Презентация на тему кислород. Презентация по химии на тему "кислород" Скачать презентацию на тему кислород

Слайд 2

Кислоро́д - элемет главной подгруппы VI группы, второго периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 8. Обозначается символом O (лат. Oxygenium). Кислород - химически активный неметалл, является самым лёгким элементом из группы халькогенов. Простое вещество кислород при нормальных условиях - газ без цвета, вкуса и запаха, молекула которого состоит из двух атомов кислорода (формула O2), в связи с чем его также называют дикислород. Жидкий кислород имеет светло-голубой цвет, а твёрдый представляет собой кристаллы светло-синего цвета.

Слайд 3

Существуют и другие аллотропные формы кислорода, например, озон - при нормальных условиях газ голубого цвета со специфическим запахом, молекула которого состоит из трёх атомов кислорода (формула O3).

Слайд 4

История открытия

Официально считается, что кислород был открыт английским химиком Джозефом Пристли 1 августа 1774 года путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы). Однако Пристли первоначально не понял, что открыл новое простое вещество, он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье. В 1775 году А. Лавуазье установил, что кислород является составной частью воздуха, кислот и содержится во многих веществах. Несколькими годами ранее (в 1771 году) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.

Слайд 5

Важным этапом, который способствовал открытию кислорода, были работы французского химика Пьера Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида. Наконец, окончательно разобрался в природе полученного газа А. Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория. Лавуазье провёл опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожженных элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теорию флогистона. Флогисто́н (от греч. - горючий, воспламеняемый) - в истории химии - гипотетическая «сверхтонкая материя» - «огненная субстанция», якобы наполняющая все горючие вещества и высвобождающаяся из них при горении. Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.

Слайд 6

Джозеф Пристли Антуан Лоран Лавуазье Карл Вильгельм Шее́ле

Слайд 7

Происхождение названия

Слово кислород своим появлением в русском языке до какой-то степени обязано М. В. Ломоносову, который ввёл в употребление, наряду с другими неологизмами, слово «кислота»; таким образом слово «кислород», в свою очередь, явилось калькой термина «оксиген», предложенного А. Лавуазье, который переводится как «порождающий кислоту», что связано с первоначальным значением его - «кислота», ранее подразумевавшим окислы, именуемые по современной международной номенклатуре оксидами.

Слайд 8

Нахождение в природе

Кислород - самый распространённый на Земле элемент, на его долю (в составе различных соединений, главным образом силикатов) приходится около 47 % массы твёрдой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода - 85,82 % (по массе). Более 1500 соединений земной коры в своём составе содержат кислород. Кислород входит в состав многих органических веществ и присутствует во всех живых клетках. По числу атомов в живых клетках он составляет около 25 %, по массовой доле - около 65 %.

Слайд 9

Получение

В настоящее время в промышленности кислород получают из воздуха. Основным промышленным способом получения кислорода является криогенная ректификация. Также хорошо известны и успешно применяются в промышленности кислородные установки, работающие на основе мембранной технологии. В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением около 15 МПа. Небольшие количества кислорода можно получать нагреванием перманганата калия KMnO4:

Слайд 10

Используют также реакцию каталитического разложения пероксида водорода Н2О2 в присутствии оксида марганца(IV): Кислород можно получить каталитическим разложением хлората калия (бертолетовой соли) KClO3: К лабораторным способам получения кислорода относится метод электролиза водных растворов щелочей, а также разложение оксида ртути(II) (при t = 100 °C): На подводных лодках обычно получается реакцией пероксида натрия и углекислого газа, выдыхаемого человеком:

Слайд 11

Физические свойства

При нормальных условиях кислород - это газ без цвета, вкуса и запаха. 1 л его имеет массу 1,429 г. Немного тяжелее воздуха. Слабо растворяется в воде (4,9 мл/100 г при 0 °C, 2,09 мл/100 г при 50 °C) и спирте (2,78 мл/100 г при 25 °C). Хорошо растворяется в расплавленном серебре. При нагревании газообразного кислорода происходит его обратимая диссоциация на атомы: при 2000 °C - 0,03 %, при 2600 °C - 1 %, 4000 °C - 59 %, 6000 °C - 99,5 %. Жидкий кислород (температура кипения −182,98 °C) - это бледно-голубая жидкость. Твёрдый кислород (температура плавления −218,35°C) - синие кристаллы.

