Что происходит при геномных мутациях. Генные мутации: примеры, причины, виды, механизмы. Мутагены - факторы, вызывающие мутации. Делятся на

Геномные, хромосомные и генные мутации. Теперь поговорим о мутациях: геномных, хромосомных и генных.

В общем случае, геномные и хромосомные мутации приводят к тяжелым патологическим последствиям.

Мутация (лат. mutatio - изменение) - стойкое (то есть такое, которое может быть унаследовано потомками данной клетки или организма) преобразование генотипа, происходящее под влиянием внешней или внутренней среды. Термин предложен Хуго де Фризом

Геномные мутации - это мутации, которые приводят к добавлению либо утрате одной, нескольких или полного гаплоидного набора хромосом. Разные виды геномных мутаций называют гетероплоидией и полиплоидией.

В зависимости от происхождения хромосомных наборов среди полиплоидов различают аллополиплоидов, у которых имеются наборы хромосом, полученные при гибридизации от разных видов, и аутополиплоидов, у которых происходит увеличение числа наборов хромосом собственного генома, кратное n.

Геномные мутации связаны с изменением числа хромосом. Например, у растений довольно часто обнаруживается явление полиплоидии - кратного изменения числа хромосом. У полиплоидных организмов гаплоидный набор хромосом n в клетках повторяется не 2, как у диплоидов, а значительно большее число раз (3n, 4п, 5п и до 12n). Полиплоидия - следствие нарушения хода митоза или мейоза: при разрушении веретена деления удвоившиеся хромосомы не расходятся, а остаются внутри неразделившейся клетки. В результате возникают гаметы с числом хромосом 2n. При слиянии такой гаметы с нормальной (n) потомок будет иметь тройной набор хромосом. Если геномная мутация происходит не в половых, а в соматических клетках, то в организме возникают клоны (линии) полиплоидных клеток. Нередко темпы деления этих клеток опережают темпы деления нормальных диплоидных клеток (2n). В этом случае быстро делящаяся линия полиплоидных клеток образует злокачественную опухоль. Если она не будет удалена или разрушена, то за счет быстрого деления полиплоидные клетки вытеснят нормальные. Так развиваются многие формы рака. Разрушение митотического веретена может быть вызвано радиацией, действием ряда химических веществ - мутагенов

Геномные мутации в животном и растительном мире многообразны, но у человека обнаружены только 3 типа геномных мутаций: тетраплоидия, триплоидия и анеуплоидия. При этом из всех вариантов анеуплоидий встречаются только трисомии по аутосомам, полисомии по половым хромосомам (три-, тетра- и пентасомии), а из моносомий встречаются только моносомия-Х.

Геномные мутации – изменение количества хромосом. Причины – нарушения при расхождении хромосом.
Полиплоидия – кратные изменения (в несколько раз, например, 12 → 24). У животных не встречается, у растений приводит к увеличению размера.
Анеуплоидия – изменения на одну-две хромосомы. Например, одна лишняя двадцать первая хромосома приводит к синдрому Дауна (при этом общее количество хромосом – 47).

Геномные мутации характеризуются изменением числа хро­мосом, которые могут быть некратными или кратными.

Некратное изменение числа хромосом в диплоидном наборе называется гетероплоидией, или анэуплоидией. Это может сопро­вождаться отсутствием одной из хромосом - моносомия по данной паре хромосом или всей пары гомологичных хромосом - нуллисомия. Наличие одной или нескольких лишних хромосом называется полисемией, которую, в свою очередь, подразделяют на трисомию, если одна хромосома лишняя, тетрасомию - при наличии двух лишних хромосом и т. д. Название в данном случае определяется количеством гомологичных хромосом, например, если к двум име­ющимся добавляется одна лишняя, то это трисомия, если лишних две, то всего таких гомологичных хромосом четыре и нарушение называется тетрасомией и т. д. Все эти изменения отражаются и на фенотипе, так как сопровождаются либо недостатком, либо, соот­ветственно, избытком генов. Причиной возникновения гетероплоидии является нарушение расхождения хромосом в процессе мейоза. Если гомологичные хромосомы или хроматиды не разошлись, то в одну из гамет попадут сразу две хромосомы, а в другую ни одной. Соответственно, при участии таких гамет в оплодотворении образу­ется зигота с измененным числом хромосом. Явление гетероплоидии впервые было обнаружено К. Бриджесом в опытах по изуче­нию наследования сцепленных с полом признаков у дрозофилы.

