Основные понятия теории вероятностей. Основные понятия и определения теории вероятностей Теоремы сложения и умножения вероятностей

Лекция 1

ВВЕДЕНИЕ

ЧАСТЬ 1

ЦЕЛЬ ЛЕКЦИИ: определить предмет курса; ввести понятия опыта, случайного явления, случайного события, а также вероятности и частоты события; дать классическое определение вероятности и провести классификацию схем выбора при непосредственном подсчете вероятности.

Теория вероятностей – математическая наука, изучающая закономерности в случайных явлениях.

Под опытом понимается некоторая воспроизводимая совокупность условий, в которой наблюдается то или иное явление. Опыт может представлять как одно испытание, так и серию испытаний.

Случайное явление – это такое явление, которое при неоднократном воспроизведении одного и того же опыта протекает каждый раз несколько по-иному.

Примеры случайных явлений: взвешивание тела на аналитических весах, подбрасывание монеты или игрального кубика.

В данных примерах условия опыта неизменны, но результаты опыта варьируются. Эти вариации связаны с воздействием второстепенных факторов, влияющих на исход опыта, но не оговоренных в числе основных условий. На практике существует большой класс задач, в которых интересующий исход опыта зависит от столь большого числа факторов, что учесть их в полном объеме невозможно.

При наблюдении совокупности однородных случайных явлений часто обнаруживается закономерность, получившая название устойчивости частот (бросание монеты при многократном повторении дает число выпадения герба, равное 1/2, бросание игрального кубика дает число выпадений грани с цифрой 6, равное 1/6; процент брака в отлаженном технологическом процессе). Проявление такого рода закономерности при массовом воспроизведении опыта позволяет сделать вывод о том, что отдельные индивидуальности случайных явлений тонут в суммарном результате опытов.

Таким образом, базой для применения вероятностных (статистических) методов является свойство устойчивости частот в массовых случайных явлениях. Методы теории вероятностей не позволяют предсказать исход отдельного опыта, но дают возможность предсказать суммарный результат (в среднем) большого числа опытов. К примеру, случайным является движение молекул газа в сосуде, и не представляется возможным предсказать траекторию движения и скорость отдельной молекулы, однако давление газа на стенки сосуда (при большом числе молекул) является неслучайной величиной.

Зарождение теории вероятностей связано с исследованиями Паскаля (1623–1662), Ферма (1601–1665), Гюйгенса (1629–1695) в области теории азартных игр, когда было сформулировано понятие вероятности, математического ожидания. Классическое определение вероятности события было введено Якобом Бернулли (1654–1705), им же был сформулирован закон больших чисел. В дальнейшем основы теории вероятностей закладывались работами таких математиков, как Муавр (1667–1754), Лаплас(1749–1827), Гаусс (1777–1855), Пуассон (1781–1840). Большой вклад в развитие теории вероятностей внесла русская школа математики в лице П. Л. Чебышева (1821–1894), А. А. Маркова (1856–1922), А. М. Ляпунова (1857–1918), А. Н. Колмогорова(1903–1987).


Случайное событие

Случайное событие – всякий факт, который в результате опыта со случайным исходом может произойти или не произойти.

Примеры: А – появление герба при подбрасывании монеты; В – появление четной цифры при подбрасывании игрального кубика; С – попадание в мишень при выстреле.

Противоположным событию А называется событие, состоящее в невыполнении события А .

У каждого из событий – разная возможность его появления. В качестве численной меры степени объективной возможности события используется понятие вероятности события . Понятие вероятности события связано с понятием частоты события.

Достоверным называется событие, которое в результате опыта обязательно должно произойти, невозможным называется событие, которое в результате опыта произойти не может. Для достоверного события полагается вероятность, равная 1, для невозможного события – 0. Исходя из этого, диапазон изменения вероятности будет составлять 0 – 1.

Практически невозможным называется событие, вероятность которого не в точности равна 0, но весьма близка к 0. Например: из разрезной азбуки, состоящей из 32 букв, вынимается с возвращением 15 букв. Какова вероятность того, что последовательность этих букв составит фразу "Как молоды мы были"? Данная вероятность составит (1/32) 15 . Событие практически невозможное.

