Что такое скорость распространения волны. Длина волны. Скорость распространения волны (Ерюткин Е.С.). Отражение волн. Стоячие волны

Абсолютно все в этом мире происходит с какой-либо скоростью . Тела не перемещаются моментально, для этого требуется время. Не являются исключением и волны, в какой бы среде они не распространялись.

Скорость распространения волны

Если вы бросите камень в воду озера, то возникшие волны дойдут до берега не сразу. Для продвижения волн на некоторое расстояние необходимо время, следовательно, можно говорить о скорости распространения волн.

Скорость волны зависит от свойств среды, в которой она распространяется. При переходе из одной среды в другую, скорость волн меняется. Например, если вибрирующий железный лист засунуть концом в воду, то вода покроется рябью маленьких волн, однако скорость их распространения будет меньше, чем в железном листе. Это несложно проверить даже в домашних условиях. Только не порежьтесь о вибрирующий железный лист...

Длина волны

Существует еще одна важная характеристика это длина волны. Длина волны это такое расстояние, на которое распространяется волна за один период колебательных движений . Легче понять это графически.

Если зарисовать волну в виде рисунка или графика, то длиной волны будет являться расстояние между любыми ближайшими гребнями либо впадинами волны, либо между любыми другими ближайшими точками волны, находящимися в одинаковой фазе.

Так как длина волны это расстояние, пройденное ею, то и найти эту величину можно, как и любое другое расстояние, умножив скорость прохождения на единицу времени. Таким образом, длина волны связана со скоростью распространения волны прямо пропорционально. Найти длину волны можно по формуле:

где λ длина волны, v скорость волны, T период колебаний.

А учитывая, что период колебаний обратно пропорционален частоте этих же колебаний: T=1⁄υ, можно вывести связь скорости распространения волны с частотой колебаний :

v=λυ .

Частота колебаний в разных средах

Частота колебаний волн не меняется при переходе из одной среды в другую. Так, например, частота вынужденных колебаний совпадает с частотой колебаний источника. Частота колебаний не зависит от свойств среды распространений. При переходе из одной среды в другую меняется лишь длина волны и скорость ее распространения.

Эти формулы справедливы как для поперечных, так и для продольных волн. При распространении продольных волн длина волны будет расстоянием между двумя ближайшими точками с одинаковым растяжением или сжатием. Она также будет совпадать с расстоянием, пройденным волной за один период колебаний, поэтому формулы будут полностью подходить и в этом случае.

ДЛИНА ВОЛНЫ

СКОРОСТЬ РАСПРОСТРАНЕНИЯ ВОЛН

Что ты должен знать и уметь?

1.Определение длины волны.
Длина волны - это расстояние между ближайшими точками, колеблющимися в одинаковых фазах.
2. Величины, характеризующие волну:
длина волны, скорость волны, период колебаний, частота колебаний.
Единицы измерения в системе СИ:
длина волны [лямбда] = 1 м
скорость распространения волны [ v ] = 1м/с
период колебаний [ T ] = 1c
частота колебаний [ ню ] = 1 Гц
3. Расчетные формулы


4. Уметь показать графически длину волны (для продольных и поперечных волн).

ЕЩЁ ОДНА ИГРУШКА
ДЛЯ УМНЕНЬКИХ И ЛЮБОЗНАТЕЛЬНЫХ

Ощути себяфизиком-исследователем - нажми


ЭТО ИНТЕРЕСНО!

Сейсмические волны.

Сейсмическими волнами называются волны, распространяющиеся в Земле от очагов землетрясений или каких-нибудь мощных взрывов. Так как Земля в основном твердая, в ней одновременно могут возникать 2 вида волн - продольные и поперечные . Скорость этих волн разная: продольные распространяются быстрее поперечных. Например, на глубине 500 км скорость поперечных сейсмических волн 5км/с, а скорость продольных волн - 10км/с.
Регистрацию и запись колебаний земной поверхности, вызанных сейсмическими волнами, осуществляют с помощью приборов - сейсмографов. Распространяясь от очага землетрясения, первыми на сейсмическую станцию приходят продольные волны , а спустя некоторое время - поперечные. Зная скорость распространения сейсмических волн в земной коре и время запаздывания поперечной волны, можно определить расстояние до центра землетрясения. Чтобы узнать точнее, где он находится, используют данные нескольких сейсмических станций.
Ежегодно на земном шаре регистрируют сотни тысяч землетрясений . Подавляющее большинство из них относится к слабым, однако время от времени наблюдаются и такие. которые нарушают целостность грунта, разрушают здания и ведут к человеческим жертвам.

Распространение волн в упругой среде, это распространение деформаций в ней.

