Структура, классификация, номенклатура комплексных соединений. Комплексные соединения, конспект лекции Комплексные соединения внутренняя и внешняя сферы

Название соли образуется из названия аниона, за которым следует название катиона (табл. 4.17). В названиях кислых солей к аниону присоединяют приставку гидро-. Численные приставки используются только в названиях некоторых кислых солей. В названиях двойных солей катионы перечисляются в алфавитном порядке. В названиях основных солей анионы перечисляются в алфавитном порядке.

Названия гидратных солей образуются двумя способами. Если известно, что одна или несколько молекул воды координированы с центральным атомом комплексного иона, можно воспользоваться системой наименования комплексных ионов, описанной выше. Для более распространенных гидратных солей степень гидратации указывают численной приставкой к слову «гидрат». Например, CuSO4 5H2O называется пента-гидрат сульфата меди (II).

Комплексные ионы

Комплексный ион состоит из центрального атома, связанного с несколькими лиган-дами-другими атомами, ионами либо группами атомов.

Формулу комплексного иона заключают в квадратные скобки. Заряд такого иона указывают за правой скобкой. В скобках сначала указывают символ центрального атома. За ним следуют формулы анионных лигандов, а затем нейтральных лигандов, перечисляемых в алфавитном порядке их донорного атома (см. гл. 14). Многоатомные лиганды записывают в круглых скобках.

В названиях комплексных ионов сначала указывают лиганды. Их перечисляют в алфавитном порядке, не учитывая численных приставок. Название комплексного иона завершается названием металла с указанием соответствующей степени окисления (в скобках). В названиях комплексных катионов используются русские названия металлов (табл. 4.14.)*. В названиях комплексных анионов используются латинские названия металлов с суффиксом -am.

В табл. 4.15 указаны названия и формулы некоторых наиболее распространенных лигандов, а в табл. 4.16 -названия комплексных анионов некоторых металлов.

Комплексные соединения

Урок-лекция 11 класс

Занятие, представленное на конкурс «Я иду на урок», я провожу в 11-м биолого-химическом классе, где на изучение химии отводится 4 часа в неделю.

Тему «Комплексные соединения» я взяла, во-первых, потому что эта группа веществ имеет исключительно большое значение в природе; во-вторых, многие задания ЕГЭ включают понятие о комплексных соединениях; в-третьих, учащиеся из этого класса выбирают профессии, связанные с химией, и будут встречаться с группой комплексных соединений в будущем.

Цель. Сформировать понятие о составе, классификации, строении и основах номенклатуры комплексных соединений; рассмотреть их химические свойства и показать значение; расширить представления учащихся о многообразии веществ.

Оборудование. Образцы комплексных соединений.

План урока

I. Организационный момент.

II. Изучение нового материала (лекция).

III. Подведение итогов и постановка домашнего задания.

План лекции

1. Многообразие веществ.

2. Координационная теория А.Вернера.

3. Строение комплексных соединений.

4. Классификация комплексных соединений.

5. Природа химической связи в комплексных соединениях.

6. Номенклатура комплексных соединений.

7. Химические свойства комплексных соединений.

8. Значение комплексных соединений.

ХОД УРОКА

I. Организационный момент

II. Изучение нового материала

Многообразие веществ

Мир веществ многообразен, и мы уже знакомы с группой веществ, которые принадлежат к комплексным соединениям. Данными веществами стали заниматься с XIX в., но понять их строение с позиций существовавших представлений о валентности было трудно.

Координационная теория А.Вернера

В 1893 г. швейцарским химиком-неоргаником Альфредом Вернером (1866–1919) была сформулирована теория, позволившая понять строение и некоторые свойства комплексных соединений и названная координационной теорией*. Поэтому комплексные соединения часто называют координационными соединениями.

Соединения, в состав которых входят сложные ионы, существующие как в кристалле, так и в растворе, называются комплексными, или координационными.

Строение комплексных соединений

Согласно теории Вернера центральное положение в комплексных соединениях занимает, как правило, ион металла, который называют центральным ионом, или комплексообразователем.

Комплексообразователь – частица (атом, ион или молекула), координирующая (располагающая) вокруг себя другие ионы или молекулы.

Комплексообразователь обычно имеет положительный заряд, является d -элементом, проявляет амфотерные свойства, имеет координационное число 4 или 6. Вокруг комплексообразователя располагаются (координируются) молекулы или кислотные остатки – лиганды (адденды).

Лиганды – частицы (молекулы и ионы), координируемые комплексообразователем и имеющие с ним непосредственно химические связи (например, ионы: Cl – , I – , NO 3 – , OH – ; нейтральные молекулы: NH 3 , H 2 O, CO).

Лиганды не связаны друг с другом, так как между ними действуют силы отталкивания. Когда лигандами являются молекулы, между ними возможно молекулярное взаимодействие. Координация лигандов около комплексообразователя является характерной чертой комплексных соединений (рис. 1).

Координационное число – это число химических связей, которые комплексообразователь образует с лигандами.