Практически достоверным называется событие, вероятность которого не в точности равна 1, но весьма близка к 1. Такое событие является противоположным практически невозможному. С данными понятиями связывается принцип практической уверенности, который формулируется следующим образом: если вероятность некоторого события А в данном опыте весьма мала, то можно быть практически уверенным, что при однократном проведении опыта событие А не произойдет. Выбор вероятности, которая бы считалась достаточной при определении возможности того или иного прогноза, производится каждый раз из практических соображений с учетом стоимости потерь, вызванных ошибочным прогнозом.

Опыт с конечным числом исходов.

Классическое определение вероятности

В ряде опытов, таких, как подбрасывание монеты, подбрасывание игрального кубика, карточные игры, рулетка, извлечение наудачу определенного числа шаров из урны, возможные исходы обладают определенной симметрией к условиям опыта и одинаково возможны (опыты с конечным числом равновероятных исходов). В частности, при подбрасывании "правильного" кубика ни один из элементарных исходов (появление любой цифры: 1,2,3,4,5,6) нельзя считать более предпочтительным, чем другой.

Для таких опытов представляется возможным непосредственно подсчитать вероятность события. Именно при анализе таких опытов и было сформулировано в XVII в. классическое определение вероятности .

Прежде чем сформулировать классическое определение вероятности, введем ряд определений.

Несколько событий в данном опыте образуют полную группу событий , если в результате опыта непременно должно появиться хотя бы одно из них, например герб, цифра (решка) при бросании монеты; попадание, промах при стрельбе; появление 1,2,3,4,5,6 при бросании игральной кости.

Несколько событий называются несовместными в данном опыте, если исключено их совместное появление (герб и решка при бросании монеты).

Равновозможными событиями называют события, если по условиям симметрии опыта можно считать, что ни одно из этих событий не является объективно более возможным, чем другое (герб или решка при бросании монеты).

Если группа событий обладает всеми тремя свойствами: полноты, равновозможности и несовместности, то такие события называют случаями . Случай называют благоприятным некоторому событию А , если появление этого случая влечет за собой появление данного события. Например, при бросании игральной кости есть три случая, благоприятных событию А , которое состоит в появлении четного числа очков, а именно появлении 2, 4 или 6.

Соответственно опыт, при котором имеет место симметрия равновозможных и исключающих друг друга исходов, получил название схемы случаев (или схемы урн) . Непосредственный подсчет вероятностей в схеме случаев основан на оценке доли благоприятных случаев в их общем числе:

где – число благоприятных случаев событию А , n – общее число случаев.

Так как число благоприятных случаев может изменяться от 0 до n , то вероятность события будет изменяться в пределах 0 – 1. Формула (1.1) называется классической формулой , она используется для непосредственного подсчета вероятностей, когда опыт сводится к схеме случаев.

Непосредственный подсчет вероятностей.

Схема выбора с возвращением

и без возвращения элементов

При определении вероятности события по классической формуле (1.1) для определения общего числа случаев и числа благоприятных случаев часто привлекаются элементы комбинаторики. При этом в каждом опыте важным является способ выбора элементов.

Существуют две схемы выбора: схема выбора без возвращения элементов и схема выбора с возвращением элементов. В первом случае извлеченные m элементов (без разницы, по одному или вместе) не возвращаются в исходную совокупность. Во втором случае на каждом шаге элементы извлекаются по одному, фиксируется выбранный элемент, затем он возвращается, и вся исходная совокупность тщательно перемешивается. Таким образом, во втором случае один и тот же элемент может извлекаться неоднократно.

После осуществления выбора элементы могут быть упорядочены или нет. Итак, в классической схеме существует четыре типа опытов. Рассмотрим, каким образом рассчитываются общее число случаев и число благоприятных случаев в каждой схеме.