Гетероплоидия возможна как у аутосом, так и у половых хромо­сом. Очень часто она сопровождается серьезными заболеваниями и даже может служить причиной летального исхода. В частности, моносомия (отсутствие одной из гомологичных хромосом) у споро­фитов растений обычно летальна. У дрозофил моносомия по четвер­той хромосоме приводит к появлению более мелких и менее фер-тильных мух. Однако моносомия по второй или третьей хромосо­мам у тех же мух вызывает летальный исход, что указывает на неравноценность расположенных в этих хромосомах генов. Воздей­ствие полисомии на споры растений неодинаково. Так, в микроспо­рах гаметофит не развивается, а в мегаспорах лишняя хромосома не оказывает влияния на развитие женского гаметофита.

Неправильное расхождение хромосом возможно не только в процессе мейоза, но также и митоза. Дальнейшее деле­ние таких клеток приводит к увеличению их числа. Результатом этого будет многоклеточный организм, часть клеток которого будет иметь измененное число хромосом и проявлять различные свой­ства. Нахождение в организме клеток одного типа с различными свойствами называется мозаицизмом. Относительная доля изме­ненных клеток зависит от того, на какой стадии дробления про­изошло неправильное расхождение хромосом - чем это произошло раньше, тем больше будет измененных клеток в развивающемся организме. Тогда, как в случаях нарушения расхождения хромо­сом при мейозе, образуются гаметы, последующее участие которых в оплодотворении приведет к образованию организма, все клетки которого будут изме­нены.

Для справки:

Генные мутации – изменение строения одного гена. Это изменение в последовательности нуклеотидов: выпадение, вставка, замена и т.п. Например, замена А на Т. Причины – нарушения при удвоении (репликации) ДНК. Примеры: серповидноклеточная анемия, фенилкетонурия.

Хромосомные мутации – изменение строения хромосом: выпадение участка, удвоение участка, поворот участка на 180 градусов, перенос участка на другую (негомологичную) хромосому и т.п. Причины – нарушения при кроссинговере. Пример: синдром кошачьего крика.
Сохранить в соцсетях:

Почти любое изменение в структуре или количестве хромосом, при котором клетка сохраняет способность к самовоспроизведению, обусловливает наследственное изменение признаков организма. По характеру изменения генома, т.е. совокупности генов, заключенных в гаплоидном наборе хромосом, различают генные, хромосомные и геномные мутации. наследственный мутантный хромосомный генетический

Генные мутации представляют собой молекулярные, не видимые в световом микроскопе изменения структуры ДНК. К мутациям генов относятся любые изменения молекулярной структуры ДНК, независимо от их локализации и влияния на жизнеспособность. Некоторые мутации не оказывают никакого влияния на структуру и функцию соответствующего белка. Другая (большая) часть генных мутаций приводит к синтезу дефектного белка, не способного выполнять свойственную ему функцию.

По типу молекулярных изменений выделяют:

Делеции (от латинского deletio - уничтожение), т.е. утрата сегмента ДНК от одного нуклеотида до гена;

Дупликации (от латинского duplicatio удвоение), т.е. удвоение или повторное дублирование сегмента ДНК от одного нуклеотида до целых генов;

Инверсии (от латинского inversio - перевертывание), т.е. поворот на 180 о сегмента ДНК размерами от двух нуклеотидов до фрагмента, включающего несколько генов;

Инсерции (от латинского insertio - прикрепление), т.е. вставка фрагментов ДНК размером от одного нуклеотида до целого гена.

Именно генные мутации обуславливают развитие большинства наследственных форм патологии. Болезни, обусловленные подобными мутациями, называют генными, или моногенными болезнями, т.е. заболеваниями, развитие которых детерминируется мутацией одного гена.

Эффекты генных мутаций чрезвычайно разнообразны. Большая часть из них фенотипически не проявляется, поскольку они рецессивны. Это очень важно для существования вида, так как в большинстве своем вновь возникающие мутации оказываются вредными. Однако их рецессивный характер позволяет им длительное время сохраняться у особей вида в гетерозиготном состоянии без вреда для организма и проявиться в будущем при переходе в гомозиготное состояние.

