Что такое касательная к окружности? Свойства касательной к окружности. Общая касательная к двум окружностям. Касательные, касающиеся окружности. Визуальный гид (2020) Касательные к окружности формулы

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Доказательство

Если хорда является диаметром, то теорема очевидна.

На рисунке 287 изображена окружность с центром O , M - точка пересечения диаметра CD и хорды AB , CD ⊥ AB . Надо доказать, что AM = MB .

Проведём радиусы OA и OB . В равнобедренном треугольнике AOB (OA = OB ) отрезок OM - высота, а значит, и медиана, т. е. AM = MB .

Теорема 20.2

Диаметр окружности, делящий хорду, отличную от диаметра, пополам, перпендикулярен этой хорде.

Докажите эту теорему самостоятельно. Подумайте, будет ли верным это утверждение, если хорда является диаметром.

На рисунке 288 показаны все возможные случаи взаимного расположения прямой и окружности. На рисунке 288, а они не имеют общих точек, на рисунке 288, б - имеют две общие точки, на рисунке 288, в - одну.

Рис. 288

Определение

Прямую, имеющую с окружностью только одну общую точку, называют касательной к окружности.

Касательная к окружности имеет только одну общую точку с кругом, ограниченным этой окружностью. На рисунке 288, в прямая a - касательная к кругу с центром в точке O , A - точка касания.

Если отрезок (луч) принадлежит касательной к окружности и имеет с этой окружностью общую точку, то говорят, что отрезок (луч) касается окружности. Например, на рисунке 289 изображён отрезок AB , который касается окружности в точке С .

Теорема 20.3

(свойство касательной)

Касательная к окружности перпендикулярна радиусу, проведённому в точку касания.

Доказательство

На рисунке 290 изображена окружность с центром O , A - точка касания прямой a и окружности. Надо доказать, что OA ⊥ a .

Рис. 289

Рис. 290

Рис. 291

Предположим, что это не так, т. е. отрезок OA - наклонная к прямой a . Тогда из точки O опустим перпендикуляр OM на прямую a (рис. 291). Поскольку точка A - единственная общая точка прямой a и круга с центром O , то точка M не принадлежит этому кругу. Отсюда OM = MB + OB , где точка B - точка пересечения окружности и перпендикуляра OM . Отрезки OA и OB равны как радиусы окружности. Таким образом, OM > OA. Получили противоречие: перпендикуляр OM больше наклонной OA . Следовательно, OA ⊥ a .

Теорема 20.4

(признак касательной к окружности)

Если прямая, проходящая через точку окружности, перпендикулярна радиусу, проведённому в эту точку, то эта прямая является касательной к данной окружности.

Доказательство

Рис. 292

На рисунке 290 изображена окружность с центром в точке O , отрезок OA - её радиус, точка A принадлежит прямой a , OA ⊥ a . Докажем, что прямая a - касательная к окружности.

Пусть прямая a не является касательной, а имеет ещё одну общую точку B с окружностью (рис. 292). Тогда ∆ AOB - равнобедренный (OA = OB как радиусы). Отсюда ∠ OBA = ∠ OAB = 90°. Получаем противоречие: в треугольнике AOB есть два прямых угла. Следовательно, прямая a является касательной к окружности.

Следствие

Если расстояние от центра окружности до некоторой прямой равно радиусу окружности, то эта прямая является касательной к данной окружности.

Рис. 293

Докажите это следствие самостоятельно.

Задача. Докажите, что если через данную точку к окружности проведены две касательные, то отрезки касательных, соединяющих данную точку с точками касания, равны.

Решение. На рисунке 293 изображена окружность с центром O .Прямые AB и AC - касательные, точки B и C - точки касания. Надо доказать, что AB = AC .

Проведём радиусы OB и OC в точки касания. По свойству касательной OB ⊥ AB и OC ⊥ AC . В прямоугольных треугольниках AOB и AOC катеты OB и OC равны как радиусы одной окружности, AO - общая гипотенуза. Следовательно, треугольники AOB и AOC равны по гипотенузе и катету. Отсюда AB = AC .

  1. Как делит хорду диаметр, перпендикулярный ей?
  2. Чему равен угол между хордой, отличной от диаметра, и диаметром, делящим эту хорду пополам?
  3. Опишите все возможные случаи взаимного расположения прямой и окружности.
  4. Какую прямую называют касательной к окружности?
  5. Каким свойством обладает радиус, проведённый в точку касания прямой и окружности?
  6. Сформулируйте признак касательной к окружности.
  7. Каким свойством обладают касательные, проведённые к окружности через одну точку?

Практические задания

507. Начертите окружность с центром O , проведите хорду AB . Пользуясь угольником, разделите эту хорду пополам.

508. Начертите окружность с центром O , проведите хорду CD . Пользуясь линейкой со шкалой, проведите диаметр, перпендикулярный хорде CD .

509. Начертите окружность, отметьте на ней точки A и B .Пользуясь линейкой и угольником, проведите прямые, которые касаются окружности в точках A и B .