Рис. 2. Тетраэдрическая структура иона –

Значение координационного числа комплексообразователя зависит от его природы, степени окисления, природы лигандов и условий (температура, концентрация), при которых протекает реакция комплексообразования. Координационное число может иметь значения от 2 до 12. Наиболее распространенными являются координационные числа 4 и 6. Для координационного числа 4 структура комплексных частиц может быть тетраэдрической – (рис. 2) и в виде плоского квадрата (рис. 3). Комплексные соединения с координационным числом 6 имеют октаэдрическое строение 3– (рис. 4).

Рис. 4. Ион 3 – октаэдрического строения

Комплексообразователь и окружающие его лиганды составляют внутреннюю сферу комплекса. Частица, состоящая из комплексообразователя и окружающих лигандов, называется комплексным ионом. При изображении комплексных соединений внутреннюю сферу (комплексный ион) ограничивают квадратными скобками. Остальные составляющие комплексного соединения расположены во внешней сфере (рис. 5).

Суммарный заряд ионов внешней сферы должен быть равен по значению и противоположен по знаку заряду комплексного иона:

Классификация комплексных соединений

Большое многообразие комплексных соединений и их свойств не позволяет создать единую классификацию. Однако можно группировать вещества по некоторым отдельным признакам.

1) По составу.

2) По типу координируемых лигандов.

а) Аквакомплексы – это комплексные катионы, в которых лигандами являются молекулы H 2 O. Их образуют катионы металлов со степенью окисления +2 и больше, причем способность к образованию аквакомплексов у металлов одной группы периодической системы уменьшается сверху вниз.

Примеры аквакомплексов:

Cl 3 , (NO 3) 3 .

б)Гидроксокомплексы – это комплексные анионы, в которых лигандами являются гидроксид-ионы OH – . Комплексообразователями являются металлы, склонные к проявлению амфотерных свойств – Be, Zn, Al, Cr.

Например: Na, Ba.

в) Аммиакаты – это комплексные катионы, в которых лигандами являются молекулы NH 3 . Комплексообразователями являются d -элементы.

Например: SO 4 , Cl.

г) Ацидокомплексы – это комплексные анионы, в которых лигандами являются анионы неорганических и органических кислот.

Например: K 3 , Na 2 , K 4 .

3) По заряду внутренней сферы.

Природа химической связи в комплексных соединениях

Во внутренней сфере между комплексообразователем и лигандами существуют ковалентные связи, образованные в том числе и по донорно-акцепторному механизму. Для образования таких связей необходимо наличие свободных орбиталей у одних частиц (имеются у комплексообразователя) и неподеленных электронных пар у других частиц (лиганды). Роль донора (поставщика электронов) играет лиганд, а акцептором, принимающим электроны, является комплексообразователь. Донорно-акцепторная связь возникает как результат перекрывания свободных валентных орбиталей комплексообразователя с заполненными орбиталями донора.

Между внешней и внутренней сферой существует ионная связь. Приведем пример.

Электронное строение атома бериллия:

Электронное строение атома бериллия в возбужденном состоянии:

Электронное строение атома бериллия в комплексном ионе 2– :

Пунктирными стрелками показаны электроны фтора; две связи из четырех образованы по донорно-акцепторному механизму. В данном случае атом Be является акцептором, а ионы фтора – донорами, их свободные электронные пары заполняют гибридизованные орбитали (sp 3 -гибридизация).

Номенклатура комплексных соединений

Наибольшее распространение имеет номенклатура, рекомендованная IUPAC. Название комплексного аниона начинается с обозначения состава внутренней сферы: число лигандов обозначается греческими числительными: 2–ди, 3–три, 4–тетра, 5–пента, 6–гекса и т.д., далее следуют названия лигандов, к которым прибавляют соединительную гласную «о»: Cl – – хлоро-, CN – – циано-, OH – – гидроксо- и т.п. Если у комплексообразователя переменная степень окисления, то в скобках римскими цифрами указывают его степень окисления, а его название с суффиксом -ат: Zn – цинкат , Fe – феррат (III), Au – аурат (III). Последним называют катион внешней сферы в родительном падеже.

K 3 – гексацианоферрат(III) калия,

K 4 – гексацианоферрат(II) калия,

K 2 – тетрагидроксоцинкат калия.

Названия соединений, содержащих комплексный катион , строятся из названий анионов внешней среды, после которых указывается число лигандов, дается латинское название лиганда (молекула аммиака NH 3 – аммин, молекула воды H 2 O – аква от латинского названия воды) и русское название элемента-комплексообразователя; римской цифрой в скобках указывается степень окисления элемента-комплексообразователя, если она переменная. Например:

SO 4 – сульфат тетраамминмеди(II),

Cl 3 – хлорид гексаакваалюминия.

Химические свойства комплексных соединений

1. В растворе комплексные соединения ведут себя как сильные электролиты, т.е. полностью диссоциируют на катионы и анионы:

Cl 2 = Pt(NH 3) 4 ] 2+ + 2Cl – ,

K 2 = 2K + + 2– .

Диссоциация по такому типу называется первичной.

Вторичная диссоциация связана с удалением лигандов из внутренней сферы комплексного иона:

2– PtCl 3 – + Cl – .