В настоящее время насчитывается более 4500 моногенных заболеваний. Наиболее частыми из них являются: муковисцидоз, фенилкетонурия, миопатии Дюшенна-Беккера и ряд других заболеваний. Клинически они проявляются признаками нарушения обмена веществ (метаболизма) в организме.

Вместе с тем известен ряд случаев, когда изменение лишь одного основания в определенном гене оказывает заметное влияние на фенотип. Одним из примеров служит такая генетическая аномалия, как серповидноклеточная анемия. Рецессивный аллель, вызывающий в гомозиготном состоянии это наследственное заболевание, выражается в замене всего одного аминокислотного остатка в (B-цепи молекулы гемоглобина (глутаминовая кислота?» ?> валин). Это приводит к тому, что в крови эритроциты с таким гемоглобином деформируются (из округлых становятся серповидными) и быстро разрушаются. При этом развивается острая анемия и наблюдается снижение количества кислорода, переносимого кровью. Анемия вызывает физическую слабость, нарушения деятельности сердца и почек и может привести к ранней смерти людей, гомозиготных по мутантному аллелю.

Хромосомные мутации являются причинами возникновения хромосомных болезней.

Хромосомные мутации - это структурные изменения отдельных хромосом, как правило, видимые в световом микроскопе. В хромосомную мутацию вовлекается большое число (от десятков до нескольких сотен) генов, что приводит к изменению нормального диплоидного набора. Несмотря на то, что хромосомные абберации, как правило, не изменяют последовательность ДНК в специфических генах, изменение числа копий генов в геноме приводит к генетическому дисбалансу вследствие недостатка или избытка генетического материала. Различают две большие группы хромосомных мутаций: внутрихромосомные и межхромосомные (см. рис. 2).

Внутрихромосомные мутации - это абберации в пределах одной хромосомы (см. рис. 3). К ним относятся:

Делеции - утрата одного из участков хромосомы, внутреннего или терминального. Это может обусловить нарушение эмбриогенеза и формирование множественных аномалий развития (например, делеция в регионе короткого плеча 5-й хромосомы, обозначаемая как 5р-, приводит к недоразвитию гортани, порокам сердца, отставанию умственного развития. Этот симптомокомплекс известен как синдром “кошачьего крика”, поскольку у больных детей из-за аномалии гортани плач напоминает кошачье мяуканье);

Инверсии. В результате двух точек разрывов хромосомы образовавшийся фрагмент встраивается на прежнее место после поворота на 180 о. В результате нарушается только порядок расположения генов;

Дупликации - удвоение (или умножение) какого-либо участка хромосомы (например, трисомия по короткому плечу 9-й хромосомы обуславливает множественные пороки, включая микроцефалию, задержку физического, психического и интеллектуального развития).

Рис. 2.

Межхромосомные мутации, или мутации перестройки - обмен фрагментами между негомологичными хромосомами. Такие мутации получили название транслокации (от латинских trans - за, через и locus - место). Это:

Реципрокная транслокация - две хромосомы обмениваются своими фрагментами;

Нереципрокная транслокация - фрагмент одной хромосомы транспортируется на другую;

? “центрическое” слияние (робертсоновская транслокация) - соединение двух акроцентрических хромосом в районе их центромер с потерей коротких плеч.

При поперечном разрыве хроматид через центромеры “сестринские” хроматиды становятся “зеркальными” плечами двух разных хромосом, содержащих одинаковые наборы генов. Такие хромосомы называются изохромосомами.

Рис. 3.

Транслокации и инверсии, являющиеся сбалансированными хромосомными перестройками, не имеют фенотипических проявлений, но в результате сегрегации перестроенных хромосом в мейозе могут образовать несбалансированные гаметы, что повлечет за собой возникновение потомства с хромосомными аномалиями.

Геномные мутации , как и хромосомные, являются причинами возникновения хромосомных болезней.

К геномным мутациям относятся анеуплоидии и изменения плоидности структурно неизмененных хромосом. Геномные мутации выявляются цитогенетическими методами.

