Классификация и номенклатура органических веществ (тривиальная и международная). Классификация органических соединений по строению углеродного скелета. Классификация органических соединений по функциональным группам Классификация по наличию функциональных

    Классификация органических соединений. Функциональная группа. Общие формулы биологически важных классов органических соединений: спиртов, фенолов, тиолов, аминов, простых эфиров, сульфидов, альдегидов, кетонов, карбоновых кислот

Органические соединения классифицируют по:

а) строению углеродной цепи;

б) наличию функциональных групп.

Функциональные группы – это заместители неуглеводородного характера, определяющие принадлежность вещества к определенному классу и одновременно его типичные химические свойства.

Классификация органических соединений по функциональным группам:

Органические вещества

Моно-, поли- гомофункциональные

гетерофункциональные

    Галогенопроизводные

хлорэтан

    Оксикислоты

OH лактат

(оксипропановая кислота)

    альдегиды, кетоны

    оксокислоты

O пируват

(оксопропановая кислота)

    Спирты, фенолы, тиолы

Этантиол

3. Аминоспирты

этаноламин

    Карбоновые кислоты

H 3 C-COOH этановая кислота

4. Аминокислоты

CH 3 аланин

(аминопропановая кислота)

    Простые эфиры

H 3 C-O-CH 3 метоксиметан

5. Углеводы

CH 2 - OH глюкоза

    Амины

H 3 C-CH 2 -NH 2 этиламин

    Сложные эфиры

H 3 C-C=O метилэтаноат

Классификации органических веществ по строению радикала:

Органические вещества

ациклические

циклические

карбоциклические

гетероциклические

циклоалканы

предельные непредельные N пиррол

CH 4 – метан

C 2 H 6 – этан

Sp 3 -гибридизация

< 109 0 28׳

Sp 3 -гибридизация

< 109 0 28׳

ацетилен

sp-гибридизация

σ, 2π-связи

Sp 2 -гибридизация

σ, π-связи

Sp 2 -гибридизация

σ, π-связи

Циrлопропан N

циклогексан H CH 3 CH 3 имидазол

Общие формулы биологически важных классов органических соединений: спирты – R-OH

Фенолы – OH

Тиолы – R-SH

Амины – R-NH 2

простые эфиры – R 1 -O-R 2

сульфиды – Ме 2 Sх

альдегиды – R-COH

кетоны – R 1 -C-R 2

карбоновые кислоты – R-COOH

    Электронное строение атома углерода. Типы гибридизация атомных орбиталей. Ковалентные σ- и π-связи, их основные характеристики: длина, энергия, полярность

В органических соединениях углерод может находиться в одном из 3-х валентных состояний:

sp 3 -гибридизация , при которой происходит смешивание одной s и трех p – орбиталей, с возникновением 4-х гибридизованных орбиталей, расположенных в пространстве под углом 109°28´ по отношению друг к другу. Углерод в таком состоянии получил название тетрагонального атома углерода и встречается в предельных органических соединениях.

sp 2 -гибридизация , при которой происходит смешивание одной s- и двух p-орбиталей, с возникновением 3-х гибридизованных орбиталей, расположенных в одной плоскости, под углом 120° по отношению друг к другу. Негибридозованная p-орбиталь расположена перпендикулярно плоскости гибридизованных орбиталей. Углерод в таком состоянии называют тригональным, и встречается он в соединениях с двойными связями.

sp -гибридизация , при которой происходит смешивание одной s- и одной p-орбитали с возникновением 2-х гибридизованных орбиталей, расположенных в пространстве под углом 180° (линейно), а две негибридизованные p-орбитали расположены взаимно перпендикулярно друг другу. Такой вид гибридизации (sp-гибридизация) характерен для углерода, связанного тройной связью.

При образовании ковалентной связи в молекулах органических соединений общая электронная пара заселяет связывающие молекулярные орбитали (МО), имеющие более низкую энергию. В зависимости от формы МО – σ-МО или π-МО – образующиеся связи относят к σ- или p-типу.

σ-Связь – ковалентная связь, образованная при перекрывании s-, p- и гибридных атомных орбиталей (АО) вдоль оси, соединяющей ядра связываемых атомов (т. е. при осевом перекрывании АО).

π-Связь – ковалентная связь, возникающая при боковом перекрывании негибридных р-АО. Такое перекрывание происходит вне прямой, соединяющей ядра атомов. π-Связи возникают между атомами, уже соединенными σ-связью (при этом образуются двойные и тройные ковалентные связи) . π-Связь слабее σ-связи из-за менее полного перекрывания р-АО.

Различное строение σ- и π-молекулярных орбиталей определяет характерные особенности σ- и π-связей.

1. σ-Связь прочнее π-связи. Это обусловлено более эффективным осевым перекрыванием АО при образовании σ-МО и нахождением σ-электронов между ядрами.

2. По σ-связям возможно внутримолекулярное вращение атомов, т. к. форма σ-МО допускает такое вращение без разрыва связи (cм аним. Картинку внизу)). Вращение по двойной (σ + π) связи невозможно без разрыва π-связи!

3. Электроны на π-МО, находясь вне межъядерного пространства, обладают большей подвижностью по сравнению с σ-электронами. Поэтому поляризуемость π-связи значительно выше, чем σ-связи.

Длина связи – расстояние между ядрами атомов, ее образовавшими. С увеличением доли s-АО в гибридной орбитали (с увеличением ненасыщенности) длина связи уменьшается, ибо s-орбиталь лежит ближе к ядру (имеет меньший радиус), чем р-орбиталь.