Слайд 12

Химические свойства

Сильный окислитель, взаимодействует практически со всеми элементами, образуя оксиды. Степень окисления −2. Как правило, реакция окисления протекает с выделением тепла и ускоряется при повышении температуры. Пример реакций, протекающих при комнатной температуре: Окисляет соединения, которые содержат элементы с не максимальной степенью окисления: Окисляет большинство органических соединений: При определённых условиях можно провести мягкое окисление органического соединения:

Слайд 13

Кислород реагирует непосредственно (при нормальных условиях, при нагревании и/или в присутствии катализаторов) со всеми простыми веществами, кроме Au и инертных газов (He, Ne, Ar, Kr, Xe, Rn); реакции с галогенами происходят под воздействием электрического разряда или ультрафиолета. Косвенным путём получены оксиды золота и тяжёлых инертных газов (Xe, Rn). Во всех двухэлементных соединениях кислорода с другими элементами кислород играет роль окислителя, кроме соединений со фтором. Кислород образует пероксиды со степенью окисления атома кислорода, формально равной −1. Например, пероксиды получаются при сгорании щелочных металлов в кислороде: Некоторые оксиды поглощают кислород:

Слайд 14

Кислород поддерживает процессы дыхания, горения, гниения. Горение стальной проволоки в кислороде.

Слайд 15

Применение

  • Слайд 16

    Широкое промышленное применение кислорода началось в середине XX века, после изобретения турбодетандеров - устройств для сжижения и разделения жидкого воздуха. 1. В металлургии Конвертерный способ производства стали или переработки штейнов связан с применением кислорода. Во многих металлургических агрегатах для более эффективного сжигания топлива вместо воздуха в горелках используют кислородно-воздушную смесь. 2.Сварка и резка металлов Кислород в баллонах широко используется для газопламенной резки и сварки металлов.

    Слайд 17

    3. Ракетное топливо В качестве окислителя для ракетного топлива применяется жидкий кислород, пероксид водорода, азотная кислота и другие богатые кислородом соединения. Смесь жидкого кислорода и жидкого озона - один из самых мощных окислителей ракетного топлива (удельный импульс смеси водород - озон превышает удельный импульс для пары водород-фтор и водород-фторид кислорода) . 4. В медицине Кислород используется для обогащения дыхательных газовых смесей при нарушении дыхания, для лечения астмы, профилактики гипоксии в виде кислородных коктейлей, кислородных подушек. 5.В пищевой промышленности В пищевой промышленности кислород зарегистрирован в качестве пищевой добавки E948, как пропеллент и упаковочный газ.

    Слайд 18

    6. В сельском хозяйстве: В тепличном хозяйстве, для изготовления кислородных коктейлей, для прибавки в весе у животных, для обогащения кислородом водной среды в рыбоводстве

    Слайд 19

    Некоторые производные кислорода (реактивные формы кислорода), такие как синглетный кислород, перекись водорода, супероксид, озон и гидроксильный радикал, являются высокотоксичными продуктами. Они образуются в процессе активирования или частичного восстановления кислорода. Супероксид (супероксидный радикал), перекись водорода и гидроксильный радикал могут образовываться в клетках и тканях организма человека и животных и вызывают оксидативный стресс.

    Слайд 20

    Спасибо за внимание

    Посмотреть все слайды


    Антуан Лоран ЛАВУАЗЬЕ () () Исследовал кислород и создал кислородную теорию горения, пришедшую на смену флогистонной теории. Исследовал кислород и создал кислородную теорию горения, пришедшую на смену флогистонной теории.


    Кислород – самый распространенный элемент на Земле В воздухе 21% (по объему), В воздухе 21% (по объему), в земной коре 49% (по массе), в земной коре 49% (по массе), в гидросфере 89% (по массе), в гидросфере 89% (по массе), в живых организмах до 65% массы. в живых организмах до 65% массы.