Ÿ Схема выбора без возвращения и без упорядочивания порядка следования элементов (схема выбора, приводящая к сочетаниям). Опыт состоит в выборе из исходной совокупности объемом n элементов m элементов без возвращения и без упорядочивания порядка следования элементов. В этом опыте различными исходами будут совокупности m элементов, отличающиеся друг от друга составом элементов. Количество таких совокупностей (а следовательно, и исходов опыта) определяется числом сочетаний из п элементов по m :

Свойства числа сочетаний:

2) (свойство симметрии);

3) (рекуррентное соотношение);

4) (следствие биномиальной формулы Ньютона).

Ÿ Схема выбора без возвращения, но с упорядочиванием порядка следования элементов (схема выбора, приводящая к размещениям). Опыт состоит в выборе из исходной совокупности объемом n элементов т элементов без возвращения, но с упорядочиванием порядка следования элементов. В этом опыте различными исходами будут совокупности т элементов, отличающиеся друг от друга как составом элементов, так и порядком их следования. Количество таких совокупностей (а следовательно, и исходов опыта) определяется числом размещений из п элементов по т :

При размещения представляют из себя перестановки из п элементов:

Ÿ Схема выбора с возвращением и без упорядочивания порядка следования элементов (схема выбора, приводящая к сочетаниям с повторениями). Опыт состоит в выборе из исходной совокупности объемом п элементов т элементов с возвращением и без упорядочивания порядка следования элементов. В этом опыте различными исходами будут совокупности т элементов, отличающиеся друг от друга составом элементов. При этом отдельные наборы могут содержать повторяющиеся элементы. Количество таких совокупностей (а следовательно, и исходов опыта) определяется числом сочетаний с повторениями из п элементов по т :

Ÿ Схема выбора с возвращением и с упорядочиванием порядка следования элементов (схема выбора, приводящая к размещениям с повторениями). Опыт состоит в выборе из исходной совокупности объемом п элементов т элементов с возвращением и с упорядочиванием порядка следования элементов. В этом опыте различными исходами будут совокупности т элементов, отличающиеся друг от друга как составом элементов, так и порядком следования элементов. При этом отдельные наборы могут содержать повторяющиеся элементы. Количество таких совокупностей (а следовательно, и исходов опыта) определяется числом размещений с повторениями из п элементов по т :

Частота или статистическая вероятность события

Если опыт не сводится к схеме случаев (например, игральная кость несимметрична, и выпадение определенной грани уже не будет равно 1/6), то для определения вероятности события используют понятие частоты события и связь между вероятностью и частотой.

Частотой события А в опыте, состоящем из серии испытаний, называется отношение числа испытаний, в которых появилось событие А , к общему числу испытаний.


Частоту события иногда называют статистической вероятностью в отличие от "математической", определенной ранее. Вычисляется частота события по следующей формуле:

где – число появлений события А в опыте, N – общее число произведенных испытаний.

При небольшом числе испытаний частота события носит в значительной степени случайный характер и может меняться от одной серии испытаний к другой. Например, рассмотрим опыт, который заключается в том, что монета бросается 10 раз. Интересующее нас событие А – появление герба. Повторяя опыт несколько раз, мы можем фиксировать частоту появления герба: 0,2; 0,4; 0,6; 0,8. Но с увеличением числа испытаний частота события теряет свой случайный характер, приближаясь к некоторой средней постоянной величине. В случае с симметричной монетой частота будет близка к 1/2.

Как отмечено выше, теория вероятностей исследует явления, которые характеризуются устойчивостью частот. В этом случае между частотой события и вероятностью существует органическая связь. В частности, для схемы случаев частота события при увеличении числа испытаний всегда приближается к его вероятности. И в общем случае справедливым является утверждение, что в серии испытаний частота события приближается к вероятности события с тем большей вероятностью, чем больше произведено испытаний. Для вероятностного приближения одних величин к другим используется специальный термин – "сходимость по вероятности". С учетом этого термина выше приведенное утверждение запишется

Данное утверждение составляет сущность теоремы Я. Бернулли и является следствием более общей закономерности, а именно закона больших чисел.