Энергия связи – энергия, необходимая для гомолитического разрыва связи на радикалы или на атомы.

Табл. 1. Некоторые характеристики связей

Молекула

Длина, нм

Энергия Е, кДж/моль

Степень Гибридизации

592 (331 + 261)

813 (592 + 221)

То обстоятельство, что p-связь слабее s-связи, заставляет сделать вывод, что для ненасыщенных соединений должны быть характерны, т.е. идти в первую очередь, реакции присоединения по кратным связям, ибо на их разрыв идет меньше энергии и они, кроме того, более доступны с пространственной точки зрения.

Энергия связи зависит также от природы элемента, атомы которого образуют связь. Так, связи С-Hal составляют следующий ряд прочности:

C-F > C-Cl > C-Br > C- І .

Прочность связи в этом ряду уменьшается с увеличением порядкового номера элемента, ибо при этом растет радиус атома и длина связи (с увеличением расстояния электростатическое взаимодействие уменьшается).

В соединениях углерода с элементами ІІ периода прочность (энергия) связи возрастает в ряду: С-N < C-O < C-F , т.е. с увеличением электроотрицательности элемента, радиус которого при этом уменьшается (электростатическое взаимодействие усиливается).

Полярность связи

При образовании ковалентной связи между двумя одинаковыми атомами ее электронное облако симметрично расположено между ядрами связываемых атомов, связь неполярна, и молекула неполярна (этан, этилен, ацетилен).

Если ковалентную связь образуют различные атомы с различной электроотрицательностью, то возникает полярная ковалентная связь, поскольку электроны связи сдвинуты к электроотрицательному атому, а на атомах возникают эффективные частичные заряды. Эта полярность постоянна (стационарна), ибо обусловлена внутренними факторами, а именно – природой взаимодействующих атомов и характером связи между ними.

Различную электроотрицательность имеют атомы одного и того же элемента, если эти атомы находятся в различном состоянии гибридизации. Так, для углерода:

Таким образом, электроотрицательность атома возрастает с увеличением доли s-орбитали в гибридной орбитали.

Появление полярной связи в молекуле обуславливает возникновение полярности всей молекулы, а это влияет на свойства вещества. Так, полярные вещества, в отличие от неполярных, лучше растворяются в полярных растворителях, обычно имеют более высокие температуры кипения и плавления, легче реагируют по ионным механизмам.

    Сопряжение, виды сопряжения: π,π- и р ,π-сопряжение. Сопряженные системы с открытой цепью: 1,3-диены (бутадиен, изопрен, аллильный карбокатион); полиены (каротиноиды, витамин А); гетеросопряженные системы (α, β-непредельные карбонильные соединения, карбоксильная группа)

Сопряженная система возникает при присоединении к sp 2 -гибриди-зованному атому углерода в молекуле заместителя, содержащего в своём составе двойную связь (π,π-сопряжение) или имеющий р-орбиталь (р,π-сопряжение). При сопряжении происходит делокализация электронов – π-электронная плотность распределяется по всей π-орбитальной системе, а не сосредоточена между двумя соседними р-орбиталями. В случае р,π-сопряжения электронная плотность делокализуется между орбиталями π-связи и р-орбиталью гетероатома – О , N , S и др., несущей неподелённую пару электронов, неспаренный электрон или свободной. Сопряжение – энергетически выгодный процесс, т.к. в результате делокализации электронов выделяется энергия, и молекула становится термодинамически более устойчивой. Степень термодинамической устойчивости количественно оценивают как разность энергии молекул с сопряжёнными и изолированными связями – энергия сопряжения (энергия делокализации).

Лекция № 1


СОЕДИНЕНИЙ

  1. Структурная изомерия.


Лекция № 1

КЛАССИФИКАЦИЯ И НОМЕНКЛАТУРА ОРГАНИЧЕСКИХ
СОЕДИНЕНИЙ

  1. Классификация органических соединений.
  2. Номенклатура органических соединений.
  3. Структурная изомерия.

1. Классификация органических соединений.

Органические соединения классифицируют по двум основным признакам: строению
углеродного скелета и функциональным группам.

По строению углеродного скелета различают ациклические, карбоциклические и
гетероциклические соединения.

Ациклические соединения – содержат открытую цепь атомов углерода.

Карбоциклические соединения – содержат замкнутую цепь углеродных
атомов и подразделяются на алициклические и ароматические. К алициклическим относятся все карбоциклические соединения, кроме
ароматических. Ароматические соединения содержат циклогексатриеновый
фрагмент (бензольное ядро).

Гетероциклические соединения содержат циклы, включающие наряду с атомами углерода один
или несколько гетероатомов.

По природе функциональных групп органические
соединения делят на классы .

Таблица 1. Основные классы органических
соединений.

Функциональная
группа

Класс соединений

Общая формула

Отсутствует

Углеводороды

R-H

Галоген

F, -Cl, -Br, -I (–Hal)


Галогенпроизводные

R-Hal

Гидроксильная

ОН


Спирты и фенолы

R-OH

Алкоксильная

Простые эфиры

R-OR

Амино

NH 2 , >NH, >N-


Амины

RNH 2 , R 2 NH, R 3 N

Нитро

Нитросоединения

RNO 2

Карбонильная

Альдегиды и кетоны

Карбоксильная

Карбоновые кислоты



Алкоксикарбонильная

Сложные эфиры



Карбоксамидная

Амиды

карбоновых кислот




Тиольная

Тиолы

R-SH

Сульфо

Сульфокислоты

R-SO 3 H

2. Номенклатура органических
соединений.