Анеуплоидия - изменение (уменьшение - моносомия, увеличение - трисомия) числа хромосом в диплоидном наборе, некратное гаплоидному (2n+1, 2n-1 и т.д.).

Полиплоидия - увеличение числа наборов хромосом, кратное гаплоидному (3n, 4n, 5n и т.д.).

У человека полиплоидия, а также большинство анеуплоидий являются летальными мутациями.

К наиболее частым геномным мутациям относятся:

Трисомия - наличие трех гомологичных хромосом в кариотипе (например, по 21-й паре при болезни Дауна, по 18-й паре при синдроме Эдвардса, по 13-й паре при синдроме Патау; по половым хромосомам: XXX, XXY, XYY);

Моносомия - наличие только одной из двух гомологических хромосом. При моносомии по любой из аутосом нормальное развитие эмбриона не возможно. Единственная моносомия у человека, совместимая с жизнью - моносомия по Х-хромосоме - приводит к синдрому Шерешевского-Тернера (45,Х).

Причиной, приводящей к анеуплодии, является нерасхождение хромосом во время клеточного деления при образовании половых клеток или утрата хромосом в результате анафазного отставания, когда во время движения к полюсу одна из гомологичных хромосом может отстать от других негомологичных хромосом. Термин нерасхождение означает отсутствие разделения хромосом или хроматид в мейозе или митозе.

Нерасхождение хромосом наиболее часто наблюдается во время мейоза. Хромосомы, которые в норме должны делиться во время мейоза, остаются соединенными вместе и в анафазе отходят к одному полюсу клетки, таким образом, возникают две гаметы, одна из которых имеет добавочную хромосому, а другая - не имеет этой хромосомы. При оплодотворении гаметы с нормальным набором хромосом гаметой с лишней хромосомой возникает трисомия (т.е. в клетке присутствует три гомологичные хромосомы), при оплодотворении гаметой без одной хромосомы возникает зигота с моносомией. Если моносомная зигота образуется по какой-либо аутосомной хромосоме, то развитие организма прекращается на самых ранних стадиях развития.

По типу наследования различают доминантные и рецессивные мутации. Отдельные исследователь выделяют полудоминантные, кодоминантные мутации. Доминантные мутации характеризуются непосредственным эффектом на организм, полудоминантные мутации заключаются в том, что гетерозиготная форма по фенотипу является промежуточной между формами АА и аа, а для кодоминантных мутаций характерно то, что у гетерозигот A 1 A 2 проявляются признаки обоих аллелей. Рецессивные мутации не проявляются у гетерозигот.

Если доминантная мутация встречается в гаметах, ее эффекты выражаются непосредственно в потомстве. Многие мутации у человека являются доминантными. Они часты у животных и растений. Например, генеративная доминантная мутация дала начало анконской породе коротконогих овец.

Примером полудоминантной мутации может служить мутационное образование гетерозиготной формы Аа, промежуточной по фенотипу между организмами АА и аа. Это имеет место в случае биохимических признаков, когда вклад в признак обоих аллелей одинаков.

Примером кодоминантной мутации являются аллели I A и I B , детерминирующие группу крови IV.

В случае рецессивных мутаций их эффекты скрыты в диплоидах. Они проявляются лишь в гомозиготном состоянии. Примером являются рецессивные мутации, детерминирующие генные болезни человека.

Таким образом, главными факторами в детерминировании вероятности проявления мутантного аллеля в организме и популяции являются не только стадия репродуктивного цикла, но и доминантность мутантного аллеля.

Прямые мутации ? это мутации, инактивирующие гены дикого типа, т.е. мутации, которые изменяют информацию, закодированную в ДНК, прямым образом, в результате чего изменение от организма исходного (дикого) типа идет прямым образом к организму мутантного типа.

Обратные мутации представляют собой реверсии к исходным (диким) типам от мутантных. Эти реверсии бывают двух типов. Одни из реверсий обусловлены повторными мутациями аналогичного сайта или локуса с восстановлением исходного фенотипа и их называют истинными обратными мутациями. Другие реверсии представляют собой мутации в каком-то другом гене, которые изменяют выражение мутантного гена в сторону исходного типа, т.е. повреждение в мутантном гене сохраняется, но он как бы восстанавливает свою функцию, в результате чего восстанавливается фенотип. Такое восстановление (полное или частичное) фенотипа вопреки сохранению первоночального генетического повреждения (мутации) получило название супрессии, а такие обратные мутации назвали супрессорными (внегенными). Как правило, супрессии происходят в результате мутаций генов, кодирующих синтез тРНК и рибосом.