    Случайные события и их классификация

    Классическое определение вероятности

    Непосредственное вычисление вероятностей

§ 1. Случайные события и их классификация

1. Втеории вероятностей случайным событием на­зывают то, что при наличии некоторого комплекса условий S может произойти или не произойти. Например, при бросании монеты может выпасть герб или решка, поэтому события «при бросании монеты выпал герб» и «при бросании монеты выпала решка» - случайные события.

При бросании монеты и ее полете на последнюю воздействуют - многие случайные факторы (сила, с которой брошена монета, форма монеты и др.). Поэтому при каждом отдельном бросании монеты предсказать появление герба или решки невозможно, впрочем, в теории вероятностей такой задачи и не ставится. Однако если бросить монету большое число раз, например 10 000 раз или больше, при одном и том же комплексе условий S , то отношение числа т появлений герба к общему числу п, про­веденных опытов с монетой, будет близко к .

Приведем еще один пример: по статистическим данным на каждую 1000 новорожденных приходится 515, т. е. 51,5%, маль­чиков и 485, т. е. 48,5%, девочек с незначительным отклонением в ту или другую сторону от упомянутых чисел. Эта закономер­ность имеет место для всех народов независимо от экономичес­ких, географических и других условий, но наблюдается она лишь тогда, когда события (рождаемость) носят массовый характер.

Теория вероятностей есть раздел математики, изучающий закономерности массовых однородных случайных событий.

Математическая статистика есть также раздел математики, посвященный математическим методам систематизации, обра­ботки и использования статистических данных для научных и практических выводов.

Математическая статистика пользуется методами различных областей математики и в первую очередь теории вероятностей.

Зарождение и развитие теории вероятностей и математиче­ской статистики, как и всякой другой науки, тесно связано с жиз­ненной потребностью людей, с развитием производительных сил общества. Так, например, организация страховых обществ, пе­репись населения, решение задач, возникавших в азартных играх, методы обработки различных результатов наблюдений, в част­ности, оценка случайных ошибок и многие другие вопросы, реше­ние которых способствовало появлению и развитию этих двух ветвей математики.

Теория вероятностей благодаря трудам Гюйгенса (1629- 1695), Паскаля (1623-1662), П. Ферма (1601-1665) и в особен­ности Я. Бернулли (1654-1705) становится наукой уже в XVII веке.

Крупнейшими представителями этой науки в XVIII и в первой половине XIX века были математики П. Лаплас (1749-1827), К. Гаусс (1777-1855) и С. Пуассон (1781-1840). Работы этих ученых дали возможность применять в теории вероятностей науч­но обоснованные методы.

Особенно быстро теория вероятностей развивалась во второй половине XIX и в XX веке в связи с применением статистических методов исследования различных вопросов и стала теоретичес­кой базой математической статистики. Этот период был ознаме­нован фундаментальными открытиями в области теории вероят­ностей русскими математиками Петербургской математической школы П. Л. Чебышевым (1821-1894) (создателем этой школы) и его знаменитыми учениками А. М. Ляпуновым (1857-1918) и А. А. Марковым (1856-1922).

Современная математическая школа занимает ведущее место во многих отраслях современной математики, в частности, в области теории вероятностей и математической статистики.

Строгое логическое обоснование теории вероятностей произо­шло в XX веке и связано с именами советских математиков, прежде всего с именем А. Н. Колмогорова. Крупнейшими представителями этой области науки являются математики С. Н. Бернштейн, Б. В. Гнеденко, В. И. Романовский, Е. Е. Слуц­кий, Н. В. Смирнов, А. Я. Хинчин, Б. С. Ястремский и др.

2. Подобно тому, как в геометрии первыми понятиями явля­ются точка и прямая, в теории вероятностей первыми понятиями служат событие и вероятность.

Событием называется явление, о котором имеет смысл говорить, что оно произошло или не произошло (происходит или не происходит, произойдет или не произойдет).

События можно подразделить на три вида: достоверные, не­возможные и случайные .