В настоящее время в органической химии общепринятой является систематическая номенклатура, разработанная Международным союзом чистой и прикладной химии
(
IUPAC ). Наряду с ней сохранились и
используются тривиальная и рациональная номенклатуры.

Тривиальная номенклатура состоит
из исторически сложившихся названий, которые не отражают состава и строения
вещества. Они являются случайными и отражают природный источник вещества
(молочная кислота, мочевина, кофеин), характерные свойства (глицерин, гремучая
кислота), способ получения (пировиноградная кислота, серный эфир), имя
первооткрывателя (кетон Михлера, углеводород Чичибабина), область применения
(аскорбиновая кислота). Преимуществом тривиальных названий является их
лаконичность, поэтому употребление некоторых из них разрешено правилами
IUPAC.

Систематическая номенклатура является научной и отражает состав, химическое и пространственное строение
соединения. Название соединения выражается при помощи сложного слова, составные
части которого отражают определенные элементы строения молекулы вещества. В
основе правил номенклатуры IUPAC лежат принципы заместительной
номенклатуры
, согласно которой молекулы соединений рассматриваются как
производные углеводородов, в которых атомы водорода замещены на другие атомы или
группы атомов. При построении названия в молекуле соединения выделяют следующие
структурные элементы.

Родоначальная структура – главная цепь
углеродная цепь или циклическая структура в карбо- и гетероциклах.

Углеводородный радикал – остаток
формульного обозначения углеводорода со свободными валентностями (см. таблицу
2).

Характеристическая группа
функциональная группа, связанная с родоначальной структурой или входящая в ее
состав (см. таблицу 3).

При составлении названия последовательно
выполняют следующие правила.

    1. Определяют старшую характеристическую
      группу и указывают ее обозначение в суффиксе (см. таблицу 3).
    2. Определяют родоначальную структуру по
      следующим критериям в порядке падения старшинства: а) содержит старшую
      характеристическую группу; б) содержит максимальное число характеристических
      групп; в) содержит максимальное число кратных связей; г) имеет максимальную
      длину. Родоначальную структуру обозначают в корне названия в соответствии с
      длиной цепи или размером цикла: С
      1 – “мет”, С 2 – “эт”, С 3 – “проп”, С 4 – “бут”, С 5 и далее – корни греческих числительных.
    3. Определяют степень насыщенности и отражают
      ее в суффиксе: “ан” – нет кратных связей, “ен” – двойная связь, “ин” –
      тройная связь.
    4. Устанавливают остальные заместители
      (углеводородные радикалы и младшие характеристические группы) и перечисляют
      их названия в префиксе в алфавитном порядке.
    5. Устанавливают умножающие префиксы – “ди”,
      “три”, “тетра”, указывающие число одинаковых структурных элементов (при
      перечислении заместителей в алфавитном порядке не учитываются
      ).
    6. Проводят нумерацию родоначальной структуры
      так, чтобы старшая характеристическая группа имела наименьший порядковый
      номер. Локанты (цифры) ставят перед названием родоначальной структуры, перед
      префиксами и перед суффиксами.



Таблица 2. Названия алканов и алкильных
радикалов, принятые систематической номенклатурой IUPAC.


Алкан

Название

Алкильный радикал

Название

CH 4

Метан

СН 3 —

Метил

CH 3 CH 3

Этан

CH 3 CH 2 —

Этил

CH 3 CH 2 CH 3

Пропан

CH 3 CH 2 CH 2 —

Пропил



Изопропил

CH 3 CH 2 СН 2 CH 3

н -Бутан

CH 3 CH 2 СН 2 CH 2 —

н- Бутил



втор- Бутил

Изобутан



Изобутил



трет- Бутил

CH 3 CH 2 СН 2 CH 2 СН 3

н -Пентан

CH 3 CH 2 СН 2 CH 2 СН 2 —

н -Пентил



Изопентан




Изопентил




Неопентан




Неопентил

Таблица 3. Названия характеристических
групп
(перечислены в порядке убывания старшинства).


Группа

Название

в префиксе

в суффиксе

-(C)OOH *



овая кислота

-COOH

карбокси

карбоновая
кислота


-SO 3 H

сульфо

сульфоновая
кислота


-(C)HO

оксо

аль

-CHO

формил

карбальдегид

>(C)=O

оксо-

он

-ОН

гидрокси

ол

-SH

меркапто

тиол

-NH 2

амино

амин

-OR **

алкокси, арокси



-F, -Cl, -Br, -I

фтор, хлор, бром,
иод




-NO 2

нитро


* Атом углерода,
заключенный в скобки, входит в состав родоначальной структуры.

** Алкокси-группы и все
следующие за ними перечисляются в префиксе по алфавиту и не имеют порядка
старшинства.

Рациональная (радикально-функциональная)
номенклатура
используется для названий простых моно- и
бифункциональных соединений и некоторых классов природных соединений. Основу
названия составляет название данного класса соединений или одного из членов
гомологического ряда с указанием заместителей. В качестве локантов, как правило,
используются греческие буквы.

3. Структурная изомерия.

Изомеры – это вещества, имеющие одинаковый состав и молекулярную
массу, но разные физические и химические свойства. Различия в свойствах изомеров
обусловлены различиями в их химическом или пространственном строении.

Под химическим строением понимают природу и последовательность связей
между атомами в молекуле. Изомеры, молекулы которых отличаются по химическому
строению, называют структурными изомерами .