510. Проведите прямую a и отметьте на ней точку M .Пользуясь угольником, линейкой и циркулем, проведите окружность радиуса 3 см, которая касается прямой a в точке M .Сколько таких окружностей можно провести?


Упражнения

511. На рисунке 294 точка O - центр окружности, диаметр CD перпендикулярен хорде AB . Докажите, что ∠ AOD = ∠ BOD .

512. Докажите, что равные хорды окружности равноудалены от её центра.

513. Докажите, что если хорды окружности равноудалены от её центра, то они равны.

514. Верно ли, что прямая, перпендикулярная радиусу окружности, касается этой окружности?

515. Прямая CD касается окружности с центром O в точке A , отрезок AB - хорда окружности, ∠ BAD = 35° (рис. 295). Найдите ∠ AOB .

516. Прямая CD касается окружности с центром O в точке A , отрезок AB - хорда окружности, ∠ AOB = 80° (см. рис. 295). Найдите ∠ BAC .

517. Дана окружность, диаметр которой равен 6 см. Прямая a удалена от её центра на: 1) 2 см; 2) 3 см; 3) 6 см. В каком случае прямая a является касательной к окружности?

518. В треугольнике ABC известно, что ∠ C = 90°. Докажите, что:

1) прямая BC является касательной к окружности с центром A , проходящей через точку C ;

2) прямая AB не является касательной к окружности с центром C , проходящей через точку A .

519. Докажите, что диаметр окружности больше любой хорды, отличной от диаметра.

520. В окружности с центром O через середину радиуса провели хорду AB , перпендикулярную ему. Докажите, что ∠ AOB = 120°.

521. Найдите угол между радиусами OA и OB окружности, если расстояние от центра O окружности до хорды AB в 2 раза меньше: 1) длины хорды AB ; 2) радиуса окружности.

522. В окружности провели диаметр AB и хорды AC и CD так, что AC = 12 см, ∠ BAC = 30°, AB ⊥ CD . Найдите длину хорды CD .

523. Через точку M к окружности с центром O провели касательные MA и MB , A и B - точки касания, ∠ OAB = 20°. Найдите ∠ AMB .

524. Через концы хорды AB , равной радиусу окружности, провели две касательные, пересекающиеся в точке C .Найдите ∠ ACB .

525. Через точку C окружности с центром O провели касательную к этой окружности, AB - диаметр окружности. Из точки A на касательную опущен перпендикуляр AD . Докажите, что луч AC - биссектриса угла BAD .

526. Прямая AC касается окружности с центром O в точке A (рис. 296). Докажите, что угол BAC в 2 раза меньше угла AOB .

Рис. 294

Рис. 295

Рис. 296

527. Отрезки AB и BC - соответственно хорда и диаметр окружности, ∠ ABC = 30°. Через точку A провели касательную к окружности, пересекающую прямую BC в точке D .Докажите, что ∆ ABD - равнобедренный.

528. Известно, что диаметр AB делит хорду CD пополам, но не перпендикулярен ей. Докажите, что CD - также диаметр.

529. Найдите геометрическое место центров окружностей, которые касаются данной прямой в данной точке.

530. Найдите геометрическое место центров окружностей, которые касаются обеих сторон данного угла.

531. Найдите геометрическое место центров окружностей, которые касаются данной прямой.

532. Прямые, касающиеся окружности с центром O в точках A и B , пересекаются в точке K , ∠ AKB = 120°. Докажите, что AK + BK = OK .

533. Окружность касается стороны AB треугольника ABC в точке M и касается продолжения двух других сторон. Докажите, что сумма длин отрезков BC и BM равна половине периметра треугольника ABC .

Рис. 297

534. Через точку C проведены касательные AC и BC к окружности, A и B - точки касания (рис. 297). На окружности взяли произвольную точку M , лежащую в одной полуплоскости с точкой C относительно прямой AB , и через неё провели касательную к окружности, пересекающую прямые AC и BC в точках D и E соответственно. Докажите, что периметр треугольника DEC не зависит от выбора точки M .

Упражнения для повторения

535. Докажите, что середина M отрезка, концы которого принадлежат двум параллельным прямым, является серединой любого отрезка, который проходит через точку M и концы которого принадлежат этим прямым.

536. Отрезки AB и CD лежат на одной прямой и имеют общую середину. Точку M выбрали так, что треугольник AMB - равнобедренный с основанием AB . Докажите, что ∆ CMD также является равнобедренным с основанием CD .

537. На стороне MK треугольника MPK отметили точки E и F так, что точка E лежит между точками M и F , ME = EP , PF = FK . Найдите угол M , если ∠ EPF = 92°, ∠ K = 26°.

538. В остроугольном треугольнике ABC проведена биссектриса BM , из точки M на сторону BC опущен перпендикуляр MK , ∠ ABM = ∠ KMC . Докажите, что треугольник ABC - равнобедренный.

Наблюдайте, рисуйте, конструируйте, фантазируйте

539. Установите закономерность форм фигур, изображённых на рисунке 298. Какую фигуру надо поставить следующей?