    Физические свойства Агрегатное состояние - газ при обычных условиях. При очень низких температурах (-183°С) переходит в жидкое агрегатное состояние (голубая жидкость), а при еще более низких температурах (-219°С) становится твёрдым (синие снежные кристаллы). Агрегатное состояние - газ при обычных условиях. При очень низких температурах (-183°С) переходит в жидкое агрегатное состояние (голубая жидкость), а при еще более низких температурах (-219°С) становится твёрдым (синие снежные кристаллы). Цвет – бесцветный. Цвет – бесцветный. Запах - без запаха. Запах - без запаха. Растворимость в воде - плохо растворяется. Растворимость в воде - плохо растворяется. Тяжелее воздуха (М воздуха = 29 г/моль, а М О 2 = 32 г/моль. Тяжелее воздуха (М воздуха = 29 г/моль, а М О 2 = 32 г/моль.




    Химические свойства Кислород очень сильный окислитель! Он окисляет многие вещества уже при комнатной температуре (медленное окисление) и тем более при нагревании или при горении вещества (быстрое окисление). Кислород очень сильный окислитель! Он окисляет многие вещества уже при комнатной температуре (медленное окисление) и тем более при нагревании или при горении вещества (быстрое окисление). В реакциях со всеми элементами (кроме фтора) кислород всегда ОКИСЛИТЕЛЬ. В реакциях со всеми элементами (кроме фтора) кислород всегда ОКИСЛИТЕЛЬ.


    Реакции с металлами В результате реакции образуется оксид этого металла. Например, алюминий окисляется кислородом согласно уравнению: В результате реакции образуется оксид этого металла. Например, алюминий окисляется кислородом согласно уравнению: t° 4Al + 3O 2 2Al 2 O 3 t° 4Al + 3O 2 2Al 2 O 3 Другой пример. При опускании раскалённой железной проволоки в склянку с кислородом, проволока сгорает, разбрызгивая в стороны снопы искр - раскалённых частичек железной окалины Fe 3 O 4: t° 3Fe + 2O 2 Fe 3 O 4 t° 3Fe + 2O 2 Fe 3 O 4




    Другие примеры реакций с неметаллами Горение серы в кислороде с образованием сернистого газа SO 2: t° S + O 2 SO 2 t° S + O 2 SO 2 Горение угля в кислороде с образованием углекислого газа: Горение угля в кислороде с образованием углекислого газа: t° С + О 2 СО 2 t° С + О 2 СО 2


    Реакции с некоторыми сложными веществами В этом случае образуются оксиды элементов, из которых состоит молекула сложного вещества. В этом случае образуются оксиды элементов, из которых состоит молекула сложного вещества. Например, при обжиге сульфида меди (II) Например, при обжиге сульфида меди (II) t° 2CuS + 3O 2 2CuO + 2SO 2 t° 2CuS + 3O 2 2CuO + 2SO 2 образуются два оксида оксид меди (II) и оксид серы (IV). образуются два оксида оксид меди (II) и оксид серы (IV). При обжиге сульфидов образуется всегда оксид серы, валентность серы в котором равна IV. При обжиге сульфидов образуется всегда оксид серы, валентность серы в котором равна IV. Другой пример горение метана СН 4. Так как эта молекула состоит из атомов элементов углерода С и водорода Н, значит, образуется два оксида оксид углерода (IV) СО 2 и оксид водорода, то есть вода - Н 2 О: t° СН 4 + 2О 2 СО 2 + 2Н 2 О t° СН 4 + 2О 2 СО 2 + 2Н 2 О


    Химическое взаимодействие вещества с кислородом называется реакцией окисления. Реакции окисления, сопровождающиеся выделением теплоты и света, называются реакциями горения. Реакции горения веществ это примеры быстрого окисления, а вот гниение, ржавление и т.п. это примеры медленного окисления веществ кислородом Реакции горения веществ это примеры быстрого окисления, а вот гниение, ржавление и т.п. это примеры медленного окисления веществ кислородом


    Получение кислорода (лабораторные способы) разложение воды электрическим током разложение воды электрическим током разложение пероксида водорода Н 2 О 2 под действием катализатора MnO 2 разложение пероксида водорода Н 2 О 2 под действием катализатора MnO 2 разложение перманганата калия KMnO 4 при нагревании. разложение перманганата калия KMnO 4 при нагревании.