Событие называется достоверны м, если оно при осуще­ствлении данного комплекса условий S обязательно произойдет. Например, если в урне только белые шары, то извлечение из урны белого шара - событие достоверное. Приведем другой пример. В очередном тираже 3%-ного государственного займа событие, что какая-нибудь облигация этого займа выиграет, достоверно.В дальнейшем вместо того, чтобы говорить «при осуществле­нии данного комплекса условий S», будем говорить короче: «при испытании» или «при опыте».

В первом примере, приведенном выше, извлечение из урны шара есть испытание, а появление белого шара - событие.

Во втором примере проведение очередного тиража 3%-ного государственного займа есть испытание (опыт), выигрыш какой-нибудь облигации этого займа - событие.

Событие называется невозможным , если оно при испы­тании не может произойти. Например, в урне содержатся только белые шары. Извлечение из урны черного шара - событие не­возможное.

Событие называется случайным , если оно при испытании может произойти или не произойти. Например, выпадение осад­ков в Минске 1 мая 1980 г.- событие случайное.

Случайные события принято обозначать большими буквами латинского алфавита: А, В, С, ... , достоверные буквой U и не­возможные буквой V . Дадим еще несколько определений.

События
называются совместными (сов­местимыми если появление одно из них не исключает возмож­ности появления других. Например, пусть производится выстрел по цели из каждого орудия, число которых равно трем. Ясно, что не исключается возможность попадания в цель из всех трех ору­дий. Следовательно, эти три события совместные.

Событиями,
называются нес овместимыми (несовместимыми), если наступление одного из них исключает возможность появления любого другого. Например, при бросании монеты выпадение герба исключает возможность появления решки.

События
называются единственно воз­можным и, если при испытании обязательно наступит хотя бы одно из них.

Пример 1. Пусть в урне содержатся белые, черные и красные шары. Извлекаем из урны шар, он может оказаться белым (событие А), черным (событие В) или красным (событие С). По определению эти три события А, В, С - единственно возможные.

События
единственно возможные и несовме­стные называются полной системой событий.

Пример 2. Кубик, на гранях которого обозначено число очков от 1 до 6, называется игральной костью. Предполагается, что кубик сделан из однород­ного материала.

При бросании игральной кости может выпасть одно, два, три, четыре, пять или шесть очков. Обозначим упомянутые события соответственно через,
. Эти события единственно возможные и несовместные, следова­тельно, они образуют полную систему событий.

Два единственно возможных и несовместных события назы­ваются противоположными событиями

Если А - некоторое событие, то противоположное ему собы­тие обозначают .

Пример 3. При бросании монеты может выпасть герб или решка. Эти со­бытия противоположные.

Противоположными событиями также будут: «сдать» и «не сдать» экзамен, «выиграть» и «не выиграть» по лотерейному билету, «попасть» и «не попасть» в цель при выстреле из ружья.

Если при каждом осуществлении комплекса условий S, при котором происходит событие А, происходит и событие В, то го­ворят, что А влечет за собой В, и этот факт обозначают символом AB или B
А .

Если имеет место одновременно AB или B
А , то события А и В называются равносильными. В этом случае пишут А=В.

Таким образом, равносильные события А и В при каждом испытании оба наступают или оба не наступают.

Пример 4. Игральную кость бросили один раз. Пусть выпало шесть очков (событие А). Обозначим через В четное число, через С - число очков, деля­щееся на 3. Очевидно, что AB AС .

Пример 5. В урне один белый шар и три черных. Все шары перенумеро­ваны. Пусть белый шар имеет номер 1. При извлечении шара из урны событие появления белого шара обозначим буквой А, а событие появления шара 1 обоз­начим буквой В. Очевидно, что AB и В А , т. е. события А и В равно­сильны и поэтому можно написать А =В.

Основы теории вероятностей.

Теория вероятностей

Событие

Выделяют три вида событий:

а) достоверные

б) невозможные

с) случайные

Достоверное событие например:

Невозможное событие например:

Случайное событие например:

События называются массовыми например:

Равновозможные события например:

Совместные события например:

Несовместные события например

полную группу событий например:

Противоположные события например:

Вероятность случайного события.

Вероятность случайного события (обозначается Р(А)) –это число, которое говорит нам о степени возможности наступления события .