Вторичная диссоциация происходит ступенчато: комплексные ионы ( 2–) являются слабыми электролитами.

2. При действии сильных кислот происходит разрушение гидроксокомплексов, например:

а) при недостатке кислоты

Na 3 + 3HCl = 3NaCl + Al(OH) 3 + 3H 2 O;

б) при избытке кислоты

Na 3 + 6HCl = 3NaCl + AlCl 3 + 6H 2 O.

3. Нагревание (термолиз) всех аммиакатов приводит к их разложению, например:

SO 4 CuSO 4 + 4NH 3 .

Значение комплексных соединений

Координационные соединения имеют исключительно большое значение в природе. Достаточно сказать, что почти все ферменты, многие гормоны, лекарства, биологически активные вещества представляют собой комплексные соединения. Например, гемоглобин крови, благодаря которому осуществляется перенос кислорода от легких к клеткам ткани, является комплексным соединением, содержащим железо (рис. 6), а хлорофилл, ответственный за фотосинтез в растениях, – комплексным соединением магния (рис. 7).

Значительную часть природных минералов, в том числе полиметаллических руд и силикатов, также составляют координационные соединения. Более того, химические методы извлечения металлов из руд, в частности меди, вольфрама, серебра, алюминия, платины, железа, золота и других, также связаны с образованием легкорастворимых, легкоплавких или летучих комплексов. Например: Na 3 – криолит, KNa 3 4 – нефелин (минералы, комплексные соединения, содержащие алюминий).

Современная химическая отрасль промышленности широко использует координационные соединения как катализаторы при синтезе высокомолекулярных соединений, при химической переработке нефти, в производстве кислот.

III. Подведение итогов и постановка домашнего задания

Домашнее задание.

1) Приготовиться по лекции к уроку-практикуму по теме: «Комплексные соединения».

2) Письменно дать характеристику следующим комплексным соединениям по строению и классифицировать по признакам:

K 3 , (NO 3) 3 , Na 2 , OH.

3) Написать уравнения реакций, при помощи которых можно осуществить превращения:

* За открытие этой новой области науки А.Вернер в 1913 г. был удостоен Нобелевской премии.

Глава 17.Комплексные соединения

17.1. Основные определения

В этой главе вы познакомитесь с особой группой сложных веществ, называемых комплексными (или координационными ) соединениями .

В настоящее время строгого определения понятия " комплексная частица" нет. Обычно используется следующее определение.

Например, гидратированный ион меди 2 – комплексная частица, так как она реально существует в растворах и некоторых кристаллогидратах, образована из ионов Cu 2 и молекул H 2 O, молекулы воды – реально существующие молекулы, а ионы Cu 2 существуют в кристаллах многих соединений меди. Напротив, ион SO 4 2 не является комплексной частицей, так как, хоть ионы O 2 в кристаллах встречаются, ион S 6 в химических системах не существует.

Примеры других комплексных частиц: 2 , 3 , , 2 .

Вместе с тем к комплексным частицам относят ионы NH 4 и H 3 O , хотя ионы H в химических системах не существуют.

Иногда комплексными частицами называют сложные химические частицы, все или часть связей в которых образованы по донорно-акцепторному механизму. В большинстве комплексных частиц так и есть, но, например, в алюмокалиевых квасцах SO 4 в комплексной частице 3 связь между атомами Al и O действительно образована по донорно-акцепторному механизму, а в комплексной частице имеется лишь электростатическое (ион-дипольное) взаимодействие. Подтверждение этого – существование в железоаммонийных квасцах аналогичной по строению комплексной частицы , в которой между молекулами воды и ионом NH 4 возможно только ион-дипольное взаимодействие.

По заряду комплексные частицы могут быть катионами, анионами, а также нейтральными молекулами. Комплексные соединения, включающие такие частицы, могут относиться к различным классам химических веществ (кислотам, основаниям, солям). Примеры: (H 3 O) – кислота, OH – основание, NH 4 Cl и K 3 – соли.

Обычно комплексообразователь – атом элемента, образующего металл, но это может быть и атом кислорода, азота, серы, йода и других элементов, образующих неметаллы. Степень окисления комплексообразователя может быть положительной, отрицательной или равной нулю; при образовании комплексного соединения из более простых веществ она не меняется.

Лигандами могут быть частицы, до образования комплексного соединения представлявшие собой молекулы (H 2 O, CO, NH 3 и др.), анионы (OH , Cl , PO 4 3 и др.), а также катион водорода. Различают унидентатные или монодентатные лиганды (связанные с центральным атомом через один из своих атомов, то есть, одной -связью), бидентатные (связанные с центральным атомом через два своих атома, то есть, двумя -связями), тридентатные и т. д.

Если лиганды унидентатные, то координационное число равно числу таких лигандов.

КЧ зависит от электронного строения центрального атома, от его степени окисления, размеров центрального атома и лигандов, условий образования комплексного соединения, температуры и других факторов. КЧ может принимать значения от 2 до 12. Чаще всего оно равно шести, несколько реже – четырем.

Существуют комплексные частицы и с несколькими центральными атомами.