В общем виде супрессия может быть:

? внутригенной? когда вторая мутация в уже затронутом гене изменяет дефектный в результате прямой мутации кодон таким образом, что в полипептид встраивается аминокислота, способная восстановить функциональную активность данного белка. При этом данная аминокислота не соответствует исходной (до возникновения первой мутации), т.е. не наблюдается истинной обратимости;

? внесенной? когда изменяется структура тРНК, в результате чего мутантная тРНК включает в синтезируемый полипептид другую аминокислоту вместо кодируемой дефектным триплетом (являющимся результатом прямой мутации).

Не исключена компенсация действия мутагенов за счет фенотипической супрессии. Ее можно ожидать, когда на клетку действует фактор, повышающий вероятность ошибок при считывании мРНК во время трансляции (например, некоторые антибиотики). Такие ошибки могут приводить к подстановке неправильной аминокислоты, восстанавливающей, однако, функцию белка, нарушенную в результате прямой мутации.

Мутации, помимо качественных свойств, характеризует и способ возникновения. Спонтанные (случайные) - мутации, возникающие при нормальных условиях жизни. Они являются результатом естественных процессов, протекающих в клетках, возникают в условиях природного радиоактивного фона Земли в виде космического излучения, радиоактивных элементов на поверхности Земли, радионуклидов, инкорпорированных в клетки организмов, которые вызывают эти мутации или в результате ошибок репликации ДНК. Спонтанные мутации возникают у человека в соматических и генеративных тканях. Метод определения спонтанных мутаций основан на том, что у детей появляется доминантный признак, хотя у его родителей он отсутствует. Проведенное в Дании исследование показали, что примерно одна из 24000 гамет несет в себе доминантную мутацию. Частота спонтанного мутирования у каждого вида генетически обусловлена и поддерживается на определенном уровне.

Индуцированный мутагенез - это искусственное получение мутаций с помощью мутагенов различной природы. Различают физические, химические и биологические мутагенные факторы. Большинство этих факторов либо прямо реагирует с азотистыми основаниями в молекулах ДНК, либо включается в нуклеотидные последовательности. Частоту индуцированных мутаций определяют сравнением клеток или популяций организмов, обработанных и необработанных мутагеном. Если частота мутации в популяции повышается в результате обработки мутагеном в 100 раз, то считают, что лишь один мутант в популяции будет спонтанным, остальные будут индуцированными. Исследования по созданию методов направленного воздействия различных мутагенов на конкретные гены имеют практическое значение для селекции растений, животных и микроорганизмов.

По типу клеток, в которых возникают мутации, различают генеративные и соматические мутации (см. рис. 4).

Генеративные мутации возникают в клетках полового зачатка и в половых клетках. Если мутация (генеративная) происходит в генитальных клетках, то мутантный ген могут получить сразу несколько гамет, что увеличит потенциальную способность наследования этой мутации несколькими особями (индивидуумами) в потомстве. Если мутация произошла в гамете, то, вероятно, лишь одна особь (индивид) в потомстве получит этот ген. На частоту мутаций в половых клетках оказывает влияние возраст организма.


Рис. 4.

Соматические мутации встречаются в соматических клетках организмов. У животных и человека мутационные изменения будут сохраняться только в этих клетках. Но у растений из-за их способности к вегетативному размножению мутация может выйти за пределы соматических тканей. Например, знаменитый зимний сорт яблок “Делишес” берет начало от мутации в соматической клетке, которая в результате деления привела к образованию ветви, имевшей характеристики мутантного типа. Затем следовало вегетативное размножение, позволившее получить растения со свойствами этого сорта.