    Получение кислорода (промышленный способ) В промышленности для получения чистого кислорода используют перегонку жидкого воздуха, основанную на разных температурах кипения компонентов воздуха. Воздух охлаждают примерно до -200°С и затем медленно нагревают. При достижении температуры - 183°С из жидкого воздуха улетучивается кислород, остальные компоненты сжиженного воздуха при этой температуре остаются в жидком агрегатном состоянии. В промышленности для получения чистого кислорода используют перегонку жидкого воздуха, основанную на разных температурах кипения компонентов воздуха. Воздух охлаждают примерно до -200°С и затем медленно нагревают. При достижении температуры - 183°С из жидкого воздуха улетучивается кислород, остальные компоненты сжиженного воздуха при этой температуре остаются в жидком агрегатном состоянии.


    Применение кислорода в строительстве и машиностроении в строительстве и машиностроении - для кислородно - ацетиленовой газосварки и газорезки металлов - для кислородно - ацетиленовой газосварки и газорезки металлов - для напыления и наплавки металлов в нефтедобыче в нефтедобыче - при закачке в пласт для повышения энергии вытеснения в металлургии и горнодобывающей промышленности в металлургии и горнодобывающей промышленности - при конвективном производстве стали, кислородном дутье в доменных печах, извлечение золота и руд, производстве ферросплавов, выплавке никеля, цинка свинца, циркония и др. цветных металлов - при конвективном производстве стали, кислородном дутье в доменных печах, извлечение золота и руд, производстве ферросплавов, выплавке никеля, цинка свинца, циркония и др. цветных металлов - при прямом восстановлении железа - при прямом восстановлении железа - при огневой зачистке в литейном производстве - при огневой зачистке в литейном производстве - при огневом бурении твердых пород


    Применение кислорода в медицине в медицине - в оксибарокамерах - в оксибарокамерах - при заправке кислородных масок, подушек и т.д. - при заправке кислородных масок, подушек и т.д. - в палатах со специальным микроклиматом - в палатах со специальным микроклиматом - для изготовления кислородных коктейлей - для изготовления кислородных коктейлей - при выращивании микроорганизмов - при выращивании микроорганизмов в экологии в экологии - при очистке питьевой воды - при очистке питьевой воды - при вторичной переработке металлов - при вторичной переработке металлов - при продувке сточных вод кислородом - при продувке сточных вод кислородом - при обезвреживании химически активных отходов в очистных установках в мусоросжигательных печах - при обезвреживании химически активных отходов в очистных установках в мусоросжигательных печах


    Применение кислорода в химической промышленности в химической промышленности - при производстве ацетилена, целлюлозы, метилового спирта, аммиака, азотной и серной кислоты - при производстве ацетилена, целлюлозы, метилового спирта, аммиака, азотной и серной кислоты - при каталитической конверсии природного газа (при производстве синтетического аммиака) - при каталитической конверсии природного газа (при производстве синтетического аммиака) - при высокотемпературной конверсии метана - при высокотемпературной конверсии метана в энергетике в энергетике - при газификации твердого топлива - при газификации твердого топлива - для обогащения воздуха для бытовых и промышленных котлов - для обогащения воздуха для бытовых и промышленных котлов - для сжатия водно-угольной смеси - для сжатия водно-угольной смеси


    Применение кислорода в военной технике в военной технике - в барокамерах - в барокамерах - для работы дизельных двигателей под водой - для работы дизельных двигателей под водой - в качестве окислителя топлива для ракетных двигателей - в качестве окислителя топлива для ракетных двигателей в сельском хозяйстве в сельском хозяйстве - для обогащения кислородом водной среды в рыболовстве - для обогащения кислородом водной среды в рыболовстве - при изготовлении кислородных коктейлей - при изготовлении кислородных коктейлей - для прибавки животных в весе - для прибавки животных в весе