Структурные изомеры могут отличаться:

    • по строению углеродного скелета

    • по положению кратных связей и
      функциональных групп

    • по типу функциональных групп

Классификация органических веществ

В зависимости от типа строения углеродной цепи органические вещества подразделяют на:

  • ациклические и циклические.
  • предельные (насыщенные) и непредельные (ненасыщенные).
  • карбоциклические и гетероциклические.
  • алициклические и ароматические.

Ациклические соединения — органические соединения, в молекулах которых отсутствуют циклы и все атомы углерода соединены друг с другом в прямые или разветвленные открытые цепи.

В свою очередь среди ациклических соединений выделяют предельные (или насыщенные), которые содержат в углеродном скелете только одинарные углерод-углеродные (С-С) связи и непредельные (или ненасыщенные), содержащие кратные — двойные (С=С) или тройные (С≡С) связи.

Циклические соединения - химические соединения, в которых присутствует три или более связанных атомов, образующие кольцо.

В зависимости от того, какими атомами образованы циклы различают карбоциклические соединения и гетероциклические соединения.

Карбоциклические соединения (или изоциклические) содержат в своих циклах только атомы углерода. Эти соединения в свою очередь делятся на алициклические соединения (алифатические циклические) и ароматические соединения.

Гетероциклические соединения содержат в составе углеводородного цикла один или несколько гетероатомов, чаще всего которыми являются атомы кислорода, азота или серы.

Простейшим классом органических веществ являются углеводороды – соединения, которые образованы исключительно атомами углерода и водорода, т.е. формально не имеют функциональных групп.

Поскольку углеводороды, не имеют функциональных групп для них возможна только классификация по типу углеродного скелета. Углеводороды в зависимости от типа их углеродного скелета делят на подклассы:

1) Предельные ациклические углеводороды носят название алканы. Общая молекулярная формула алканов записывается как C n H 2n+2 , где n — количество атомов углерода в молекуле углеводорода. Данные соединения не имеют межклассовых изомеров.

2) Ациклические непредельные углеводороды делятся на:

а) алкены — в них присутствует только одна кратная, а именно одна двойная C=C связь, общая формула алкенов C n H 2n ,

б) алкины – в молекулах алкинов также присутствует только одна кратная, а именно тройная С≡С связь. Общая молекулярная формула алкинов C n H 2n-2

в) алкадиены – в молекулах алкадиенов присутствуют две двойные С=С связи. Общая молекулярная формула алкадиенов C n H 2n-2

3) Циклические предельные углеводороды называются циклоалканы и имеют общую молекулярную формулу C n H 2n .

Остальные органические вещества в органической химии рассматривают как производные углеводородов, образуемые при введении в молекулы углеводородов так называемых функциональных групп, которые содержат другие химические элементы.

Таким образом, формулу соединений с одной функциональной группой можно записать как R-X, где R – углеводородный радикал, а Х – функциональная группа. Углеводородным радикалом называют фрагмент молекулы какого-либо углеводорода без одного или нескольких атомов водорода.

По наличию тех или иных функциональных групп соединения подразделяют на классы. Основные функциональные группы и классы соединений, в состав которых они входят, представлены в таблице:

Таким образом, различные комбинации типов углеродных скелетов с разными функциональными группами дают большое разнообразие вариантов органических соединений.

Галогенпроизводные углеводородов

Галогенпроизводными углеводородов называют соединения, получаемые при замене одного или нескольких атомов водорода в молекуле какого-либо исходного углеводорода на один или несколько атомов какого-либо галогена соответственно.

Пусть некоторый углеводород имеет формулу C n H m , тогда при замене в его молекуле X атомов водорода на X атомов галогена формула галогенпроизводного будет иметь вид C n H m- X Hal X . Таким образом, монохлорпроизводные алканов имеют формулу C n H 2n+1 Cl , дихлорпроизводные C n H 2n Cl 2 и т.д.

Спирты и фенолы

Спирты – производные углеводородов, один или несколько атомов водорода в которых заменены на гидроксильную группу -OH. Спирты с одной гидроксильной группой называют одноатомными, с двумя – двухатомными , с тремя трехатомными и т.д. Например:

Спирты с двумя и более гидроксильными группами называют также многоатомными спиртами. Общая формула предельных одноатомных спиртов C n H 2n+1 OH или C n H 2n+2 O. Общая формула предельных многоатомных спиртов C n H 2n+2 O x , где x – атомность спирта.

Спирты могут быть и ароматическими. Например:

бензиловый спирт

Общая формула таких одноатомных ароматических спиртов C n H 2n-6 O.

Однако, следует четко понимать, что производные ароматических углеводородов, в которых на гидроксильные группы заменены один или несколько атомов водорода при ароматическом ядре не относятся к спиртам. Их относят к классу фенолы . Например, это данное соединение является спиртом:

А это представляет собой фенол:

Причина, по которой фенолы не относят к спиртам, кроется в их специфических химических свойствах, сильно отличающих их от спиртов. Как легко заметить, однотомные фенолы изомерны одноатомным ароматическим спиртам, т.е. тоже имеют общую молекулярную формулу C n H 2n-6 O.

Амины

Аминами называют производные аммиака, в которых один, два или все три атома водорода замещены на углеводородный радикал.

Амины, в которых только один атом водорода замещен на углеводородный радикал, т.е. имеющие общую формулу R-NH 2 , называют первичными аминами .