Рис. 298

Чаще всего именно геометрические задачи вызывают затруднения у абитуриентов, выпускников, участников математических олимпиад. Если посмотреть статистику ЕГЭ 2010 года, то видно, что к геометрической задаче С4 приступило около 12% участников, а получило полный балл только 0,2% участников, а в целом задача оказалась самой сложной из всех предложенных.

Очевидно, что чем раньше мы предложим школьникам красивые или неожиданные по способу решения задачи, тем больше вероятность заинтересовать и увлечь всерьёз и надолго. Но, как же трудно найти интересные и сложные задачи на уровне 7 класса, когда только начинается систематическое изучение геометрии. Что можно предложить интересующемуся математикой школьнику, знающему только признаки равенства треугольников, свойства смежных и вертикальных углов? Однако, можно ввести понятие касательной к окружности, как прямой, имеющей с окружностью одну общую точку; принять, что радиус, проведённый в точку касания, перпендикулярен касательной. Конечно, стоит рассмотреть все возможные случаи расположения двух окружностей и общих касательных к ним, которых можно провести от нуля до четырёх. Доказав ниже предложенные теоремы, можно значительно расширить набор задач для семиклассников. При этом попутно доказать важные или просто интересные и занимательные факты. Причём, поскольку многие утверждения не входят в школьный учебник, то обсуждать их можно и на занятиях кружка и с выпускниками при повторении планиметрии. Актуальными эти факты оказались в прошлом учебном году. Так как многие диагностические работы и сама работа ЕГЭ содержали задачу, для решения которой необходимо было использовать доказываемое ниже свойство отрезка касательной.

Т 1 Отрезки касательных к окружности, проведённые из
одной точки равны (рис. 1)

Вот именно с теоремой можно сначала познакомить семиклассников.
В процессе доказательства использовали признак равенства прямоугольных треугольников, сделали вывод о том, что центр окружности лежит на биссектрисе угла ВСА .
Попутно вспомнили, что биссектриса угла есть геометрическое место точек внутренней области угла, равноудалённых от его сторон. На этих доступных даже только начинающим изучать геометрию фактах основывается решение уже далеко нетривиальной задачи.

1. Биссектрисы углов А , В и С выпуклого четырёхугольника АВСD пересекаются в одной точке. Лучи АВ и DC пересекаются в точке Е , а лучи
ВС и АD в точке F . Докажите, что у невыпуклого четырёхугольника AECF суммы длин противоположных сторон равны.

Решение (рис. 2). Пусть О – точка пересечения данных биссектрис. Тогда О равноудалена от всех сторон четырёхугольника АВСD , то есть
является центром окружности вписанной в четырёхугольник. По теореме 1 верны равенства: AR = AK , ER = EP , FT = FK . Почленно сложим левые и правые части, получим верное равенство:

(AR + ER ) + FT = (AK +FK ) + EP ; AE + (FC + CT ) = AF + (ЕC + PC ). Так как СТ = РС , то АЕ + FC = AF + ЕC , что и требовалось доказать.

Рассмотрим необычную по формулировке задачу, для решения которой достаточно знание теоремы 1 .

2. Существует ли n -угольник, стороны которого последовательно 1, 2, 3, …, n , в который можно вписать окружность?

Решение. Допустим, такой n -угольник существует. А 1 А 2 =1, …, А n-1 А n = n – 1, А n А 1 = n . B 1 , …, B n – соответствующие точки касания. Тогда по теореме 1 A 1 B 1 = A 1 B n < 1, n – 1 < A n B n < n. По свойству отрезков касательных A n B n = A n B n-1 . Но, A n B n-1 < A n-1 А n = n – 1. Противоречие. Следовательно, нет n -угольника, удовлетворяющего условию задачи.


Т 2 Суммы противолежащих сторон четырёхугольника, описанного около
окружности, равны (рис. 3)

Школьники, как правило, легко доказывают это свойство описанного четырёхугольника. После доказательства теоремы 1 , оно является тренировочным упражнением. Можно обобщить этот факт – суммы сторон описанного чётноугольника, взятых через одну, равны. Например, для шестиугольника ABCDEF верно: AB + CD + EF = BC + DE + FА.

3. МГУ. В четырёхугольнике ABCD расположены две окружности: первая окружность касается сторон AB, BC и AD , а вторая – сторон BC, CD и AD . На сторонах BC и AD взяты точки E и F соответственно так, отрезок EF касается обеих окружностей, а периметр четырёхугольника ABEF на 2p больше периметра четырёхугольника ECDF . Найти AB , если CD = a .

Решение (рис. 1) . Так как четырёхугольники ABEF и ECDF вписанные, то по теореме 2 Р ABEF = 2(AB + EF) и Р ECDF = 2(CD + EF), по условию

Р ABEF – Р ECDF = 2(AB + EF) – 2(CD + EF) = 2p. AB – CD = p. АВ = а + р.

Опорная задача 1. Прямые АВ и АС – касательные в точках В и С к окружности с центром в точке О. Через произвольную точку Х дуги ВС
проведена касательная к окружности, пересекающая отрезки АВ и АС в точках М и Р соответственно. Докажите, что периметр треугольника АМР и величина угла МОР не зависят от выбора точки Х.