    ОЗОН Аллотропная модификация кислорода Озон О 3 - газ голубого цвета с резким запахом. Каждый, кто обратил внимание на то, как пахнет воздух после грозы или вблизи источника электрического разряда, знает запах этого газа очень хорошо. Озон О 3 - газ голубого цвета с резким запахом. Каждый, кто обратил внимание на то, как пахнет воздух после грозы или вблизи источника электрического разряда, знает запах этого газа очень хорошо. В природе озон образуется под действием ультрафиолетового излучения Солнца, а также получается при электрических разрядах в атмосфере: В природе озон образуется под действием ультрафиолетового излучения Солнца, а также получается при электрических разрядах в атмосфере:


    Озон - очень сильный окислитель, поэтому его используют при обеззараживании питьевой воды. При контакте с большинством способных окисляться веществ происходит взрыв. Озон образуется в атмосфере Земли на высоте 25 км под действием солнечной радиации, он поглощает опасное излучение Солнца. Однако в озоновом "зонтике" Земли, толщиной всего около 30 метров, то и дело возникают "дыры". В воздух попадает все больше "вредных" для озона газов, вроде монооксида азота NO или тех веществ, которые используются для наполнения холодильных установок и аэрозольных баллончиков. Даже частичное исчезновение озонового слоя над Землей грозит всему живому гибелью... Однако в озоновом "зонтике" Земли, толщиной всего около 30 метров, то и дело возникают "дыры". В воздух попадает все больше "вредных" для озона газов, вроде монооксида азота NO или тех веществ, которые используются для наполнения холодильных установок и аэрозольных баллончиков. Даже частичное исчезновение озонового слоя над Землей грозит всему живому гибелью...



    1. История открытия кислорода 2. Значение кислорода 3. Кислород как элемент 4. Кислород как простое вещество 5. Физические свойства кислорода 6. Химические свойства 7. Способы получения 8. Применение кислорода


    Опыты с 1768 по 1773: «Исследования воздуха являются в настоящее время важнейшим предметом химии» год: «Атмосферный воздух состоит из двух частей: «огненный воздух» - поддерживает дыхание и горение, «испорченный воздух» - не поддерживает горения».










    1. Элемент кислород находится в VI группе, главной подгруппе, II периоде, порядковый номер 8, Ar = Строение атома: P 1 1 = 8; n 0 1 = 8; ē = 8 валентность II, степень окисления -2 (редко +2; +1; -1). 3. Входит в состав оксидов, оснований, солей, кислот, органических веществ, в том числе живых организмов- до 65% по массе


    4. В земной коре его 49% по массе, в гидросфере – 89 % по массе. 5. В составе воздуха (в виде простого вещества) – 20-21% по объёму. Состав воздуха: О 2 – %; N 2 – 78 %; CO 2 – 0,03 %, остальное приходится на инертные газы, пары воды, примеси Кислород является самым распространённым элементом нашей планеты. По весу на его долю приходится примерно половина общей массы всех элементов земной коры.




    Химическая формула – О 2, Mr (О 2) = 32; М = 32 г / моль. В составе атмосферы около 21 % кислорода, (1\5 часть). Человек в сутки вдыхает примерно 750 литров кислорода. Основные поставщики кислорода - тропические леса и фитопланктон океана. Ежегодно в результате фотосинтеза в атмосферу Земли поступает 3000 млрд. тонн кислорода.


    Газ - без цвета, вкуса и запаха; в 100V H 2 O растворяется 3V O 2 (н.у.); t кип= -183 С; t пл = -219 C; d по воздуху = 1,1. При давлении 760 мм. рт.ст. и температуре –183 С кислород сжижается