Используются два вида структурных формул комплексных частиц: с указанием формального заряда центрального атома и лигандов, или с указанием формального заряда всей комплексной частицы. Примеры:

Для характеристики формы комплексной частицы используется представление о координационном полиэдре (многограннике).

К координационным полиэдрам относят также квадрат (КЧ = 4), треугольник (КЧ = 3) и гантель (КЧ = 2), хотя эти фигуры и не являются многогранниками. Примеры координационных полиэдров и имеющих соответствующую форму комплексных частиц для наиболее распространенных значений КЧ приведены на рис. 1.

17.2. Классификация комплексных соединений

Как химические вещества комплексные соединения делятся на ионные (их иногда называют ионогенными ) и молекулярные (неионогенные ) соединения. Ионные комплексные соединения содержат заряженные комплексные частицы – ионы – и являются кислотами, основаниями или солями (см. § 1). Молекулярные комплексные соединения состоят из незаряженных комплексных частиц (молекул), например: или – отнесение их к какому-либо основному классу химических веществ затруднительно.

Входящие в состав комплексных соединений комплексные частицы довольно разнообразны. Поэтому для их классификации используется несколько классификационных признаков: число центральных атомов, тип лиганда, координационное число и другие.

По числу центральных атомов комплексные частицы делятся на одноядерные и многоядерные . Центральные атомы многоядерных комплексных частиц могут быть связаны между собой либо непосредственно, либо через лиганды. И в том, и в другом случае центральные атомы с лигандами образуют единую внутреннюю сферу комплексного соединения:


По типу лигандов комплексные частицы делятся на

1) Аквакомплексы , то есть комплексные частицы, в которых в качестве лигандов присутствуют молекулы воды. Более или менее устойчивы катионные аквакомплексы m , анионные аквакомплексы неустойчивы. Все кристаллогидраты относятся к соединениям, содержащим аквакомплексы, например:

Mg(ClO 4) 2 . 6H 2 O на самом деле (ClO 4) 2 ;
BeSO 4 . 4H 2 O на самом деле SO 4 ;
Zn(BrO 3) 2 . 6H 2 O на самом деле (BrO 3) 2 ;
CuSO 4 . 5H 2 O на самом деле SO 4 . H 2 O.

2) Гидроксокомплексы , то есть комплексные частицы, в которых в качестве лигандов присутствуют гидроксильные группы, которые до вхождения в состав комплексной частицы были гидроксид-ионами, например: 2 , 3 , .

Гидроксокомплексы образуются из аквакомплексов, проявляющих свойства катионных кислот:

2 + 4OH = 2 + 4H 2 O

3) Аммиакаты , то есть комплексные частицы, в которых в качестве лигандов присутствуют группы NH 3 (до образования комплексной частицы – молекулы аммиака), например: 2 , , 3 .

Аммиакаты также могут быть получены из аквакомплексов, например:

2 + 4NH 3 = 2 + 4 H 2 O

Окраска раствора в этом случае меняется с голубой до ультрамариновой.

4) Ацидокомплексы , то есть комплексные частицы, в которых в качестве лигандов присутствуют кислотные остатки как бескислородных, так и кислородсодержащих кислот (до образования комплексной частицы – анионы, например: Cl , Br , I , CN , S 2 , NO 2 , S 2 O 3 2 , CO 3 2 , C 2 O 4 2 и т. п.).

Примеры образования ацидокомплексов:

Hg 2 + 4I = 2
AgBr + 2S 2 O 3 2 = 3 + Br

Последняя реакция используется в фотографии для удаления с фотоматериалов непрореагировавшего бромида серебра.
(При проявлении фотопленки и фотобумаги незасвеченная часть бромида серебра, содержащегося в фотографической эмульсии, не восстанавливается проявителем. Для ее удаления и используют эту реакцию (процесс носит название "фиксирования", так как неудаленный бромид серебра в дальнейшем на свету постепенно разлагается, разрушая изображение)

5) Комплексы, в которых лигандами являются атомы водорода, делятся на две совершенно разные группы: гидридные комплексы и комплексы, входящие в состав ониевых соединений.

При образовании гидридных комплексов – , , – центральный атом является акцептором электронов, а донором – гидридный ион. Степень окисления атомов водорода в этих комплексах равна –1.

В ониевых комплексах центральный атом является донором электронов, а акцептором – атом водорода в степени окисления +1. Примеры: H 3 O или – ион оксония, NH 4 или – ион аммония. Кроме того существуют и замещенные производные таких ионов: – ион тетраметиламмония, – ион тетрафениларсония, – ион диэтилоксония и т. п.

6) Карбонильные комплексы – комплексы, в которых в качестве лигандов присутствуют группы CO (до образования комплекса – молекулы монооксида углерода), например: , , и др.

7) Анионгалогенатные комплексы – комплексы типа .

По типу лигандов выделяют и другие классы комплексных частиц. Кроме того существуют комплексные частицы с различными по типу лигандами; простейший пример – аква-гидроксокомплекс .

17.3. Основы номенклатуры комплексных соединений

Формула комплексного соединения составляется также, как и формула любого ионного вещества: на первом месте записывается формула катиона, на втором – аниона.