Существуют два определения вероятности: классическое и статистическое, каждое из них имеет свои достоинства и недостатки.

Классическое определение вероятности.

Вероятность события – это отношение числа исходов, благоприятствующих данному событию (m ), к общему числу всех несовместных и равновозможных исходов данного опыта (n ).

Если А – случайное событие, то


Если А – достоверное событие , то

Если А – невозможное событие , то

Пример: при бросании кубика возможно 6 исходов

Событие А: выпадет четное число. Число исходов, благоприятствующих событию А, m=3.

Достоинства: можно вычислить вероятность не производя испытания.

Недостатки: 1) не всегда известно число исходов опыта,

2) часто невозможно представить результат испытаний в виде равновозможных и несовместных событий.

Поэтому на практике часто пользуются статистическим определением вероятности.

Статистическое определение вероятности.

Пусть А – случайное событие, опыт проводился n раз, в результате опыта событие А произошло m раз, тогда m - частота наступления события А, а величина называется относительной частотой события А.

Для разных n , могут заметно отличаться, но если проводим длинную серию опытов, т.е. , то к некоторому пределу.

Статистической вероятностью события А называется предел, к которому стремится его относительная частота , при неограниченном увеличении числа испытаний.

Пример: среди 1000 новорожденных 517 мальчиков. Найти относительную частоту рождения мальчиков. , тем не менее, известно, что

Так как вероятность – это число следовательно, с этими числами можно производить арифметические действия.

Формула полной вероятности.

Иногда событие А может произойти только совместно с одним из нескольких других событий, их принято называть гипотезами и обозначать Тогда полная вероятность события А вычисляется по формуле:

Пример: Н

Н Н СобытиеА: попадёмв домик.

Формулы Байеса.

До проведения опыта мы имели вероятности гипотез

(В примере ).

После проведенияопыта:

Пусть событие А произошло (т.е. попали в домик), вероятности гипотез изменились. Для того, чтобы вычислить вероятности гипотез, при условии, что произошло событие А используют формулы Байеса:

Пример

Случайная величина.

Случайная величина – это переменная, которая принимает свои значения в зависимости от случайных обстоятельств.

.Дискретная случайнаявеличина (точечная) принимает отдельные числовые значения (число студентов в аудитории, кубик: 1,2,3,4,5,6)

Непрерывная случайная величина принимает любые значения из некоторого интервала(масса тела, рост студентов).

Случайные величины обозначают заглавными последними буквами латинского алфавита:X,Y,Z… ,а их возможные значения прописными буквами:

Любое правило, которое устанавливает связь между возможными значениями случайной величины и вероятностями, с которыми она эти значения принимает, называется законом распределения случайной величины .

Закон распределения случайной величины можно задавать в виде :

1).Таблицы

2). Графика

3) Функции распределения.

Функция распределения.


1). f(x) неотрицательная функция (f(x)≥0).

2). Вероятность попадания в элементарный интервал dx=(x+Δx)-x равна f(x)dx=dP.

3).Вероятность попадания случайной величины в интервал :

←-∞ a b +∞→

4). Условие нормировки: площадь под кривой равна единице.

Формула полной вероятности.

Формулы Байеса.

Основы теории вероятностей.

Теория вероятностей – это раздел математики, который изучает закономерности в массовых случайных событиях.

Событие – это факт, который может произойти или не произойти в результате проведения опыта или испытания.

Выделяют три вида событий:

а) достоверные

б) невозможные

с) случайные

Достоверное событие – это событие, которое обязательно произойдёт в результате данного опыта.(например: при бросании кубика выпадет 1≤целое число≤6).

Невозможное событие – это событие, которое никогда не произойдет в условиях данного опыта. .(например: при бросании кубика выпадет число≥7, например 10).

Случайное событие – это событие, которое может произойти или не произойти в результате данного опыта. (например: бросили кубик один раз – выпадение числа 3 – случайное событие).

События обозначаются первыми заглавными буквами латинского алфавита: А, В, С, D,.