Пусть упругому стержню сечением , за время
сообщили импульс равный
. (29.1)

К концу этого промежутка времени сжатие охватит участок длиной (рис.56).

Тогда величина
будет определять скорость распространения сжатия вдоль стержня, т.е. скорость волны. Скорость распространения самих частиц в стержне равна
. Изменение импульса за это время, где масса стержня, охваченная деформацией
и выражение (29.1) примет вид

(29.2)

Учитывая, что по закону Гука
, (29.3)

где - модуль упругости, приравняем силы, выраженные из (29.2) и (29.3), получим

откуда
и скорость распространения продольных волн в упругой среде будет равна

(29.4)

Аналогично можно получить выражение скорости для поперечных волн

(29.5)

где - модуль сдвига.

30 Энергия волны

Пусть волна распространяется вдоль оси х со скоростью . Тогда смещениеS колеблющихся точек относительно положения равновесия

. (30.1)

Энергия участка среды (с объемом
и массой
), в которой распространяется эта волна, будет складываться из кинетической и потенциальной энергий, т.е.
.

При этом
где
,

т.е.
. (30.2)

В свою очередь потенциальная энергия этого участка равна работе

по его деформации
. Умножив и разделив

правую часть этого выражения на , получим

где можно заменить на относительную деформацию. Тогда потенциальная энергия примет вид:

(30.3)

Сравнивая (30.2) и (30.3) , замечаем, что обе энергии изменяются в одинаковых фазах, одновременно принимают максимальное и минимальное значения. При колебаниях в среде энергия из одного участка может переходить в другой, но полная энергия элемента объёма
не остаётся постоянной

Учитывая, что для продольной волны в упругой среде
и
, получаем, что полная энергия

(30.5)

пропорциональна квадратам амплитуды и частоты, а также плотности среды, в которой распространяется волна.

Введем понятие плотности энергии -. Для элементарного объёма
эта величина равна
. (30.6)

Среднее значение плотности энергии для времени одного периода будет равно
так как среднее значение
за это время равно 1/2.

Учитывая, что энергия не остается в данном элементе среды, а переносится волной от одного элемента к другому, можно ввести понятие потока энергии, численно равного энергии, переносимой через единицу поверхности за единицу времени. Так как энергия
, то среднее значение потока энергии

. (30.7)

Плотность потока сквозь поперечное сечение определяется как

, а так как скорость есть величина векторная, то и плотность потока - то же вектор
, (30.8)

получивший название - “вектор Умова”.

31 Отражение волн. Стоячие волны

Волна, проходящая через границу раздела двух сред, частично проходит через неё, частично отражается. Этот процесс зависит от соотношения плотностей сред.

Рассмотрим два предельных случая:

а) Вторая среда менее плотная (т.е. упругое тело имеет свободную границу);

б) Вторая среда более плотная (в пределе отвечает неподвижно закреплённому концу упругого тела);

а) Пусть левый конец стержня связан с источником колебаний, правый – свободен (рис.57, а ). Когда деформация достигнет правого конца, он, в результате возникшего слева сжатия получит ускорение вправо.При этом, в силу отсутствия среды справа, это движение не вызовет никакого дальнейшего сжатия. Деформация слева будет умень-шаться, а скорость движения – расти. При

В силу инерции конца стержня движение в момент исчезновения деформации не прекратится. Оно будет продолжаться с замедлением, вызывая деформацию растяжения, которая будет распространяться справа налево.

То есть, в точке отражения за приходящим сжатием следует уходящее растяжение, как и в свободно распространяющейся волне. Это

значит, что при отражении волны от менее плотной среды, ни какого

изменения фазы её колебаний в точке отражения не происходит.

б) Во втором случае, когда правый конец упругого стержня закреплён неподвижно, дошедшая до него деформация сжатия не может привести этот конец в движение (рис.57, б ). Возникшее сжатие начнёт распространяться влево. При гармонических колебаниях источника за деформацией сжатия будет следовать деформация растяжения. А при отражении от закреплённого конца за сжатием в приходящей волне будет следовать опять – таки деформация сжатия в отраженной волне.

То есть процесс происходит так, как будто в точке отражения теряется полволны, другими словами, фаза колебаний меняется на противоположную (на ). Во всех промежуточных случаях картина отличается только тем, что амплитуда отражённой волны будет меньше, ибо часть энергии уходит во вторую среду.

При непрерывной работе источника волн, волны, идущие от него, будут складываться с отраженными. Пусть их амплитуды одинаковы, а начальные фазы равны нулю. При распространении волн вдоль оси , их уравнения

(31.1)

В результате сложения колебания будут происходить по закону

В этом уравнении два первых сомножителя представляют собой амплитуду результирующего колебания
, зависящую от положения точек на осих
.