Амины, в которых два атома водорода замещены на углеводородные радикалы, называют вторичными аминами . Формулу вторичного амина можно записать как R-NH-R’. При этом радикалы R и R’ могут быть как одинаковые, так и разные. Например:

Если в аминах отсутствуют атомы водорода при атоме азота, т.е. все три атома водорода молекулы аммиака замещены на углеводородный радикал, то такие амины называют третичными аминами . В общем виде формулу третичного амина можно записать как:

При этом радикалы R, R’, R’’ могут быть как полностью одинаковыми, так и все три разные.

Общая молекулярная формула первичных, вторичных и третичных предельных аминов имеет вид C n H 2 n +3 N.

Ароматические амины с только одним непредельным заместителем имеют общую формулу C n H 2 n -5 N

Альдегиды и кетоны

Альдегидами называют производные углеводородов, у которых при первичном атоме углерода два атома водорода заменены на один атом кислорода, т.е. производные углеводородов в структуре которых имеется альдегидная группа –СН=О. Общую формулу альдегидов можно записать как R-CH=O. Например:

Кетонами называют производные углеводородов, у которых при вторичном атоме углерода два атома водорода заменены на атом кислорода, т.е. соединения, в структуре которых есть карбонильная группа –C(O)-.

Общая формула кетонов может быть записана как R-C(O)-R’. При этом радикалы R, R’ могут быть как одинаковыми, так и разными.

Например:

пропанон бутанон

Как можно заметить, альдегиды и кетоны весьма схожи по строению, однако их все-таки их различают как классы, поскольку они имеют существенные различия в химических свойствах.

Общая молекулярная формула предельных кетонов и альдегидов одинакова и имеет вид C n H 2 n O

Карбоновые кислоты

Карбоновыми кислотами называют производные углеводородов, в которых есть карбоксильная группа –COOH.

Если кислота имеет две карбоксильные группы, такую кислоту называют дикарбоновой кислотой .

Предельные монокарбоновые кислоты (с одной группой -COOH) имеют общую молекулярную формулу вида C n H 2 n O 2

Ароматические монокарбоновые кислоты имеют общую формулу C n H 2 n -8 O 2

Простые эфиры

Простые эфиры – органические соединения, в которых два углеводородных радикала опосредованно соединены через атом кислорода, т.е. имеют формулу вида R-O-R’. При этом радикалы R и R’ могут быть как одинаковыми, так и разными.

Например:

Общая формула предельных простых эфиров такая же, как у предельных одноатомных спиртов, т.е. C n H 2 n +1 OH или C n H 2 n +2 О.

Сложные эфиры

Сложные эфиры – класс соединений на основе органических карбоновых кислот, у которых атом водорода в гидроксильной группе замещен на углеводородный радикал R. Фомулу сложных эфиров в общем виде можно записать как:

Например:

Нитросоединения

Нитросоединения – производные углеводородов, у которых один или несколько атомов водорода заменены на нитрогруппу –NO 2 .

Предельные нитросоединения с одной нитрогруппой имеют общую молекулярную формулу C n H 2 n +1 NO 2

Аминокислоты

Соединения, имеющие в своей структуре одновременно две функциональные группы – амино NH 2 и карбоксильную – COOH. Например,

NH 2 -CH 2 -COOH

Предельные аминокислоты с одной карбоксильной и одной аминогруппой изомерны соответствующим предельными нитросоединениям т.е. как и они имеют общую молекулярную формулу C n H 2 n +1 NO 2

В заданиях ЕГЭ на классификацию органических веществ важно уметь записывать общие молекулярные формулы гомологических рядов разных типов соединений, зная особенности строения углеродного скелета и наличия тех или иных функциональных групп. Для того, чтобы научиться определять общие молекулярные формулы органических соединений разных классов, будет полезен материал по этой теме .

Номенклатура органических соединений

Особенности строения и химических свойств соединений находят отражение в номенклатуре. Основными типами номенклатуры считаются систематическая и тривиальная .

Систематическая номенклатура фактически прописывает алгоритмы, в соответствии с которыми то или иное название составляется в строгом соответствии с особенностями строения молекулы органического вещества или, грубо говоря, его структурной формулы.

Рассмотрим правила составления названий органических соединений по систематической номенклатуре.

При составлении названий органических веществ по систематической номенклатуре наиболее важным является правильно определить число атомов углерода в наиболее длинной углеродной цепи или посчитать число атомов углерода в цикле.

В зависимости от количества атомов углерода в основной углеродной цепи, соединения, будут иметь в своем названии различный корень:

Количество атомов С в главной углеродной цепи

Корень названия

проп-

пент-

гекс-

гепт-

дек(ц)-

Вторая важная составляющая, учитываемая при составлении названий, — наличие/отсутствие кратных связей или функциональной группы, которые перечислены в таблице выше.

Попробуем дать название веществу, имеющему структурную формулу:

1. В главной (и единственной) углеродной цепи данной молекулы содержится 4 атома углерода, поэтому название будет содержать корень бут-;

2. В углеродном скелете отсутствуют кратные связи, следовательно, суффикс, который нужно использовать после корня слова будет -ан, как и у соответствующих предельных ациклических углеводородов (алканов);

3. Наличие функциональной группы –OH при условии, что нет более старших функциональных групп добавляет после корня и суффикса из п.2. еще один суффикс – «ол»;

4. В молекулах содержащих кратные связи или функциональные группы, нумерация атомов углерода главной цепи начинается с той стороны молекулы, к которой они ближе.

