 3 с после броска. Найти эту высоту и начальную скорость камня.

Камень брошен под углом 30 градусов к горизонту с начальной скоростью 10 м/с. Найти расстояние от точки бросания до камня через 4 с.

Снаряд выпущен в момент, когда самолет пролетает над орудием, под углом к горизонту с начальной скоростью 500 м/с. Снаряд поразил самолет на высоте 3,5 км через 10с после выстрела. Какова скорость самолета?

Ядро массой 5 кг брошено с поверхности Земли под углом 60 градусов к горизонту. На разгон гири потрачена энергия 500Дж. Определить дальность полета и время в полете.

Тело брошено с высоты 100м вниз под углом 30 градусов к горизонту с начальной скоростью 5 м/с. Найти дальность полета тела.

Тело массой 200г, брошеное с поверхности Земли под углом к горизонту, упало на расстоянии 5м через время 1,2с. Найти работу по броску тела.

Поделиться