    С неметаллами C + O 2 CO 2 S + O 2 SO 2 2H 2 + O 2 2H 2 O Со сложными веществами 4FeS O 2 2Fe 2 O 3 + 8SO 2 2H 2 S + 3O 2 2SO 2 + 2H 2 O CH 4 + 2O 2 CO 2 + 2H 2 O С металлами 2Mg + O 2 2MgO 2Cu + O 2 – t 2CuO Взаимодействие веществ с кислородом называется окислением. С кислородом реагируют все элементы, кроме Au, Pt, He, Ne и Ar, во всех реакциях (кроме взаимодействия со фтором) кислород - окислитель. Озон –газ – 1. Неустойчив: O 3 O 2 + O 2. Сильный окислитель: 2KI + O 3 + H 2 O 2KOH + I 2 + O 2 Обесцвечивает красящие вещества, отражает УФ - лучи, уничтожает микроорганизмы. Кислород-газ реагирует:




    I. Промышленный способ (перегонка жидкого воздуха). II. Лабораторный способ (разложение некоторых кислородосодержащих веществ) 2KClO 3 – t ;MnO2 2KCl + 3O 2 2H 2 O 2 – MnO2 2H 2 O + O 2 Получение 3O 2 2O 3 Во время грозы (в природе), (в лаборатории) в озонаторе


    Перманганата калия при нагревании: 2KMnO 4 – t K 2 MnO 4 + MnO 2 + O 2 Разложение этой соли идёт при нагревании её выше С. Нагрев 2KMnO 4 Проверка собравшегося кислорода


    Вытеснение воды вытеснение воздуха =


    Находит широкое применение в медицине и промышленности. При высотных полётах лётчиков снабжают специальными приборами с кислородом. При многих лёгочных и сердечных заболеваниях, а также при операциях дают вдыхать кислород из кислородных подушек. Кислородом в баллонах снабжают подводные лодки. Горение рыхлого горючего материала, пропитанного жидким кислородом, сопровождается взрывом, что даёт возможность применять кислород при взрывных работах. Жидкий кислород применяют в реактивных двигателях, в автогенной сварке и резке металлов, даже под водой


    1.Кто назвал кислород «огненным», а азот « испорченным» воздухом? А) Лавуазье В) Пристли С) Шееле 2.Какие вещества образует химический элемент кислород? А) только простые вещества В) простые и сложные вещества С) только сложные вещества. 3.Как называются бинарные соединения, молекулы которых образованы атомами какого-либо химического элемента и кислорода: А) сульфиды, В) хлориды, С) оксиды


    4.В 1774 году один учёный после проведённого эксперимента написал: «Но что поразило меня больше всего – это то, что свеча горела в этом воздухе удивительно блестящим пламенем…» Это был: А) Лавуазье В) Пристли С) Шееле 5.Название «Oxygenium» предложил: А) Лавуазье В) Пристли С) Шееле 6.Кислород в воде: А) хорошо растворим В)малорастворим С)вообще не растворяется 7.При вдувании кислорода в пламя температура пламени: А) не изменяется В) понижается С) повышается


    8.Оксид железа (III) имеет формулу: А) Fe 2 O 3 В) FeO 3 С) Fe 3 O 4 9.В каком уравнении коэффициенты расставлены правильно: А) 2P + O 2 = P 2 O 5 В) 2P + 5O 2 = P 2 O 5 С) 4P + 5O 2 = 2P 2 O 5 10.В каком ряду все три формулы написаны правильно: А) P 2 O 5, Al 2 O, H 2 O В) MgO, Al 2 O 3, CO 2 С) CO 2, HO, P 2 O 5

    Презентация "Кислород" может быть использована учителем химии в учебном процессе в качестве учебного электронного тематического пособия:

    • на уроках химии при объяснении нового и закреплении пройденного материала по теме "Химия простых веществ. Кислород";
    • во внеклассной работе - на факультативных занятиях и кружках;
    • при индивидуальных занятиях с учащимися;
    • при подготовке учащихся к практическим работам по получению, собиранию и обнаружению газообразных веществ.

    Так, например, объяснение нового материала на уроке "Кислород" можно провести на основе беседы с учащимися. Учитель может построить ее на повторяющемся вопросе - что вам известно о:? И далее следует вопрос или вопросы, которые представлены в "Приложении" презентации. Учитель может перефразировать вопросы, изменить их последовательность, сократить их общий объем. Ответы учащихся учитель дополняет своим рассказом и показом соответствующих слайдов. Объяснение нового материала можно провести и по другой схеме: показ слайда (слайдов), затем рассказ учителя с элементами беседы; либо - сначала рассказ учителя, затем показ слайда (слайдов) и беседа с учащимися (если она уместна).