Рассмотрим еще один пример:

Наличие в главной углеродной цепи четырех атомов углерода говорит нам о том, что основой названия является корень «бут-», а отсутствие кратных связей говорит о суффиксе «-ан», который будет следовать сразу после корня. Старшая группа в данном соединении – карбоксильная, она и определяет принадлежность этого вещества к классу карбоновых кислот. Следовательно, окончание у названия будет «-овая кислота». При втором атоме углерода находится аминогруппа NH 2 — , поэтому данное вещество относится к аминокислотам. Также при третьем атоме углерода мы видим углеводородный радикал метил (CH 3 — ). Поэтому по систематической номенклатуре данное соединение называется 2-амино-3-метилбутановая кислота.

Тривиальная номенклатура, в отличие от систематической, как правило, не имеет связи со строением вещества, а обусловлена по большей части его происхождением, а также химическими или физическими свойствами.

Формула Название по систематической номенклатуре Тривиальное название
Углеводороды
CH 4 метан болотный газ
CH 2 =CH 2 этен этилен
CH 2 =CH-CH 3 пропен пропилен
CH≡CH этин ацетилен
CH 2 =CH-CH= CH 2 бутадиен-1,3 дивинил
2-метилбутадиен-1,3 изопрен
метилбензол толуол
1,2-диметилбензол орто -ксилол
(о -ксилол)
1,3-диметилбензол мета -ксилол
(м -ксилол)
1,4-диметилбензол пара -ксилол
(п -ксилол)
винилбензол стирол
Спирты
CH 3 OH метанол метиловый спирт,
древесный спирт
CH 3 CH 2 OH этанол этиловый спирт
CH 2 =CH-CH 2 -OH пропен-2-ол-1 аллиловый спирт
этандиол-1,2 этиленгликоль
пропантриол-1,2,3 глицерин
фенол
(гидроксибензол)
карболовая кислота
1-гидрокси-2-метилбензол орто -крезол
-крезол)
1-гидрокси-3-метилбензол мета -крезол
-крезол)
1-гидрокси-4-метилбензол пара -крезол
(п -крезол)
фенилметанол бензиловый спирт
Альдегиды и кетоны
метаналь формальдегид
этаналь уксусный альдегид, ацетальдегид
пропеналь акриловый альдегид, акролеин
бензальдегид бензойный альдегид
пропанон ацетон
Карбоновые кислоты
(HCOOH) метановая кислота муравьиная кислота
(соли и сложные эфиры — формиаты)
(CH 3 COOH) этановая кислота уксусная кислота

(соли и сложные эфиры — ацетаты)

(CH 3 CH 2 COOH) пропановая кислота пропионовая кислота
(соли и сложные эфиры — пропионаты)
C 15 H 31 COOH гексадекановая кислота пальмитиновая кислота
(соли и сложные эфиры — пальмитаты)
C 17 H 35 COOH октадекановая кислота стеариновая кислота
(соли и сложные эфиры — стеараты)
пропеновая кислота акриловая кислота
(соли и сложные эфиры — акрилаты)
HOOC-COOH этандиовая кислота щавелевая кислота
(соли и сложные эфиры — оксалаты)
1,4-бензолдикарбоновая кислота терефталевая кислота
Сложные эфиры
HCOOCH 3 метилметаноат метилформиат,
метиловый эфир мурвьиной кислоты
CH 3 COOCH 3 метилэтаноат метилацетат,
метиловый эфир уксусной кислоты
CH 3 COOC 2 H 5 этилэтаноат этилацетат,
этиловый эфир уксусной кислоты
CH 2 =CH-COOCH 3 метилпропеноат метилакрилат,
метиловый эфир акриловый кислоты
Азотсодержащие соединения
аминобензол,
фениламин
анилин
NH 2 -CH 2 -COOH аминоэтановая кислота глицин,
аминоуксусная кислота
2-аминопропионовая кислота аланин

Органических соединений много, но среди них имеются соединения с общими и сходными свойствами. Поэтому все они по общим признакам классифицированы, объединены в отдельные классы и группы. В основе классификации лежат углеводороды соединения, которые состоят только из атомов углерода и водорода. Остальные органические вещества относятся к «Другим классам органических соединений».

Углеводороды делятся на два больших класса: ациклические и циклические соединения.

Ациклические соединения (жирные или алифатические) соединения, молекулы которых содержат открытую (незамкнутую в кольцо) неразветвленную или разветвленную углеродную цепь с простыми или кратными связями. Ациклические соединения подразделяются на две основные группы:

насыщенные (предельные) углеводороды (алканы), у которых все атомы углерода связаны между собой только простыми связями;

ненасыщенные (непредельные) углеводороды, у которых между атомами углерода кроме одинарных простых связей, имеются также и двойные, и тройные связи.

Ненасыщенные (непредельные) углеводороды делятся на три группы: алкены, алкины и алкадиены.

Алкены (олефины, этиленовые углеводороды) ациклические непредельные углеводороды, которые содержат одну двойную связь между атомами углерода, образуют гомологический ряд с общей формулой C n H 2n . Названия алкенов образуются от названий соответствующих алканов с заменой суффикса «-ан» на суффикс «-ен». Например, пропен, бутен, изобутилен или метилпропен.

Алкины (ацетиленовые углеводороды) углеводороды, которые содержат тройную связь между атомами углерода, образуют гомологический ряд с общей формулой C n H 2n-2 . Названия алкенов образуются от названий соответствующих алканов с заменой суффикса «-ан» на суффикс «-ин». Например, этин (ацителен), бутин, пептин.