Решение (рис. 5). По теореме 1 МВ = МХ и РС = РХ. Поэтому периметр треугольника АМР равен сумме отрезков АВ и АС. Или удвоенной касательной, проведённой к вневписанной окружности для треугольника АМР . Величина угла МОР измеряется половиной величины угла ВОС , который не зависит от выбора точки Х .

Опорная задача 2а. В треугольник со сторонами а, b и c вписана окружность, касающаяся стороны АВ и точке К. Найти длину отрезка АК.

Решение (рис. 6). Способ первый (алгебраический). Пусть АК = АN = x, тогда BK = BM = c – x, CM = CN = a – c + x. АС = АN + NC, тогда можем составить уравнение относительно х: b = x + (a – c + x). Откуда .

Способ второй (геометрический). Обратимся к схеме. Отрезки равных касательных, взятые по одному, в сумме дают полупериметр
треугольника. Красный и зелёный составляют сторону а. Тогда интересующий нас отрезок х = р – а. Безусловно, полученные результаты совпадают.

Опорная задача 2б. Найти длину отрезка касательной АК, если К – точка касания вневписанной окружности со стороной АВ.Решение (рис. 7). АК = АM = x, тогда BK = BN = c – x, CM = CN. Имеем уравнение b + x = a + (c – x). Откуда . З аметим, что из опорной задачи 1 следует, что СМ = р Δ АВС. b + x = p; х = р – b. Полученные формулы имеют применение в следующих задачах.

4. Найдите радиус окружности, вписанной в прямоугольный треугольник с катетами а, b и гипотенузой с. Решение (рис. 8). Т ак как OMCN – квадрат, то радиус вписанной окружности равен отрезку касательной CN. .

5. Докажите, что точки касания вписанной и вневписанной окружности со стороной треугольника симметричны относительно середины этой стороны.

Решение (рис. 9). Заметим, АК – отрезок касательной вневписанной окружности для треугольника АВС. По формуле (2) . ВМ – отрезок касательной вписанной окружности для треугольника АВС. По формуле (1) . АК = ВМ, а это и означает, что точки К и М равноудалены от середины стороны АВ, что и требовалось доказать.

6. К двум окружностям проведены две общие внешние касательные и одна внутренняя. Внутренняя касательная пересекает внешние в точках А, В и касается окружностей в точках А 1 и В 1 . Докажите, что АА 1 = ВВ 1 .

Решение (рис. 10). Стоп… Да что тут решать? Это же просто другая формулировка предыдущей задачи. Очевидно, что одна из окружностей является вписанной, а другая вневписанной для некоего треугольника АВС. А отрезки АА 1 и ВВ 1 соответствуют отрезкам АК и ВМ задачи 5. Примечательно, что задача, предлагавшаяся на Всероссийской олимпиаде школьников по математике, решается столь очевидным образом.

7. Стороны пятиугольника в порядке обхода равны 5, 6, 10, 7, 8. Доказать, что в этот пятиугольник нельзя вписать окружность.

Решение (рис. 11) . Предположим, что в пятиугольник АВСDE можно вписать окружность. Причём стороны AB , BC , CD , DE и ЕA равны соответственно 5, 6, 10, 7 и 8. Отметим последовательно точки касания – F , G , H , M и N . Пусть длина отрезка AF равна х .

Тогда BF = FD AF = 5 – x = BG . GC = BC BG = = 6 – (5 – x ) = 1 + x = CH . И так далее: HD = DM = 9 – x ; ME = EN = x – 2, AN = 10 – х .

Но, AF = AN . То есть 10 – х = х ; х = 5. Однако, отрезок касательной AF не может равняться стороне АВ . Полученное противоречие и доказывает, что в данный пятиугольник нельзя вписать окружность.

8. В шестиугольник вписана окружность, его стороны в порядке обхода равны 1, 2, 3, 4, 5. Найти длину шестой стороны.

Решение. Конечно, можно отрезок касательной обозначить за х , как и в предыдущей задаче, составить уравнение и получить ответ. Но, гораздо эффективнее и эффектнее использовать примечание к теореме 2 : суммы сторон описанного шестиугольника, взятых через одну, равны.

Тогда 1 + 3 + 5 = 2 + 4 + х , где х – неизвестная шестая сторона, х = 3.

9. МГУ, 2003 г . химический факультет, № 6(6) . В пятиугольник АВСDE вписана окружность, Р – точка касания этой окружности со стороной ВС . Найдите длину отрезка ВР , если известно, что длины всех сторон пятиугольника есть целые числа, АВ = 1, СD = 3.

Решение (рис.12) . Так как длины всех сторон являются целыми числами, то равны дробные части длин отрезков BT , BP , DM , DN , AK и AT . Имеем, АТ + ТВ = 1, и дробные части длин отрезков AT и TB равны. Это возможно только тогда, когда АТ + ТВ = 0,5. По теореме 1 ВТ + ВР .
Значит, ВР = 0,5. Заметим, что условие СD = 3 оказалось невостребованным. Очевидно, авторы задачи предполагали какое-то другое решение. Ответ: 0,5.