Классификацию мутаций в зависимости от их фенотипического эффекта впервые предложил в 1932 г. Г. Мёллер. Согласно классификации были выделены:

Аморфные мутации. Это состояние, при котором признак, контролируемый патологическим аллелем, не проявляется, так как патологический аллель не активен по сравнению с нормальным аллелем. К таким мутациям относятся ген альбинизма и около 3000 аутосомно-рецессивных заболеваний;

Антиморфные мутации. В этом случае значение признака, контролируемого патологическим аллелем, противоположно значению признака, контролируемого нормальным аллелем. К таким мутациям относятся гены около 5-6 тыс. аутосомно-доминантных заболеваний;

Гиперморфные мутации. В случае такой мутации признак, контролируемый патологическим аллелем, выражен сильнее признака, контролируемого нормальным аллелем. Пример? гетерозиготные носители генов болезней нестабильности генома. Их число составляет около 3% населения Земли, а количество самих заболеваний достигает 100 нозологий. Среди этих заболеваний: анемия Фанкони, атаксиятелеангиэктазия, пигментная ксеродерма, синдром Блума, прогероидные синдромы, многие формы рака и др. При этом частота рака у гетерозиготных носителей генов этих заболеваний в 3-5 раз выше, чем в норме, а у самих больных (гомозигот по этим генам) частота рака в десятки раз выше, чем в норме.

Гипоморфные мутации. Это состояние, при котором проявление признака, контролируемого патологическим аллелем, ослаблено по сравнению с признаком, контролируемым нормальным аллелем. К таким мутациям относятся мутации генов синтеза пигментов (1q31; 6p21.2; 7p15-q13; 8q12.1; 17p13.3; 17q25; 19q13; Xp21.2; Xp21.3; Xp22), а также более 3000 форм аутосомно-рецессивных заболеваний.

Неоморфные мутации. О такой мутации говорят, когда признак, контролируемый патологическим аллелем, будет иного (нового) качества по сравнению с признаком, контролируемым нормальным аллелем. Пример: синтез новых иммуноглобулинов в ответ на проникновение в организм чужеродных антигенов.

Говоря о непреходящем значении классификации Г. Мёллера, следует отметить, что спустя 60 лет после ее публикации фенотипические эффекты точковых мутаций были разделены на разные классы в зависимости от оказываемого ими воздействия на структуру белкового продукта гена и/или уровень его экспрессии.

Существуют различные методы, позволяющие выявлять генетические мутации. Блоттинг по Саузерну , описанный выше, используют для определения крупных геномных мутаций. В других методах применяют ПЦР-амплифицированную или клонированную ДНК Мутации могут быть обнаружены непосредственно с помощью секвенирования (определения первичной структуры макромолекул ДНК) или с использованием радиоизотопных и флюоресцентных систем.

Они также могут быть выявлены при сравнении последовательности опухолевой ДНК с ДНК , выделенной из нормальных тканей, или путем сравнения с последовательностью нормальной ДНК, описанной в литературе (например, в базах данных, размещенных в Интернете).

Анализ конформационного полиморфизма одноцепочечной - радиоизотопная методика определения мутаций, основанная на изменении формы (конформации) мутантной ДНК, которые могут быть выявлены при электрофорезе. Для этого нормальную и опухолевую ДНК клонируют с помощью ПЦР, денатурируют и исследуют с помощью гель-электрофреза. Мутантная ДНК меняет свою конформацию, принимая форму, отличную от нормальной, и приобретает отличную от нормальной подвижность при электрофорезе.

Эти изменения легко определяются при радиоавтографии . Рисунок ниже иллюстрирует методику анализа конформационного полиморфизма одноцепочечной (однонитевой) ДНК.

Денатурационная высокоэффективная жидкостная хроматография - новый метод выявления мутаций, не требующий применения радиоактивных веществ. При этом исследовании нормальную и опухолевую ДНК амплифицируют (клонируют) с помощью ПЦР, смешивают и денатурируют для образования смеси одноцепочечных молекул ДНК. Затем проводится медленный отжиг, в результате которого вновь образуется двунитевая ДНК.

При спаривании нити нормальной ДНК с нитью опухолевой в месте мутации происходит нарушение спаривания - так называемый гетеродуплскс. Этот гетеродуплекс обладает температурой плавления, отличающейся от таковой для нормальной и опухолевой ДНК, т. с. гомодуплексных молекул, и благодаря этому его можно легко определить с помощью хроматографии.