Формула комплексной частицы записывается в квадратных скобках в следующей последовательности: на первом месте ставится символ элемента-комплексообразователя, далее – формулы лигандов, бывших до образования комплекса катионами, затем – формулы лигандов, бывших до образования комплекса нейтральными молекулами, и после них – формулы лигандов, бывших до образования комплекса анионами.

Название комплексного соединения строится также, как и название любой соли или основания (комплексные кислоты называются солями водорода или оксония). В название соединения входит название катиона и название аниона.

В название комплексной частицы входит название комплексообразователя и названия лигандов (название записывается в соответствии с формулой, но справа налево. Для комплексообразователей в катионах используются русские названия элементов, а в анионах – латинские.

Названия наиболее распространенных лигандов:

H 2 O – аква Cl – хлоро SO 4 2 – сульфато OH – гидроксо
CO – карбонил Br – бромо CO 3 2 – карбонато H – гидридо
NH 3 – аммин NO 2 – нитро CN – циано NO – нитрозо
NO – нитрозил O 2 – оксо NCS – тиоцианато H +I – гидро

Примеры названий комплексных катионов:

Примеры названий комплексных анионов:

2 – тетрагидроксоцинкат-ион
3 – ди(тиосульфато)аргентат(I)-ион
3 – гексацианохромат(III)-ион
– тетрагидроксодиакваалюминат-ион
– тетранитродиамминкобальтат(III)-ион
3 – пентацианоакваферрат(II)-ион

Примеры названий нейтральных комплексных частиц:

Более подробные номенклатурные правила приводятся в справочниках и специальных пособиях.

17.4. Химическая связь в комплексных соединениях и их строение

В кристаллических комплексных соединениях с заряженными комплексами связь между комплексом и внешнесферными ионами ионная, связи между остальными частицами внешней сферы – межмолекулярные (в том числе и водородные). В молекулярных комплексных соединениях связь между комплексами межмолекулярная.

В большинстве комплексных частиц между центральным атомом и лигандами связи ковалентные. Все они или их часть образованы по донорно-акцепторному механизму (как следствие – с изменением формальных зарядов). В наименее прочных комплексах (например, в аквакомплексах щелочных и щелочноземельных элементов, а также аммония) лиганды удерживаются электростатическим притяжением. Связь в комплексных частицах часто называют донорно-акцепторной или координационной связью.

Рассмотрим ее образование на примере аквакатиона железа(II). Этот ион образуется по реакции:

FeCl 2кр + 6H 2 O = 2 + 2Cl

Электронная формула атома железа – 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6 . Составим схему валентных подуровней этого атома:

При образовании двухзарядного иона атом железа теряет два 4s -электрона:

Ион железа акцептирует шесть электронных пар атомов кислорода шести молекул воды на свободные валентные орбитали:

Образуется комплексный катион, химическое строение которого можно выразить одной из следующих формул:

Пространственное строение этой частицы выражается одной из пространственных формул:

Форма координационного полиэдра – октаэдр. Все связи Fe-O одинаковые. Предполагается sp 3 d 2 -гибридизация АО атома железа. Магнитные свойства комплекса указывают на наличие неспаренных электронов.

Если FeCl 2 растворять в растворе, содержащем цианид-ионы, то протекает реакция

FeCl 2кр + 6CN = 4 + 2Cl .

Тот же комплекс получается и при добавлении к раствору FeCl 2 раствора цианида калия KCN:

2 + 6CN = 4 + 6H 2 O .

Это говорит о том, что цианидный комплекс прочнее аквакомплекса. Кроме того магнитные свойства цианидного комплекса указывают на отсутствие неспаренных электронов у атома железа. Все это связано с несколько иным электронным строением этого комплекса:

Более " сильные" лиганды CN образуют более прочные связи с атомом железа, выигрыша в энергии хватает на то, чтобы " нарушить" правило Хунда и освободить 3d -орбитали для неподеленных пар лигандов. Пространственное строение цианидного комплекса такое же, как и аквакомплекса, но тип гибридизации другой – d 2 sp 3 .

" Сила" лиганда зависит прежде всего от электронной плотности облака неподеленной пары электронов, то есть, она увеличивается с уменьшением размера атома, с уменьшением главного квантового числа, зависит от типа гибридизации ЭО и от некоторых других факторов. Важнейшие лиганды можно выстроить в ряд по возрастанию их " силы" (своеобразный " ряд активности" лигандов), этот ряд называется спектрохимическим рядом лигандов :

I ; Br ; : SCN , Cl , F , OH , H 2 O; : NCS , NH 3 ; SO 3 S: 2 ; : CN , CO

Для комплексов 3 и 3 схемы образования выглядят следующим образом:

Для комплексов с КЧ = 4 возможны две структуры: тетраэдр (в случае sp 3 -гибридизации), например, 2 , и плоский квадрат (в случае dsp 2 -гибридизации), например, 2 .

17.5. Химические свойства комплексных соединений

Для комплексных соединений прежде всего характерны те же свойства, что и для обычных соединений тех же классов (соли, кислоты, основания).