10. В четырёхугольнике ABCD AD = DC, AB = 3, BC = 5. Окружности, вписанные в треугольники ABD и CBD касаются отрезка BD в точках M и N соответственно. Найти длину отрезка MN.

Решение (рис. 13). MN = DN – DM. По формуле (1) для треугольников DBA и DBС соответственно, имеем:

11. В четырёхугольник ABCD можно вписать окружность. Окружности, вписанные в треугольники ABD и CBD имеют радиусы R и r соответственно. Найти расстояние между центрами этих окружностей.

Решение (рис. 13). Так как по условию четырёхугольник ABCD вписанный, по теореме 2 имеем: AB + DC = AD + BC. Воспользуемся идеей решения предыдущей задачи. . Это означает, что точки касания окружностей с отрезком DM совпадают. Расстояние между центрами окружностей равно сумме радиусов. Ответ: R + r.

Фактически доказано, что условие – в четырёхугольник ABCD можно вписать окружность, равносильно условию – в выпуклом четырехугольнике ABCD окружности, вписанные в треугольники ABC и ADC касаются друг друга. Верно обратное.

Доказать эти два взаимно-обратных утверждения предлагается в следующей задаче, которую можно считать обобщением данной.

12. В выпуклом четырехугольнике ABCD (рис. 14 ) окружности, вписанные в треугольники ABC и ADC касаются друг друга. Докажите, что окружности, вписанные в треугольники ABD и BDC также касаются друг друга.

13. В треугольнике АВС со сторонами а, b и c на стороне ВС отмечена точка D так, что окружности, вписанные в треугольники АВD и ACD касаются отрезка AD в одной точке. Найти длину отрезка BD .

Решение (рис. 15). Применим формулу (1) для треугольников ADC и ADB , вычислив DM двумя

Оказывается, D – точка касания со стороной ВС окружности, вписанной в треугольник АВС . Верно обратное: если вершину треугольника соединить с точкой касания вписанной окружности на противоположной стороне, то окружности, вписанные в получившиеся треугольники, касаются друг друга.

14. Центры О 1 , О 2 и О 3 трёх непересекающихся окружностей одинакового радиуса расположены в вершинах треугольника. Из точек О 1 , О 2 , О 3 проведены касательные к данным окружностям так, как показано на рисунке.

Известно, что эти касательные, пересекаясь, образовали выпуклый шестиугольник, стороны которого через одну покрашены в красный и синий цвета. Докажите, что сумма длин красных отрезков равна сумме длин синих.

Решение (рис. 16). Важно понять, как использовать тот факт, что заданные окружности имеют одинаковые радиусы. Заметим, что отрезки ВR и равны, что следует из равенства прямоугольных треугольников О 1 ВR и O 2 BM . Аналогично DL = DP , FN = FK . Почленно складываем равенства, затем вычитаем из полученных сумм одинаковые отрезки касательных, проведенных из вершин А , С , и Е шестиугольника ABCDEF : АR и AK , CL и CM , EN и EP . Получаем требуемое.

Вот пример задачи по стереометрии, предлагавшейся на XII Международном математическом турнире старшеклассников “Кубок памяти А. Н. Колмогорова”.

16. Дана пятиугольная пирамида SA 1 A 2 A 3 A 4 A 5 . Существует сфера w , которая касается всех ребер пирамиды и другая сфера w 1 , которая касается всех сторон основания A 1 A 2 A 3 A 4 A 5 и продолжений боковых рёбер SA 1 , SA 2 , SA 3 , SA 4 , SA 5 за вершины основания. Докажите, что вершина пирамиды равноудалена от вершин основания. (Берлов С. Л., Карпов Д. В.)

Решение. Пересечение сферы w с плоскостью любой из граней сферы – это вписанная окружность грани. Пересечение сферы w 1 с каждой из граней SA i A i +1 – вневписанная окружность, касающаяся стороны A i A i +1 треугольника SA i A i +1 и продолжений двух других сторон. Обозначим точку касания w 1 с продолжением стороны SA i через B i . По опорной задаче 1 имеем, что SB i = SB i +1 = p SAiAi +1 , следовательно, периметры всех боковых граней пирамиды равны. Обозначим точку касания w со стороной SA i через С i . Тогда SC 1 = SC 2 = SC 3 = SC 4 = SC 5 = s ,
так как отрезки касательных равны. Пусть C i A i = a i . Тогда p SAiAi +1 = s+a i +a i +1 , и из равенства периметров следует, что a 1 = a 3 = a 5 = a 2 = a 4 , откуда SA 1 = SA 2 = SA 3 = SA 4 = SA 5 .

17. ЕГЭ. Диагностическая работа 8.12.2009 г, С–4. Дана трапеция ABCD , основания которой BC = 44, AD = 100, AB = CD = 35. Окружность, касающаяся прямых AD и AC , касается стороны CD в точке K . Найдите длину отрезка CK .ВDС и ВDА , касаются стороны ВD в точках Е и F . Найдите длину отрезка EF .

Решение. Возможны два случая (рис. 20 и рис. 21). По формуле (1) найдём длины отрезков DE и DF .