Другие методы выявления мутаций - денатурирующий градиентный гель-электрофорез, аллель-специфический олигонуклеотидный анализ и аллель-специфическая амплификация - основаны на выявлении разницы в последовательностях нормальной и опухолевой ДНК.

Каждый из этих методов (за исключением прямого секвенирования) представляет собой средство скрининга на наличие мутации, но не определяет ее тип или характер нарушения последовательности. В настоящее время разработаны приборы и методы, позволяющие исследовать крупные фрагменты генома и экспоненциально повышающие наши возможности в выявлении мутаций.

К ним относятся молекулярно-генетический анализ ДНК (microarray analysis) с помощью генных чипов, или биочипов, и трансгеномная система WAVE DNA Fragmentation Analysis System, разработанная в Калифорнии компанией Transgenomic.


Анализ конформации однонитевой ДНК.
Слева - нормальные аллели имеют одинаковую последовательность и, соответственно, одинаковую конформацию, образуют две одинаковые полоски.
Справа представлен мутантный аллель. Темный и светлый отрезки имеют несколько различающуюся последовательность и в связи с этим мигрируют в геле с разной скоростью.
В результате образуются четыре полоски. Эта техника чувствительна для определения различий в несколько пар оснований.

Раздел генетики, изучающий наследственные заболевания, методы их диагностики и лечения механизмы их наследования. Все методы медицинской генетики связаны с тем, что изучение наследования признаков человека имеют ряд трудностей: 1) большой кариотип 2) малое число потомков 3) позднее половое созревание 4) редкая смена поколений 4) невозможность экспериментальных исследований или их затрудненность.

  • Клинико-генеалогичекий(основан на построении родословной)
  • Близнецовый(изучается степень влияния условий среды на экспрессию генов близнецов)
  • Популяционно-статистический(позволяет определять чистоты генов и генотипов в достаточно крупных популяциях людей)
  • Цитогенетический и молекулярно-цитогенетический(используются для изучения нормального кариотипа человека и диагностики заболеваний связанных с геномными и хромосомными заболеваниями)
  • Биохимический(связан с изучение генных мутаций, а также связана с процессом нарушения биосинтеза белка)

Генные мутации образуются наиболее часто и затрагивают структуру гена. Генные мутации возникают при изменении химической структуры гена. Это происходит в результате замены одной или нескольких пар азотистых оснований, или мутаций со сдвигом рамки считывания информации.В результате генных мутаций возникают новые аллели или целые серии мутаций и появляются множественные аллели. Генные мутации способны привести к появлению заболеваний, связанных снарушением обмена веществ.

Фенилкетонурия - тип наследования аутосомный рецессивный.

Связано с нарушением обмена фенилаланина. Происходит накопление фенилаланина и его токсичных продуктов. Связано с нарушением фермента фенилаланин-4-гидроксилаза, превращается в тироксин. Нарушения ЦНС проявляется в умственной отсталости.

Альбинизм - аутосомный рецессивный тип наследования. У больных в волосах, в коже, в структуре глаза содержится недостаточное кол-во меланина, связано с нарушением терозиназы.

Гелактоземия - аутосомный рецессивный тип. В крови накапливается галактоза, связано с нарушением работы галактокиназа(превращает галактозу в глюкозу). Проявляется после рождения: желтуха, резкое падение веса, катаракта, гепоталамия(увеличение печени).

Муковисцидоз(кистозный фиброз) - аутосомный рецессивный тип. Поражение слизистых клеток, поджелудочной железы, кишечника, печени. Патология бронхов и потовых желез. Заключается в выделении секретов повышенной вязкости, забитые бронхи. Приводит к нарушению пищеварения.

Порфирия аутосомный доминантный тип. Связано с аномалией в синтезе гена. В организме накапливается порфирин. Хар-ные черты: белая кожа, спородическое безумие, немотивированные вспышки агрессии.

С. Морфана – мутация в гене, к-ый отвечает за синтез фибрилина (важный структурный белок, входит в состав хрящевой ткани). Приводит к изменению в скелете, паукообразные конечности, деформация грудной клетки,скалеоз (разболтанность суставов) аномалии ССС, высокий выброс адреналина в кровь.