Алкадиены органические соединения, которые содержат две двойные связи углерод-углерод. В зависимости от того, как располагаются двойные связи относительно друг друга диены делятся на три группы: сопряженные диены, аллены и диены с изолированными двойными связями. Обычно к диенам относят ациклические и циклические 1,3-диены, образующие с общими формулами C n H 2n-2 и C n H 2n-4 . Ациклические диены являются структурными изомерами алкинов.

Циклические соединения в свою очередь делятся на две большие группы:

  1. карбоциклические соединения соединения, циклы которых состоят только из атомов углерода; Карбоциклические соединения подразделяются на алициклические насыщенные (циклопарафины) и ароматические;
  2. гетероциклические соединения соединения, циклы которых состоят не только из атомов углерода, но атомов других элементов: азота, кислорода, серы и др.

В молекулах как ациклических, так и циклических соединений атомы водорода можно замещать на другие атомы или группы атомов, таким образом, с помощью введения функциональных групп можно получать производные углеводородов. Это свойство ещё больше расширяет возможности получения различных органических соединений и объясняет их многообразие.

Наличие тех или иных групп в молекулах органических соединений обуславливает общность их свойств. На этом основана классификация производных углеводородов.

К «Другим классам органических соединений» относятся следующие:

Спирты получаются замещением одного или нескольких атомов водорода гидроксильными группами OH. Это соединение с общей формулой R (OH) х, где х число гидроксильных групп.

Альдегиды содержат альдегидную группу (С = О), которая всегда находится в конце углеводородной цепи.

Карбоновые кислоты содержат в своём составе одну или несколько карбоксильных групп COOH.

Сложные эфиры производные кислородосодержащих кислот, которые формально являются продуктами замещения атомов водорода гидроокислов OH кислотной функции на углеводородный остаток; рассматриваются также как ацилпроизводные спиртов.

Жиры (триглицериды) природные органические соединения, полные сложные эфиры глицерина и односоставных жирных кислот; входят в класс липидов. Природные жиры содержат в своём составе три кислотных радикала с неразветвлённой структурой и, обычно, чётное число атомов углерода.

Углеводы органические вещества, которые содержат содержащими неразветвленную цепь из нескольких атомов углерода, карбоксильную группу и несколько гидроксильных групп.

Амины содержат в своём составе аминогруппу NH 2

Аминокислоты органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.

Белки высокомолекулярные органические вещества, которые состоят состоящие из альфа – аминокислот, соединённых в цепочку пептидной связью.

Нуклеиновые кислоты высокомолекулярные органические соединения, биополимеры, образованные остатками нуклеотидов.

Остались вопросы? Хотите знать больше о классификации органических соединений?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.


Лекция № 1

КЛАССИФИКАЦИЯ, НОМЕНКЛАТУРА и изомерия ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

1. Классификация органических соединений.

2. Номенклатура органических соединений.

3. Структурная изомерия.

1. Классификация органических соединений.

Органические соединения классифицируют по двум основным признакам: строению углеродного скелета и функциональным группам.

По строению углеродного скелета различают ациклические, карбоциклические и гетероциклические соединения.

Ациклические соединения – содержат открытую цепь атомов углерода.

Карбоциклические соединения – содержат замкнутую цепь углеродных атомов и подразделяются на алициклические и ароматические. К алициклическим относятся все карбоциклические соединения, кроме ароматических. Ароматические соединения содержат циклогексатриеновый фрагмент (бензольное ядро).

Гетероциклические соединения - содержат циклы, включающие наряду с атомами углерода один или несколько гетероатомов.

По природе функциональных групп органические соединения делят на классы .

Таблица 1. Основные классы органических соединений.

Функциональная группа

Класс соединений

Общая формула

Отсутствует

Углеводороды

F, - Cl, - Br, - I (–Hal)

Галогенпроизводные

Гидроксильная

Спирты и фенолы

Алкоксильная

Простые эфиры

NH2, >NH, >N-

Нитросоединения

Карбонильная

>c=o <="" center="">

>c=o>

Альдегиды и кетоны

Карбоксильная

Карбоновые кислоты

Алкоксикарбонильная

Сложные эфиры

Карбоксамидная

карбоновых кислот

Тиольная

Сульфокислоты

2. Номенклатура органических соединений.


В настоящее время в органической химии общепринятой является систематическая номенклатура, разработаннаяМеждународным союзом чистой и прикладной химии (IUPAC ). Наряду с ней сохранились и используются тривиальная ирациональная номенклатуры.

Тривиальная номенклатура состоит из исторически сложившихся названий, которые не отражают состава и строения вещества. Они являются случайными и отражают природный источник вещества (молочная кислота, мочевина, кофеин), характерные свойства (глицерин, гремучая кислота), способ получения (пировиноградная кислота, серный эфир), имя первооткрывателя (кетон Михлера, углеводород Чичибабина), область применения (аскорбиновая кислота). Преимуществом тривиальных названий является их лаконичность, поэтому употребление некоторых из них разрешено правилами IUPAC.

Систематическая номенклатура является научной и отражает состав, химическое и пространственное строение соединения. Название соединения выражается при помощи сложного слова, составные части которого отражают определенные элементы строения молекулы вещества. В основе правил номенклатуры IUPAC лежат принципы заместительной номенклатуры , согласно которой молекулы соединений рассматриваются как производные углеводородов, в которых атомы водорода замещены на другие атомы или группы атомов. При построении названия в молекуле соединения выделяют следующие структурные элементы.

Родоначальная структура – главная цепь углеродная цепь или циклическая структура в карбо- и гетероциклах.

Углеводородный радикал – остаток формульного обозначения углеводорода со свободными валентностями (см. таблицу 2).