В первом случае AD = 0,1АС , СD = 0,9AC . Во втором – AD = 0,125АС , СD = 1,125AC . Подставляем данные и получаем ответ: 4,6 или 5,5.

Задачи для самостоятельного решения/

1. Периметр равнобедренной трапеции, описанной около окружности равен 2р. Найдите проекцию диагонали трапеции на большее основание. (1/2р)

2. Открытый банк задач ЕГЭ по математике. В4. К окружности, вписанной в треугольник ABC (рис. 22), проведены три касательные. Периметры отсеченных треугольников равны 6, 8, 10. Найдите периметр данного треугольника. (24)

3. В треугольник АВС вписана окружность. MN – касательная к окружности, MÎ АС, NÎ ВС, ВС = 13, АС = 14, АВ = 15. Найдите периметр треугольника MNC. (12)

4. К окружности, вписанной в квадрат со стороной а, проведена касательная, пересекающая две его стороны. Найдите периметр отсечённого треугольника. (а)

5. Окружность вписана в пятиугольник со сторонами а , d , c , d и e . Найдите отрезки, на которые точка касания делит сторону, равную а .

6. В треугольник со сторонами 6, 10 и 12 вписана окружность. К окружности проведена касательная так, что она пересекает две большие стороны. Найдите периметр отсечённого треугольника. (16)

7. CD – медиана треугольника ABC . Окружности, вписанные в треугольники ACD и BCD , касаются отрезка CD в точках M и N . Найдите MN , если АС ВС = 2. (1)

8. В треугольнике АВС со сторонами а, b и c на стороне ВС отмечена точка D . К окружностям, вписанным в треугольники АВD и ACD , проведена общая касательная, пересекающая AD в точке М . Найти длину отрезка АМ . (Длина АМ не зависит от положения точки D и
равна ½ (c + b – a ))

9. В прямоугольный треугольник вписана окружность радиуса а . Радиус окружности, касающейся гипотенузы и продолжений катетов, равен R. Найдите длину гипотенузы. (R – a )

10. В треугольнике АВС известны длины сторон: АВ = с , АС = b , ВС = а . Вписанная в треугольник окружность касается стороны АВ в точке С 1 . Вневписанная окружность касается продолжения стороны АВ за точку А в точке С 2 . Определите длину отрезка С 1 С 2 . (b )

11. Найдите длины сторон треугольника, разделённых точкой касания вписанной окружности радиуса 3 см на отрезки 4 см и 3 см. (7, 24 и 25 см в прямоугольном треугольнике)

12. Соросовская олимпиада 1996 г, 2 тур, 11 класс . Дан треугольник АВС , на сторонах которого отмечены точки А 1 , В 1 , С 1 . Радиусы окружностей вписанных в треугольники АС 1 В 1 , ВС 1 А 1 , СА 1 В 1 равны по r . Радиус окружности, вписанной в треугольник А 1 В 1 С 1 равен R . Найти радиус окружности, вписанной в треугольник АВС . (R + r ).

Задачи 4–8 взяты из задачника Гордина Р. К. “Геометрия. Планиметрия.” Москва. Издательство МЦНМО. 2004.

\[{\Large{\text{Центральные и вписанные углы}}}\]

Определения

Центральный угол – это угол, вершина которого лежит в центре окружности.

Вписанный угол – это угол, вершина которого лежит на окружности.

Градусная мера дуги окружности – это градусная мера центрального угла, который на неё опирается.

Теорема

Градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.

Доказательство

Доказательство проведём в два этапа: сначала докажем справедливость утверждения для случая, когда одна из сторон вписанного угла содержит диаметр. Пусть точка \(B\) – вершина вписанного угла \(ABC\) и \(BC\) – диаметр окружности:

Треугольник \(AOB\) – равнобедренный, \(AO = OB\) , \(\angle AOC\) – внешний, тогда \(\angle AOC = \angle OAB + \angle ABO = 2\angle ABC\) , откуда \(\angle ABC = 0,5\cdot\angle AOC = 0,5\cdot\buildrel\smile\over{AC}\) .

Теперь рассмотрим произвольный вписанный угол \(ABC\) . Проведём диаметр окружности \(BD\) из вершины вписанного угла. Возможны два случая:

1) диаметр разрезал угол на два угла \(\angle ABD, \angle CBD\) (для каждого из которых теорема верна по доказанному выше, следовательно верна и для исходного угла, который является суммой этих двух и значит равен полусумме дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 1.

2) диаметр не разрезал угол на два угла, тогда у нас появляется ещё два новых вписанных угла \(\angle ABD, \angle CBD\) , у которых сторона содержит диаметр, следовательно, для них теорема верна, тогда верна и для исходного угла (который равен разности этих двух углов, значит, равен полуразности дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 2.


Следствия

1. Вписанные углы, опирающиеся на одну и ту же дугу, равны.

2. Вписанный угол, опирающийся на полуокружность, прямой.

3. Вписанный угол равен половине центрального угла, опирающегося на ту же дугу.

\[{\Large{\text{Касательная к окружности}}}\]

Определения

Существует три типа взаимного расположения прямой и окружности:

1) прямая \(a\) пересекает окружность в двух точках. Такая прямая называется секущей. В этом случае расстояние \(d\) от центра окружности до прямой меньше радиуса \(R\) окружности (рис. 3).