Если комплексное соединение кислота, то это сильная кислота, если основание, то и основание сильное. Эти свойства комплексных соединений определяются только наличием ионов H 3 O или OH . Кроме этого комплексные кислоты, основания и соли вступают в обычные реакции обмена, например:

SO 4 + BaCl 2 = BaSO 4 + Cl 2
FeCl 3 + K 4 = Fe 4 3 + 3KCl

Последняя из этих реакций используется в качестве качественной реакции на ионы Fe 3 . Образующееся нерастворимое вещество ультрамаринового цвета называют " берлинской лазурью" [систематическое название – гексацианоферрат(II) железа(III)-калия].

Кроме этого в реакцию может вступать и сама комплексная частица, причем, тем активнее, чем она менее устойчива. Обычно это реакции замещения лигандов, протекающие в растворе, например:

2 + 4NH 3 = 2 + 4H 2 O,

а также кислотно-основные реакции типа

2 + 2H 3 O = + 2H 2 O
2 + 2OH = + 2H 2 O

Образующийся в этих реакциях после выделения и высушивания превращается в гидроксид цинка:

Zn(OH) 2 + 2H 2 O

Последняя реакция – простейший пример разложения комплексного соединения. В данном случае она протекает при комнатной температуре. Другие комплексные соединения разлагаются при нагревании, например:

SO 4 . H 2 O = CuSO 4 + 4NH 3 + H 2 O (выше 300 o С)
4K 3 = 12KNO 2 + 4CoO + 4NO + 8NO 2 (выше 200 o С)
K 2 = K 2 ZnO 2 + 2H 2 O (выше 100 o С)

Для оценки возможности протекания реакции замещения лигандов можно использовать спектрохимический ряд, руководствуясь тем, что более сильные лиганды вытесняют из внутренней сферы менее сильные.

17.6. Изомерия комплексных соединений

Изомерия комплексных соединений связана
1) с возможным различным расположением лигандов и внешнесферных частиц,
2) с различным строением самой комплексной частицы.

К первой группе относится гидратная (в общем случае сольватная ) и ионизационная изомерия, ко второй – пространственная и оптическая .

Гидратная изомерия связана с возможностью различного распределения молекул воды во внешней и внутренней сферах комплексного соединения, например: (цвет красно-коричневый) и Br 2 (цвет голубой).

Ионизационная изомерия связана с возможностью различного распределения ионов во внешней и внутренней сфере, например: SO 4 (пурпурного цвета) и Br (красного цвета). Первое из этих соединений образует осадок, реагируя с раствором хлорида бария, а второе – с раствором нитрата серебра.

Пространственная (геометрическая) изомерия, иначе называемая цис-транс изомерией, характерна для квадратных и октаэдрических комплексов (для тетраэдрических невозможна). Пример: цис-транс изомерия квадратного комплекса

Оптическая (зеркальная) изомерия по своей сути не отличается от оптической изомерии в органической химии и характерна для тетраэдрических и октаэдрических комплексов (для квадратных невозможна).

Среди биологически активных веществ, содержащихся в организме, ионы металлов занимают особое место. Так, биокатионы являются наиболее чувствительными "химическими точками" организма. Эти биогенные элементы жизни находятся в организме, главным образом, в виде водных растворов их солей и комплексных (координационных) соединений.

Комплексными соединениями называются соединения, в узлах кристаллической решетки которых находятся сложные частицы (комплексные ионы), состоящие из центрального атома или иона и окружающих его нейтральных молекул или ионов. Комплексные ионы не разрушаются при переходе их в раствор или расплав.

Строение комплексных соединений получило объяснение в координационной теории А. Вернера (1893г). По координационной теории Вернера комплексные соединения характеризуются особым пространственным расположением частиц, составляющих их молекулы. Например: K + | CN - CN - | K +

| CN - Fe 2+ CN - | K 4

K + | CN - CN - | K +

Из приведенной координационной формулы видно, что один из ионов занимает центральное положение. Такой атом или ион называется комплексообразователем . Чаще всего комплексообразователями являются положительно заряженные ионы металлов, чаще металлы побочных подгрупп (d- и f-элементов), значительно реже - нейтральные атомы металлов (Fe, Ni) и отрицательно заряженные атомы неметаллов (N -3 , O -2 , S). Типичными комплексообразователями являются такие металлы, как Fe, Cu, Ag, Au, Hg, Co, Cr, Mn, Cd, Ni, Pt, и др. d- и f-элементы. Вблизи комплексообразователя в определенном порядке расположены полярные молекулы или ионы другого знака, иногда те и другие, их называют лигандами (аддендами), что значит "связанные". Важнейшими лигандами являются:

a) Нейтральные молекулы, имеющие дипольный характер: H 2 O, NH 3 , CO, NO, C 2 H 4 .

б) Ионы: H - , O -2 , OH - , Cl - , J - , Br - , CN - , HCO 3 - , а также биолиганды в виде макромолекул аминокислот и их производных, пептидов, белков, ферментов, гормонов, нуклеиновых кислот и их фрагментов.