Получили уравнение, называемое уравнением стоячей волны
(31.2)

Точки, для которых амплитуда колебаний максимальна

(
), называются пучностями волны; точки, для которых амплитуда минимальна (
), называются узлами волны.

Определим координаты пучностей. При этом

при

Откуда координаты пучностей
. Расстояние между соседними пучностями -и
будет равно

, т.е. половине длины волны.

Определим координаты узлов. При этом
, т.е. должно выполняться условие
при

Откуда координаты узлов
, расстояние между соседними узлами равно половине длины волны, а между узлом и пучностью
- четверти волны. Так как
при переходе через нуль, т.е. узел, меняет значение с
на
, то смещение точек или их амплитуды по разные стороны от узла имеют одинаковое значения, но разные направления. Так как
имеет одинаковое значение в данный момент времени для всех точек волны, то все точки, находящиеся между двумя узлами, колеблются в одинаковых фазах, а по обе стороны узла в противоположных фазах.

Эти признаки являются отличительными признаками стоячей волны от бегущей, у которой все точки имеют одинаковые амплитуды, но колеблются в разных фазах.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Пример 1. Поперечная волна распространяется вдоль упругого шнура со скоростью
. Период колебания точек шнура
амплитуда

Определить: 1) длину волны , 2) фазуколебаний, смещение, скоростьи ускорениеточки, отстоящей на расстоянии

от источника волн в момент времени
3) разность фаз
колебаний двух точек, лежащих на луче и отстоящих от источника волн на расстояниях
и
.

Решение. 1) Длиной волны называется наименьшее расстояние между точками волны, колебания которых отличаются по фазе на

Длина волны равна расстоянию, которое волна проходит за один период, и находится как

Подставив числовые значения, получим

2) Фаза колебаний, смещение, скорость и ускорение точки могут быть найдены с помощью уравнения волны

,

y смещение колеблющейся точки, х – расстояние точки от источника волн, - скорость распространения волн.

Фаза колебаний равна
или
.

Смещение точки определим, подставив в уравнение волны числовые

значения амплитуды и фазы

Скорость точки является первой производной от смещения по времени, поэтому

или

Подставив числовые значения, получим

Ускорение есть первая производная от скорости по времени, поэтому

После подстановки числовых значений найдём

3) Разность фаз колебаний
двух точек волны связана с расстоянием
между этими точками (разностью хода волны) соотношением

Подставив числовые значения, получим

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

1. Как объяснить распространение колебаний в упругой среде? Что такое волна?

2. Что называется поперечной волной, продольной волной? Когда они возникают?

3. Что такое волновой фронт, волновая поверхность?

4. Что называется длиной волны? Какова связь между длиной волны, скоростью и периодом?

5. Что такое волновое число, фазовая и групповая скорости?

6. В чём заключается физический смысл вектора Умова?

7. Какая волна является бегущей, гармонической, плоской, сферической?

8. Каковы уравнения этих волн?

9. Когда на струне образуется стоячая волна, колебания прямой и отраженной волн в узлах взаимно гасятся. Означает ли это, что исчезает энергия?

10. Две волны, распространяющиеся навстречу друг другу, отличаются только амплитудами. Образуют ли они стоячую волну?

11. Чем стоячая волна отличается от бегущей?

12. Чему равно расстояние между двумя соседними узлами стоячей волны, двумя соседними пучностями, соседними пучностью и узлом?

Под скоростью волны понимают ско-рость распространения возмущения. Например, удар по торцу стального стержня вызывает в нем местное сжатие, которое затем распространяется вдоль стержня со скоростью около 5 км/с .

Скорость волны определяется свойствами среды, в которой эта волна распространяется. При переходе волны из одной среды в другую ее скорость изменяется.

Длиной волны называется расстояние, на которое распространяется волна за время, равное периоду колебаний в ней.

Поскольку скорость волны — величина постоянная (для данной среды), то пройденное волной расстояние равно произведению скорости на время ее распространения. Таким образом, чтобы найти длину волны, надо скорость волны умножить на период колебаний в ней:

где v — скорость волны, Т — период колебаний в волне, λ (греческая буква лямбда) — длина волны.

Формула выражает связь длины волны с ее скоростью и периодом. Учитывая, что пери-од колебаний в волне обратно пропорционален частоте v , т. е. Т = 1/ v , можно получить формулу, выражающую связь длины волны с ее скоростью и частотой:

,

откуда

Полученная формула показывает, что скорость волны равна произведению длины волны на частоту колебаний в ней.