С. Лежена (с. Кошачьего крика). – деление короткого плеча 5-ой хромосомы. Многочисленные пороки, низкая жизнеспособность, устойчивость к ВИЧ.

Геномные мутации . В основе мутаций 3п, 4п, 5п полиплоидия. У человека приводит к абортации.

2п+1, 2п-1 – анемоплоидия

С. Дауна – трисомия по 21 паре хромосом. Короткие конечности, наличие эпикаидуса(складка около века), макроглоссия (увеличение языка). Иное строение кости, пороки разных органов, слабая иммунная система, отставание в умственном развитии.

Мутация (от латинского слова "mutatio" - изменение) - это стойкое изменение генотипа, которое произошло под влиянием внутренних или внешних факторов. Различают хромосомные, генные и геномные мутации.

Каковы причины мутаций?

  • Неблагоприятные условия окружающей среды, условия, созданные экспериментально. Такие мутации называют индуцированными.
  • Некоторые процессы, происходящие в живой клетке организма. Например: нарушение репарации ДНК, репликация ДНК, генетическая рекомбинация.

Мутагены - факторы, вызывающие мутации. Делятся на:

  • Физические - распад радиоактивный, и ультрафиолетовое, слишком высокая температура или слишком низкая.
  • Химические - восстановители и окислители, алкалоиды, агенты алкилирующие, нитропроизводные мочевины, пестициды, растворители органические, некоторые медикаменты.
  • Биологические - некоторые вирусы, продукты метаболизма (обмена веществ), антигены различных микроорганизмов.

Основные свойства мутаций

  • Передаются по наследству.
  • Вызываются разнообразными внутренними и внешними факторами.
  • Возникают скачкообразно и внезапно, иногда повторно.
  • Может мутировать любой ген.

Какие они бывают?

  • Геномные мутации - это изменения, которые характеризуются утратой или добавлением одной хромосомы (или нескольких) или же полного гаплоидного набора. Различают два вида таких мутаций - полиплоидию и гетероплоидию.

Полиплоидия - это изменение количества хромосом, которое кратно гаплоидному набору. Крайне редко встречается у животных. У человека возможны два вида полиплоидии: триплоидия и тетраплоидия. Дети, рождённые с такими мутациями, живут обычно не более месяца, а чаще погибают в стадии эмбрионального развития.

Гетероплоидия (или анеуплоидия) - это изменение количества хромосом, которое некратно галоидному набору. В результате этой мутации на свет появляются особи с аномальным количеством хромосом - полисомики и моносомики. Около 20-30 процентов моносомиков погибают в первые дни внутриутробного развития. Среди родившихся встречаются особи с синдромом Шерешевского-Тернера. Геномные мутации в растительном и животном мире также разнообразны.

  • - это такие изменения, которые возникают при перестройке структуры хромосом. При этом наблюдается перенос, потеря или удвоение части генетического материала нескольких хромосом или одной, а также изменение ориентации хромосомных сегментов в отдельно взятых хромосомах. В редких случаях возможна то есть объединение хромосом.
  • Генные мутации. В результате таких мутаций происходят вставки, делеции или замены нескольких или одного нуклеотидов, а также инверсия или дупликация разных частей гена. Эффекты мутаций генного типа разнообразны. Большая часть из них рецессивны, то есть никак не проявляются.

Также мутации делятся на соматические и генеративные

  • - в любых клетках организма, кроме гамет. Например, при мутации клетки растения, из которой впоследствии должна развиться почка, а затем и побег, все его клетки будут мутантными. Так, на кусте красной смородины может возникнуть ветка с чёрными или белыми ягодами.
  • Генеративные мутации - это изменения в первичных половых клетках или в гаметах, которые из них образовались. Их свойства передаются следующему поколению.

По характеру воздействия на мутации бывают:

  • Летальные - обладатели таких изменений погибают либо в стадии либо через достаточно короткое время после рождения. Это практически все геномные мутации.
  • Полулетальные (например, гемофилия) - характеризуются резким ухудшением работы каких-либо систем в организме. В большинстве случаев полулетальные мутации тоже вскоре приводят к смерти.
  • Полезные мутации - это основа эволюции, они приводят к появлению признаков, нужных организму. Закрепляясь, эти признаки могут стать причиной образования нового подвида или вида.
Поделиться