Комплексообразователь и лиганды образуют внутреннюю сферу (обозначается квадратными скобками), а ионы, не вошедшие во внутреннюю сферы, образуют внешнюю сферу. Внутреннюю сферу часто заключают в квадратные скобки. Заряд комплексного иона равен алгебраической сумме зарядов комплексообразователя и лигандов. Число лигандов, располагающихся в непосредственной близости от центрального иона, называютсякоординационным числом иона (к.ч.). Часто встречаются координационные числа 2, 4, 6. Обычно координационное число в два раза больше заряда комплексообразователя, исключением является ион Fe 2+ , для которого к.ч. равно 6, для Pt 4+ - 6.



Если лиганды связаны с комплексообразователем одной связью и занимают одно координационное место во внутренней сфере комплекса, такие лиганды называются монодентантными (OH - , Cl - , J - , Br - , CN), две - бидентантными (CO 3 2- , С 2 О 4 2-) - они занимают 2 координационных места. Некоторые лиганды присоединяются к центральному иону и большим числом координационных связей. Так, среди сложных органических соединений есть такие, которые могут выступать в роли три, тетра - и более - их называют полидентантными. Полидентантные органические лиганды, замыкаясь двумя или несколькими координационными связями, могут образовывать циклические комплексы.

Молекулы комплексных соединений отличаются вполне определенной геометрической структурой. Так, два лиганда часто располагаются около иона металла таким образом, что центральный ион и 2 лиганда оказываются на одной прямой. Три лиганда размещаются по углам треугольника, четыре - по углам квадрата или четырехгранника (тетраэдра), шесть - по углам восьмигранника (октаэдра), восемь - по углам куба. Если лиганды неодинаковы, то геометрические формы могут быть и не совсем правильными (искаженными), но, тем не менее, лиганды остаются фиксированными в определенных точках пространства вокруг центрального иона.

Комплексные соединения классифицируют по заряду комплексного иона и по типу лигандов. По заряду комплексного иона комплексы бывают катионными (комплекс с положительным зарядом), анионными (комплекс с отрицательным зарядом), нейтральными (комплекс с нулевым зарядом).

По типу лигандов комплексы бывают: ацидокомплексы, - лигандами являются остатки кислот (Cl - , J - , Br - , CN - , HCO 3 - , CO 3 2- , С 2 О 4 2-); гидроксикомплексы (ОН -); аквакомплексы (H 2 O); аминокомплексы (NH 3); смешанные, когда в комплекс входят несколько типов лиганд.

Отсюда, для правильного написания формулы комплексного соединения нужно знать: заряд (степень окисления) комплексообразователя; заряд лигандов; координационное число комплексообразователя; ионы внешней сферы.

При написании формул комплексного иона первым указывается символ комплексообразователя, затем указываются нейтральные лиганды в порядке H 2 O, NH 3 . После нейтральных лигандов следуют анионные лиганды. Анионные лиганды перечисляются в порядке: Н - , О -2 , ОН - , простые анионы, сложные анионы неорганических кислот, анионы органических кислот.

Формулы комплексных соединений читают строго справа налево, соблюдая в формуле порядок расположения лигандов. В названиях комплексных соединений сначала называют анион в именительном падеже, а затем катион в родительном падеже.

I. Если в соединение входит комплексный катион , то сначала называют лиганды по порядку расположения в комплексе, после чего следует название комплексообразователя (русское название элемента). В скобках римскими цифрами показывают степень окисления комплексообразователя. Нейтральные молекулы, выступающие в качестве лигандов, имеют свое обычное название, кроме аммиака - амин, воды - аква, СО - карбонил, NO - нитрозил. Отрицательно заряженные лиганды называют с окончанием на «о». Например, Н - - гидридо, О -2 - оксо, ОН - - гидроксо, F - - фторо, Cl - - хлоро, S -2 - тио, CN - - циано, SO 4 -2 - сульфато, СН 3 СОО - - ацетато, CNS - - тиоцианато, С 2 О 4 -2 - оксалато. Если лигандов несколько, то вначале называют ион внешней сферы, затем лиганды греческими числами: - 2-ди, 3-три и т.д.

Например: названия комплексных катионов

[Со Н 2 О (NH 3) 5 ] Cl 3 - хлорид пентаамминаквакобальта (III)

Cl 3 - хлорид хлоропентаамминплатины (IV)

NO 3 - нитрат гидроксодиамминакваплатины (II)

SO 4 - сульфат тетрааквамеди (II)

II. Если в соединение входит комплексный анион , то сначала называют лиганды по указанному выше порядку. Далее называют комплексообразователь, используя корень его латинского названия с добавлением слога – «ат», после чего в скобках римскими цифрами указывают степень окисления комплексообразователя. В последнюю очередь называется катион внешней сферы в родительном падеже. Например:

K - дицианоаргентат (I) калия

K 2 - тетрахлорокупрат (II) калия

K 3 - гексацианоферрат (III) калия

K 2 - динитродихлороплатинат (IV) калия

Наименование нейтральных комплексов составляются из названия лигандов и русского названия комплексообразователя в именительном падеже. При этом валентность комплексообразователя не указывается. Например: - трихлоротриамминкобальт.