Длина волны — это пространственный период волны. На графике волны (рис. выше) длина волны определяется как расстояние между двумя ближайшими точками гармонической бегущей волны , находящимися в одинаковой фазе колебаний. Это как бы мгновенные фотогра-фии волн в колеблющейся упругой среде в моменты времени t и t + Δt . Ось х совпадает с направле-нием распространения волны, на оси ординат отложены смещения s колеблющихся частиц среды.

Частота колебаний в волне совпадает с частотой колебаний источника, т. к. колебания час-тиц в среде являются вынужденными и не зависят от свойств среды, в которой распространяется волна. При переходе волны из одной среды в другую ее частота не изменяется, меняются лишь скорость и длина волны.

Что нужно знать и уметь?

1.Определение длины волны.
Длина волны - это расстояние между ближайшими точками, колеблющимися в одинаковых фазах.


ЭТО ИНТЕРЕСНО

Сейсмические волны.

Сейсмическими волнами называются волны, распространяющиеся в Земле от очагов землетрясений или каких-нибудь мощных взрывов. Так как Земля в основном твердая, в ней одновременно могут возникать 2 вида волн - продольные и поперечные. Скорость этих волн разная: продольные распространяются быстрее поперечных. Например, на глубине 500 км скорость поперечных сейсмических волн 5км/с, а скорость продольных волн - 10км/с.

Регистрацию и запись колебаний земной поверхности, вызанных сейсмическими волнами, осуществляют с помощью приборов - сейсмографов. Распространяясь от очага землетрясения, первыми на сейсмическую станцию приходят продольные волны, а спустя некоторое время - поперечные. Зная скорость распространения сейсмических волн в земной коре и время запаздывания поперечной волны, можно определить расстояние до центра землетрясения. Чтобы узнать точнее, где он находится, используют данные нескольких сейсмических станций.

Ежегодно на земном шаре регистрируют сотни тысяч землетрясений. Подавляющее большинство из них относится к слабым, однако время от времени наблюдаются и такие. которые нарушают целостность грунта, разрушают здания и ведут к человеческим жертвам.

Интенсивность землетрясений оценивается по 12-бальной шкале.


1948 год - г. Ашхабад -землетрясение 9-12 баллов
1966 год - г. Ташкент - 8 баллов
1988 год - г. Спитак - погибло несколько десятков тысяч человек
1976 год - Китай -число жертв сотни тысяч человек

Противостоять разрушительным последствиям землетрясений возможно только путем строительства сейсмостойких зданий. Но в каких районах Земли случится следующее землетрясение?

Предсказание землетрясений - сложнейшая задача. Решением этой задачи заняты многие научно-исследовательские институты многих стран мира. Исследование сейсмических волн внутри нашей Земли позволяет изучить глубинное строение планеты. Кроме того, сейсмическая разведка помогает обнаруживать места, благоприятные для скопления нефти и газа. Сейсмические исследования проводятся не только на Земле, но и на других небесных телах.

В 1969 году американские астронавты разместили сейсмические станции на Луне. Ежегодно они регистрировали от 600 до 3000 слабых лунотрясений. В 1976 году с помощью космического корабля "Викинг" (США) сейсмограф был установлен на Марсе..

СДЕЛАЙ САМ

Волны на бумаге.

С помощью звучащей трубки можно поставить немало опытов.
Если, например, на мягкую подложку, лежащую на столе, положить лист плотной светлой бумаги, сверху насыпать слой кристаллов марганцовки, посредине листа вертикально поставить стеклянную трубку и возбудить в ней трением колебания, то при появлении звука кристаллы марганцовки придут в движение и образуют красивые линии. Трубка должна лишь слегка касаться поверхности листа. Появляющийся на листе рисунок будет зависеть от длины трубки.

Трубка возбуждает колебания в бумажном листе. В листе бумаги образуется стоячая волна, которая является результатом интерференции двух бегущих волн. От конца колеблющейся трубки возникает круговая волна, которая без изменения фазы отражается от края бумаги. Эти волны когерентны и интерферируют, распределяя на бумаге кристаллики марганцовки в причудливые узоры.

ОБ УДАРНОЙ ВОЛНЕ

В своей лекции "О корабельных волнах" лорд Кельвин рассказывал:
"...одно открытие фактически сделано лошадью, ежедневно тащившей лодку по канату между Глазго
и Ардроссаном. Однажды лошадь понеслась, и возница, будучи наблюдательным человеком, заметил, что, когда лошадь достигла определенной скорости, тянуть лодку стало явно легче
и позади нее не осталось волнового следа".

Объяснение этого явления заключается в том, что скорость лодки и скорость волны, которую возбуждает лодка в реке, совпали.
Если бы лошадь побежала еще быстрее (скорость лодки стала бы больше скорости волны),
то за лодкой возникла бы ударная волна.
Ударная волна от сверхзвукового самолета возникает точно так же.

Поделиться