    Учитель может приостановить презентацию для показа демонстрационных опытов, либо видеоопытов, а затем возобновить работу с ней.

    Для большей заинтересованности учащихся в получении знаний по теме и активизации их на уроке учитель предлагает им выполнить заранее домашнее задание творческого характера. Задание в виде вопросов предлагается всему классу, либо оно распределяется по группам класса. Учащиеся должны подготовить ответы на вопросы. Вопросы, например, такие:

    1. Кто и как открыл кислород? В какое историческое время это было?

    2. Что надо понимать под круговоротом элементов в природе? Как осуществляется круговорот кислорода в природе?

    3. Что интересного вам известно о кислороде и озоне? Какие важные функции на Земле выполняют эти два вещества?

    Повторение пройденного материала по теме "Химия простых веществ. Кислород" учитель может провести также на основе презентации. Вопросы, которые представлены в "Приложении" презентации "Кислород" (слайды № 33 - 34), могут быть избирательно использованы при фронтальном опросе учащихся. Если возникают затруднения при ответах учащихся, то есть возможность вернуться к рассмотрению данного вопроса на основе соответствующего слайда. Наличие гиперссылок облегчат поиск нужного слайда.

    Использовать презентацию "Кислород" могут и учащиеся при дистанционном обучении, при выполнении домашних заданий, подготовке к контрольным и практическим работам, самопроверке своих знаний по теме. На каждый вопрос "Вопросника" из "Приложения" презентации предлагается ответ - его можно найти с помощью гиперссылки: открывается нужный слайд.

    Наличие такого электронного пособия, как презентация "Кислород" в кабинете химии, дает возможность учителю сократить время на подготовку к уроку, повысить заинтересованность учащихся в изучении темы, повысить уровень обученности и качества знаний учащихся.

    Приложение в презентации "Вопросник к теме "Кислород" (с гиперссылками на слайды)

    1. Назовите восьмой элемент "Периодической системы химических элементов Д.И.Менделеева" (слайд № 4)

    2. Кем и когда был открыт кислород? (слайды № 6 - 9)

    3. Почему элемент № 8 был назван кислородом? (слайд № 5)

    4. Где и в каком виде (свободном или связанном) кислород встречается в природе? (слайды № 10 - 11)

    5. Каков состав атмосферного воздуха? (слайд № 12)

    6. Каков состав выдыхаемого человеком воздуха? (слайд № 13)

    7. Перечислите известные вам загрязнители воздуха? (слайд № 14)

    8. Дайте характеристику кислороду как химическому элементу (слайд №15)

    9. Какие аллотропные модификации кислорода вам известны? (слайд №16)

    10. Какими примечательными свойствами обладает озон в отличие от кислорода? (слайды № 16 -17)

    11. На каких физических свойствах кислорода основаны способы собирания его? Как можно обнаружить кислород? (слайд № 18)

    12. Как кислород получают в лаборатории? (слайды № 19 - 21)

    13. Как кислород получают в промышленности? (слайд № 22)

    14. Перечислите важнейшие химические свойства кислорода. Что такое окисление? Какие продукты, как правило, получаются в реакциях окисления веществ кислородом? (слайды № 23 - 24)

    15. Что понимается под окислительно-восстановительными способностями кислорода? Какие функции преобладают у него? Приведите примеры. (слайд № 25)

    16. Какие условия способствуют возникновению и прекращению горения? Почему скорость горения веществ в кислороде выше, чем на воздухе? (слайд № 26)

    17. Чем отличаются процессы горения и медленного окисления? (слайд № 27)

    18. Какие выводы можно сделать по химическим свойствам кислорода? (слайд № 28)

    19. Почему кислород относят к "элементам жизни"? (слайд № 29)

    20. Какая самая важная функция у кислорода на Земле? (слайд № 30)

    21. Перечислите области применения кислорода (слайд № 31)

    22. Как вы понимаете сущность круговорота кислорода в природе? (слайд № 32)

  • Поделиться