Тетрахлородиамминплатина.

Внутренняя и внешняя сфера в молекулах комплексных соединений связана ионной связью. Комплексообразователь и лиганды связаны ковалентной связью по донорно-акцепторному механизму: лиганды играют роль донора электронной пары, а комплексообразователь - роль акцептора , на свободной орбитали которого располагается электронная пара лиганда.

Диссоциация комплексных соединений идет в две ступени. Первичная диссоциация комплексных соединений идет по типу ионизации сильных электролитов и протекает нацело: Cl → + + Cl -

Лиганды с комплексообразователем связаны более прочной связью и диссоциация комплексного иона протекает в меньшей степени. Этот вид диссоциации называется вторичной .

+ → Ag + + 2NH 3

Мерой устойчивости комплексного иона служит его константа нестойкости и обозначается К н.

Чем меньше константа нестойкости, тем устойчивее комплекс.

Комплексные соединения играют огромную роль в процессах жизнедеятельности растений и животных. В организме животных и растений комплексные соединения выполняют самые разнообразные функции: накопление и перемещение различных веществ и энергии; образование и расщепление химических связей; участие в процессах дыхания, фотосинтеза, биологического окисления и ферментативном катализе. Такие важнейшие в биологическом отношении вещества, как гемоглобин, хлорофилл, цианкоболамин, являются внутрикомплексными, хелатными соединениями. В них четыре координационных места занимает одна частица, называемая порфином, а комплексообразователем в гемоглобине является - Fe +2 , а в хлорофилле - Mg 2 , в витамине B 12 - Cо +3 .

Комплекс железа с порфирином имеет плоское строение, в котором ион железа соединен 4 координационными связями с 4 пиррольными кольцами, 5 связь идет на присоединение белка глобина, но шестое место в координационной сфере свободно. Это место и занимает молекула кислорода, переносимого гемоглобином в процессе дыхания.

В последнее время установлено, что комплексные соединения платины и палладия оказывают тормозящее действие на развитие злокачественных опухолей и с успехом могут применяться для терапевтических целей, образование хелатных (внутрикомплексных) соединений, используются при растворении солей в почечных камнях и снижении жесткости воды, обусловленной присутствием ионов кальция и магния. Известна высокая бактерицидная активность некоторых комплексных соединений серебра. Трилон Б (ЭДТА) способен образовывать комплексы со многими металлами, в том числе с Са +2 . Это дает возможность применять его при заболеваниях, сопровождающихся избыточным отложением солей кальция в организме.

Биогенные элементы

Изучение распространенности отдельных элементов и их изотопов позволяет отметить следующие закономерности.

1. Элементы с чётными порядковыми номерами характеризуются повышенной распространенностью. На Земле содержание чётных элементов составляет 97,21 % от массы всех элементов.

2. Наиболее распространены элементы, изотопы которых имеют массовое число, кратное 4. Примерами таких элементов могут служить He, O, Ne, Si, S, Ar, Fe, Ni и др.

На Земле непрерывно происходят ядерные процессы, ведущие, в конечном счёте, к изменению их изотопного состава. Однако, все эти процессы идут медленно. Результаты анализа вещества земной коры показывают, что изотопный состав элементов на Земле практически постоянен. Первые исследования о взаимосвязи земной коры и химического состава живых организмов сделаны русским учёным В.И Вернадским. Он, считал, что земная кора и живые организмы составляют единую систему. Единство живого и неживого заключается, прежде всего, в общности их элементарного состава. Вещества живой и неживой природы состоят из одних и тех же химических элементов, связанных ковалентной, ионной, водородной связями.

В результате длительного непрерывного воздействия на организм определённого по химическому составу потока атомов происходит подбор и распределение организмов по разным зонам Земли, а наряду с этим наступает и изменчивость организмов. Так, например, недостаточность йода в гористых местностях и по долинам рек, вызывает увеличение щитовидной железы и зоб у животных и человека. С ростом цивилизации в организм человека поступает всё больше биологически активных ненужных веществ, таких как: ртуть (из зубных пломб), свинец, сурьма, мышьяк (из газет), ионы металлов (из кухонной посуды).

Исследования учёных США указали на недостаток хрома в тканях организма жителей, в сравнении с обитателями Африки и Азии. Это вызвано излишком рафинированного сахара и других очищенных продуктов в рационе человека. Недостаток хрома объясняет рост числа сердечных заболеваний.

Элементы, играющие важную роль в физиологических и патологических процессах, в организме человека называются

менее 10 -5

Li, Be, Pb, Mo, W, Cd, Ni, Ag Se

В зависимости от строения (электронной конфигурации) атома, биогенные элементы подразделяются на s, p, d -биоэлементы.

s-элементы ns 2: H, Na, Mg, Ca, Sr, Ba (6)

p-элементы ns 2 np 1-6: Al, C, Si, Sn, Pb, N, P, O, S, Se, F, Cl, I, Br, B (15)

d-элементы (n-1)d 1-10 ns 2: Cu, Zn, Cr , Mn, Fe, Co, Ni (7)

Поделиться