2) прямая \(b\) пересекает окружность в одной точке. Такая прямая называется касательной, а их общая точка \(B\) – точкой касания. В этом случае \(d=R\) (рис. 4).


Теорема

1. Касательная к окружности перпендикулярна радиусу, проведенному в точку касания.

2. Если прямая проходит через конец радиуса окружности и перпендикулярна этому радиусу, то она является касательной к окружности.

Следствие

Отрезки касательных, проведенных из одной точки к окружности, равны.

Доказательство

Проведем к окружности из точки \(K\) две касательные \(KA\) и \(KB\) :


Значит, \(OA\perp KA, OB\perp KB\) как радиусы. Прямоугольные треугольники \(\triangle KAO\) и \(\triangle KBO\) равны по катету и гипотенузе, следовательно, \(KA=KB\) .

Следствие

Центр окружности \(O\) лежит на биссектрисе угла \(AKB\) , образованного двумя касательными, проведенными из одной точки \(K\) .

\[{\Large{\text{Теоремы, связанные с углами}}}\]

Теорема об угле между секущими

Угол между двумя секущими, проведенными из одной точки, равен полуразности градусных мер большей и меньшей высекаемых ими дуг.

Доказательство

Пусть \(M\) – точка, из которой проведены две секущие как показано на рисунке:


Покажем, что \(\angle DMB = \dfrac{1}{2}(\buildrel\smile\over{BD} - \buildrel\smile\over{CA})\) .

\(\angle DAB\) – внешний угол треугольника \(MAD\) , тогда \(\angle DAB = \angle DMB + \angle MDA\) , откуда \(\angle DMB = \angle DAB - \angle MDA\) , но углы \(\angle DAB\) и \(\angle MDA\) – вписанные, тогда \(\angle DMB = \angle DAB - \angle MDA = \frac{1}{2}\buildrel\smile\over{BD} - \frac{1}{2}\buildrel\smile\over{CA} = \frac{1}{2}(\buildrel\smile\over{BD} - \buildrel\smile\over{CA})\) , что и требовалось доказать.

Теорема об угле между пересекающимися хордами

Угол между двумя пересекающимися хордами равен полусумме градусных мер высекаемых ими дуг: \[\angle CMD=\dfrac12\left(\buildrel\smile\over{AB}+\buildrel\smile\over{CD}\right)\]

Доказательство

\(\angle BMA = \angle CMD\) как вертикальные.


Из треугольника \(AMD\) : \(\angle AMD = 180^\circ - \angle BDA - \angle CAD = 180^\circ - \frac12\buildrel\smile\over{AB} - \frac12\buildrel\smile\over{CD}\) .

Но \(\angle AMD = 180^\circ - \angle CMD\) , откуда заключаем, что \[\angle CMD = \frac12\cdot\buildrel\smile\over{AB} + \frac12\cdot\buildrel\smile\over{CD} = \frac12(\buildrel\smile\over{AB} + \buildrel\smile\over{CD}).\]

Теорема об угле между хордой и касательной

Угол между касательной и хордой, проходящей через точку касания, равен половине градусной меры дуги, стягиваемой хордой.

Доказательство

Пусть прямая \(a\) касается окружности в точке \(A\) , \(AB\) – хорда этой окружности, \(O\) – её центр. Пусть прямая, содержащая \(OB\) , пересекает \(a\) в точке \(M\) . Докажем, что \(\angle BAM = \frac12\cdot \buildrel\smile\over{AB}\) .


Обозначим \(\angle OAB = \alpha\) . Так как \(OA\) и \(OB\) – радиусы, то \(OA = OB\) и \(\angle OBA = \angle OAB = \alpha\) . Таким образом, \(\buildrel\smile\over{AB} = \angle AOB = 180^\circ - 2\alpha = 2(90^\circ - \alpha)\) .

Так как \(OA\) – радиус, проведённый в точку касания, то \(OA\perp a\) , то есть \(\angle OAM = 90^\circ\) , следовательно, \(\angle BAM = 90^\circ - \angle OAB = 90^\circ - \alpha = \frac12\cdot\buildrel\smile\over{AB}\) .

Теорема о дугах, стягиваемых равными хордами

Равные хорды стягивают равные дуги, меньшие полуокружности.

И наоборот: равные дуги стягиваются равными хордами.

Доказательство

1) Пусть \(AB=CD\) . Докажем, что меньшие полуокружности дуги .


По трем сторонам, следовательно, \(\angle AOB=\angle COD\) . Но т.к. \(\angle AOB, \angle COD\) - центральные углы, опирающиеся на дуги \(\buildrel\smile\over{AB}, \buildrel\smile\over{CD}\) соответственно, то \(\buildrel\smile\over{AB}=\buildrel\smile\over{CD}\) .

2) Если \(\buildrel\smile\over{AB}=\buildrel\smile\over{CD}\) , то \(\triangle AOB=\triangle COD\) по двум сторонам \(AO=BO=CO=DO\) и углу между ними \(\angle AOB=\angle COD\) . Следовательно, и \(AB=CD\) .