Характеристическая группа – функциональная группа, связанная с родоначальной структурой или входящая в ее состав (см. таблицу 3).

При составлении названия последовательно выполняют следующие правила.

1. Определяют старшую характеристическую группу и указывают ее обозначение в суффиксе (см. таблицу 3).

2. Определяют родоначальную структуру по следующим критериям в порядке падения старшинства: а) содержит старшую характеристическую группу; б) содержит максимальное число характеристических групп; в) содержит максимальное число кратных связей; г) имеет максимальную длину. Родоначальную структуру обозначают в корне названия в соответствии с длиной цепи или размером цикла: С1 – “мет”, С2 – “эт”, С3 – “проп”, С4 – “бут”, С5 и далее – корни греческих числительных.

3. Определяют степень насыщенности и отражают ее в суффиксе: “ан” – нет кратных связей, “ен” – двойная связь, “ин” – тройная связь.

4. Устанавливают остальные заместители (углеводородные радикалы и младшие характеристические группы) и перечисляют их названия в префиксе в алфавитном порядке.

5. Устанавливают умножающие префиксы – “ди”, “три”, “тетра”, указывающие число одинаковых структурных элементов (при перечислении заместителей в алфавитном порядке не учитываются).

6. Проводят нумерацию родоначальной структуры так, чтобы старшая характеристическая группа имела наименьший порядковый номер. Локанты (цифры) ставят перед названием родоначальной структуры, перед префиксами и перед суффиксами.


Таблица 2. Названия алканов и алкильных радикалов, принятые систематической номенклатурой IUPAC.

Название

Алкильный радикал

Название

Изопропил

н-Бутан

н-Бутил

втор-Бутил

Изобутан

Изобутил

трет-Бутил

CH3CH2СН2CH2СН3

н-Пентан

CH3CH2СН2CH2СН2-

н-Пентил

Изопентан

Изопентил

Неопентан

Неопентил

Таблица 3. Названия характеристических групп (перечислены в порядке убывания старшинства).

*Атом углерода, заключенный в скобки, входит в состав родоначальной структуры.

**Алкокси-группы и все следующие за ними перечисляются в префиксе по алфавиту и не имеют порядка старшинства.

Рациональная (радикально-функциональная) номенклатура используется для названий простых моно - и бифункциональных соединений и некоторых классов природных соединений. Основу названия составляет название данного класса соединений или одного из членов гомологического ряда с указанием заместителей. В качестве локантов, как правило, используются греческие буквы.

3. Структурная изомерия.

Изомеры – это вещества, имеющие одинаковый состав и молекулярную массу, но разные физические и химические свойства. Различия в свойствах изомеров обусловлены различиями в их химическом или пространственном строении.

Под химическим строением понимают природу и последовательность связей между атомами в молекуле. Изомеры, молекулы которых отличаются по химическому строению, называют структурными изомерами .

Структурные изомеры могут отличаться:

      по строению углеродного скелета

      по положению кратных связей и функциональных групп

      по типу функциональных групп

1. Изомерия

Понятие «изомеры» введено Берцелиусом в 1830г. Он определил «изомеры» как вещества, имеющие одинаковый состав (молекулярную формулу), но различные свойства. Представление об изомерах Берцелиус ввел после того как установил, что циановая кислота НОСN идентична по составу гремучей или изоциановой кислоте О=С=NН.

Различают два основных вида изомерии: структурную и пространственную (стереоизомерию).

Структурные изомеры отличаются друг от друга порядком связей между атомами в молекуле; стереоизомеры - расположением атомов в пространстве при одинаковом порядке связей между ними.

2. Структурная изомерия

Структурная изомерия подразделяется на несколько разновидностей.

Изомерия углеродного скелета обусловлена различным порядком связи между атомами углерода, образующими скелет молекулы. Так, может существовать только один нециклический насыщенный углеводород с тремя атомами С - пропан (I). Углеводородов такого же типа с четырьмя атомами С может быть уже два: н -бутан (II) и изобутан (III), а с пятью атомами С - три: н -пентан (IV), изопентан (V) и неопентан (VI):аммиаком , тогда как 1,3-динитробензол (XI) в реакцию с NH3 не вступает.

В ряду алифатических простых эфиров, сульфидов и аминов существует специальный вид изомерии - метамерия , обусловленная различным положением гетероатома в углеродной цепи. Метамерами являются, например, метилпропиловый (XII) и диэтиловый (XIII) эфиры:

Изомерия непредельных соединений может быть вызвана различным положением кратной связи, как, например, в бутене-1 (XIV) и бутене-2 (XV), в винилуксусной (XVI) и кротоновой (XVII) кислотах:

В большинстве случаев структурные изомеры сочетают признаки изомерии скелета и изомерии положения, содержат различные функциональные группы и принадлежат к разным классам веществ, вследствие чего они отличаются друг от друга значительно больше, чем рассмотренные выше изомеры веществ одного и того же типа. Например, изомерами являются пропилен (XVIII) и циклопропан (XIX), оксид этилена (XX) и ацетальдегид (XXI), ацетон (XXII) и пропионовый альдегид (XXIII), диметиловый эфир (XXIV) и этиловый спирт (XXV), аллен (XXVI) и метилацетилен (XXVII):

Особым видом структурной изомерии является таутомерия (равновесная динамическая изомерия) - существование вещества в двух или более изомерных формах, легко переходящих друг в друга. Так, ацетоуксусный эфир существует в виде равновесной смеси кетонной (XXVIII) и енольной (XXIX) форм:

Поделиться