События называются массовыми , если они происходят одновременно в достаточно большом числе испытаний или многократно повторяются.(например: много людей бросают кубики или один человек бросает кубик много раз).

Классификация случайных событий.

Равновозможные события – это события такие, что ни одно из них не является более возможным, чем другие (например: кубику всё равно на какую грань упасть).

Совместные события – это события, которые могут произойти одновременно в результате данного опыта. (например: бросаем 2 кубика - выпадение числа 1 и выпадение числа 3 – совместные события).

Несовместные события – это равновозможные события такие, что появление одного из них исключает появление остальных.(например : бросаем 1 кубик – выпадение цифры 3 исключает выпадение остальных цифр).

Несколько случайных событий: образуют полную группу событий , если каждое из них может произойти в результате данного опыта. (например: выпадение чисел 1,2,3,4,5,6 –полная группа событий для бросания одного кубика).

Противоположные события – это равновозможные несовместные события, образующие полную группу событий. Появление события исключает появление события . (например: орёл или решка, попадание в мишень или промах).

Несмотря на то, что события случайные, при большом числе опытов они подчиняются закономерностям, которые изучает теория вероятностей.

ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ

Классификация событий, понятие простого и сложного элементарного событий, операции над событиями, классическое определение вероятности случайного события и ее свойства, элементы комбинаторики в теории вероятностей, аксиомы теории вероятностей, геометрическая вероятность, статистическая вероятность.

1. Классификация событий.

Одним из основных понятий теории вероятностей является понятие события. Под событием понимается любой факт, который может произойти в результате опыта или испытания. Под опытом или испытанием понимается осуществление определенного комплекса условий.

Примерами событий могут служить:

Попадание в цель при выстреле из орудия (опыт - произведение выстрела, событие - попадание в цель);

Выпадение двух гербов при трехкратном бросании монеты (опыт - трехкратное бросание монеты, событие - выпадение двух гербов);

Появление ошибки измерения в заданных пределах при измерении дальности до цели (опыт - измерение дальности, событие - ошибка измерения).

Можно привести бесчисленное множество подобных примеров. События обозначаются заглавными буквами латинского алфавита ,,и т. д.

Различают события совместные и несовместные . События называются совместными, если наступление одного из них сопровождается наступлением других в одном и том же испытании. В противном случае события называются несовместными. Например, подбрасываются две игральные кости. Событие - выпадание трех очков на первой игральной кости, событие- выпадание трех очков на второй кости.и- совместные события. Пусть в магазин поступила партия обуви одного фасона и размера, но разного цвета. Событие- наудачу взятая коробка окажется с обувью черного цвета, событие- коробка окажется с обувью коричневого цвета.и- несовместные события.

Событие называется достоверным , если оно обязательно произойдет в условиях данного опыта.

Событие называется невозможным , если оно не может произойти в условиях данного опыта.

Если, например, двигатель исправен, нормально функционирует система топливоподачи и аккумулятор находится в рабочем состоянии, то при включении зажигания и стартера вращение вала двигателя автомобиля - событие достоверное.

При выходе из строя хотя бы одной системы топливоподачи вращение вала двигателя становится событием невозможным.

Событие называется возможным или случайным , если в результате опыта оно может появиться, но может и не появиться.

Примером случайного события может служить выявление дефектов изделия при контроле партии готовой продукции, несоответствие размера обрабатываемого изделия заданному, отказ одного из звеньев автоматизированной системы управления.

События называются равновозможными , если по условиям испытания ни одно из этих событий не является объективно более возможным, чем другие.

Приведем следующий пример. Пусть магазину поставляют электролампочки (причем в равных количествах) несколько заводов-изготовителей. События, состоящие в покупке лампочки любого из этих заводов, равновозможны.

Важным понятием является полная группа событий . Несколько событий в данном опыте образуют полную группу, если в результате опыта обязательно появится хотя бы одно из них. Например, в урне находится десять шаров, из них шесть шаров красных, четыре белых, причем пять шаров имеют номера. - появление красного шара при одном извлечении, - появление белого шара,- появление шара с номером. События,,- образуют полную группу совместных событий.