Теорема

Если радиус делит хорду пополам, то он ей перпендикулярен.

Верно и обратное: если радиус перпендикулярен хорде, то точкой пересечения он делит ее пополам.


Доказательство

1) Пусть \(AN=NB\) . Докажем, что \(OQ\perp AB\) .

Рассмотрим \(\triangle AOB\) : он равнобедренный, т.к. \(OA=OB\) – радиусы окружности. Т.к. \(ON\) – медиана, проведенная к основанию, то она также является и высотой, следовательно, \(ON\perp AB\) .

2) Пусть \(OQ\perp AB\) . Докажем, что \(AN=NB\) .

Аналогично \(\triangle AOB\) – равнобедренный, \(ON\) – высота, следовательно, \(ON\) – медиана. Следовательно, \(AN=NB\) .

\[{\Large{\text{Теоремы, связанные с длинами отрезков}}}\]

Теорема о произведении отрезков хорд

Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

Доказательство

Пусть хорды \(AB\) и \(CD\) пересекаются в точке \(E\) .

Рассмотрим треугольники \(ADE\) и \(CBE\) . В этих треугольниках углы \(1\) и \(2\) равны, так как они вписанные и опираются на одну и ту же дугу \(BD\) , а углы \(3\) и \(4\) равны как вертикальные. Треугольники \(ADE\) и \(CBE\) подобны (по первому признаку подобия треугольников).

Тогда \(\dfrac{AE}{EC} = \dfrac{DE}{BE}\) , откуда \(AE\cdot BE = CE\cdot DE\) .

Теорема о касательной и секущей

Квадрат отрезка касательной равен произведению секущей на ее внешнюю часть.

Доказательство

Пусть касательная проходит через точку \(M\) и касается окружности в точке \(A\) . Пусть секущая проходит через точку \(M\) и пересекает окружность в точках \(B\) и \(C\) так что \(MB < MC\) . Покажем, что \(MB\cdot MC = MA^2\) .


Рассмотрим треугольники \(MBA\) и \(MCA\) : \(\angle M\) – общий, \(\angle BCA = 0,5\cdot\buildrel\smile\over{AB}\) . По теореме об угле между касательной и секущей, \(\angle BAM = 0,5\cdot\buildrel\smile\over{AB} = \angle BCA\) . Таким образом, треугольники \(MBA\) и \(MCA\) подобны по двум углам.

Из подобия треугольников \(MBA\) и \(MCA\) имеем: \(\dfrac{MB}{MA} = \dfrac{MA}{MC}\) , что равносильно \(MB\cdot MC = MA^2\) .

Следствие

Произведение секущей, проведённой из точки \(O\) , на её внешнюю часть не зависит от выбора секущей, проведённой из точки \(O\) .

Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.

Теорема (свойство касательной к окружности)

Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

Дано

А – точка касания

Доказать : р ОА

Доказательство.

Докажем методом «от противного».

Предположим, что р ОА, тогда ОА – наклонная к прямой р.

Если из точки О провести перпендикуляр ОН к прямой р, то его длина будет меньше радиуса: ОН< ОА=r

Получим, что расстояние от центра окружности к прямой р (ОН) меньше радиуса (r) , значит прямая р – секущая (т.е. имеет с окружностью две общие точки), что противоречит условию теоремы (р- касательная).

Значит предположение неверно, следовательно прямая р перпендикулярна ОА.

Теорема (Свойство отрезков касательных, проведенных из одной точки)

Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

Дано : окр. (О; r)

АВ и АС – касательные к окр. (О; r)

Доказать : АВ=АС

Доказательство

1) ОВ АВ, ОС АС, как радиусы, проведенные в точку касания (свойство касательной)

2) Рассмотрим тр. АОВ и тр. АОС – п/у

АО – общая

ОВ=ОС (как радиусы)

Значит, АВО = АОС (по гипотенузе и катету). Следовательно,

АВ =АС, <3 = < 4 (как соответственные элементы в равных тр-ках). ч.т.д.

Теорема (Признак касательной)

Если прямая проходит через конец радиуса, лежащий на окружности, и перпендикулярна этому радиусу, то она является касательной.

Дано : ОА – радиус окружности

Доказать : р- касательная к окружности

Доказательство

ОА – радиус окружности (по условию) (ОА=r)

ОА – перпендикуляр из О к прямой р (ОА =d)

Значит, r=ОА=d , значит прямая р и окружность имеют одну общую точку.

Следовательно, прямая р – касательная к окружности. ч.т.д.

3 .Свойство хорд и секущих.

Свойства касательной и секущей

ОПРЕДЕЛЕНИЕ

Окружностью называется геометрическое место точек, равноудаленных от одной точки, которая называется центром окружности.

Отрезок, соединяющий две точки окружности, называется хордой (на рисунке это отрезок). Хорда, проходящая через центр окружности, называется диаметром окружности.

1. Касательная перпендикулярна радиусу, проведенному в точку касания.

2. Отрезки касательных, проведенных из одной точки, равны.

3. Если из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть.

Поделиться