Введем понятие противоположного, или дополнительного, события. Под противоположным событием понимается событие, которое обязательно должно произойти, если не наступило некоторое событие. Противоположные события несовместны и единственно возможны. Они образуют полную группу событий. Так, например, если партия изготовленных изделий состоит из годных и бракованных, то при извлечении одного изделия оно может оказаться либо годным - событиеА , либо бракованным - событие .


Понятие события Событие: всякий факт, который в результате опыта может произойти или не произойти Классификация событий: достоверные невозможные вероятные равновозможные события несовместные события и полная группа несовместных событий независимые события противоположное событие


Модельные объекты в теории вероятностей: - монета (два равновозможных события) - игральная кость (шесть равновозможных событий - игральные карты (36 или 52 равновозможных событий) - шары разного цвета в урне (число равновозможных событий зависит от числа шаров разного цвета и общего числа шаров) Полная группа несовместных событий: - орел и решка у монеты - цифры 1, 2, 3, 4, 5, 6 у игральной кости


Комбинаторное определение вероятности Вероятность = отношению числа благоприятных событий к общему числу равновозможных событий n – общее число равновозможных событий m – число благоприятных событий Вероятность Область значений Р: Достоверное событие Р = 1Невозможное событие Р = 0


Задачи Задача 1: в урне находится 2 белых и 3 красных шара. Из урны наугад вытаскивается один шар. Какова вероятность того, что этот шар будет белым? Задача 2: подбрасывается монета. Какова вероятность выпадения орла? Вероятность выпадения решки? Задача 3: монета подбрасывается дважды. Какова вероятность выпадения двух орлов? Задача 4. Одновременно кидаются две игральные кости. Какова вероятность того, что сумма очков составит 3? Задача 5. Монета бросается 125 раз. Каковая вероятность, что она упадет орлом 16 раз?


Операции с событиями Сумма событий А и В: событие С, которое состоит в появлении хотя бы одного из событий А и В. С = А + В Произведение событий А и В: событие С, которое состоит в совместном появлении событий А и В. С = АВ Задача 6: Бросается кость. Записать событие, состоящее в том, что выпало четное число очков Задача 7: в одной урне 2 белых и 1 черный шар; в другой урне: 1 белый и 1 черный шар. Записать событие, которое состоит в том, что из урн выбраны 2 белых шара






Чтобы рассчитать статистическую вероятность необходимо после проведения испытаний подсчитать: общее число всех проведенных испытаний (n) число испытаний, в которых появилось событие А (m) рассчитать относительную частоту W(A) Пример: При обследовании 250 студентов у 25 человек был обнаружен бронхит. Какова вероятность заболевания у студентов? Решение: 1.общее число всех проведенных испытаний=250 2.число испытаний, в которых появилось событие А=25 Относительная частота:


Комбинаторика Перестановками называют комбинации, состоящие из одних и тех же n различных элементов и отличающиеся только порядком их расположения. Число возможных перестановок рассчитывается по формуле: P n = n!, n!= 123…n, причем 0!=1, 1!=1 Размещениями называют комбинации, составленные из n различных элементов по m элементов в каждом, которые отличаются либо элементами, либо их порядком. Число возможных размещений


Сочетаниями называют комбинации, составленные из n различных элементов по m элементов в каждом, которые отличаются хотя бы одним элементом Пример: Приема у врача ожидают 3 мужчин и 5 женщин. Врач вызывает двоих. Какова вероятность того, что зайдут один мужчина и одна женщина? Решение: 1) Число общих исходов (способы, которые позволяют вызвать 1 мужчину и 1 женщину из 8 человек) 2) Число благоприятных исходов для мужчин -, для женщин Вероятность




РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА: Основная литература: Ганичева А.В., Козлов В.П. Математика для психологов. М.: Аспект-пресс, 2005, с Павлушков И.В. Основы высшей математики и математической статистики. М., ГЭОТАР-Медиа, Журбенко Л. Математика в примерах и задачах. М.: Инфра-М, 2009.

Поделиться