Диффузное рассеяние рентгеновских лучей. Малоугловое рассеяние рентгеновских лучей Распространение колебаний в материальной среде

Для получения количественной информации о субструктуре нанокристаллических сплавов большие возможности имеет метод малоуглового рассеяния рентгеновских лучей (МУР). Этот метод позволяет определить размеры и форму субмикроскопических частиц размеры, которых лежат в пределах от 10 до 1000 Å. К преимуществам метода МУР следует отнести то, что в области малых углов можно не учитывать комптоновское рассеяние, а также рассеяние вследствие тепловых колебаний и статических смещений, которые ничтожно малы именно в области малых углов. Следует отметить, что в создании дифракционной картины принимают участие лишь электроны (рассеяния на ядрах пренебрежимо мало), поэтому по дифракционной картине можно судить о пространственном распределении электронной плотности, причем избыток и недостаток электронов по отношению к средней по образцу электронной плотности действуют эквивалентно .

Согласно классической теории амплитуда рассеянная отдельной сферической частицей равна

где – угол дифракции, модуль вектора дифракции равен ; – функция распределения электронной плотности в частице; – радиус частицы.

Наиболее легко может быть вычислена интенсивность, рассеянная однородной сферической частицей радиуса имеющей электронную плотность .

– функция формы частицы, а ее квадрат – фактор рассеяния сферической частицы; – число электронов в частице, – интенсивность, рассеиваемая электроном (следует заметить, что в области нулевого узла обратной решетки угловой зависимостью функции можно пренебречь, т.е. ).

Как показано в , Гинье предложил упрощенный метод расчета интенсивности, который заключается в том, что при малом размере частицы и при , имеем . Поэтому при разложении в ряд, можно ограничиться первыми двумя членами:

Величина называется электронным радиусом инерции (радиус гирации) частицы и представляет собой среднеквадратичный размер частицы (неоднородности). Легко показать, что для однородной сферической частицы радиуса имеющей электронную плотность , радиус гирации выражается через ее радиус следующим образом: , а величина равна – числу электронов в частице или точнее – разности между числом электронов в частице и числом электронов в равном объеме окружающей частицу среды ( – объем неоднородности, и – электронные плотности вещества неоднородности и матрицы соответственно). Исходя из выше сказанного, получим:

В случае монодисперсной разряженной системы, когда можно пренебречь интерференцией лучей, рассеянных различными частицами, профиль интенсивности рассеяния нулевого узла обратной решетки системой, содержащей частиц в облучаемом объеме, можно описать следующей формулой:


Эта формула (2.7) была получена Гинье и названа его именем.

Величина находится по формуле:

где – интенсивность первичного пучка; и – заряд и масса электрона соответственно; – скорость света в вакууме; – расстояние от образца до точки наблюдения.

Как показано на рис. 4 зависимости интенсивности от угла, вычисленные по формулам (2.2) и (2.7) для сферически однородной частицы радиуса хорошо совпадают при .

Рис. 4. Рассеяние сферической частицей радиуса .

Прологарифмируем формулу Гинье:

Таким образом, из выражения (2.8) следует, что в случае представлении картины МУР от монодисперсной системы частиц в координатах при достаточно малых получается линейная зависимость, по углу наклона которой можно найти радиус гирации частиц.

В случае полидисперсной системы, когда частицы имеют разные размеры, зависимость уже не будет линейной. Однако, как показывают исследования при достаточной монодисперсности каждого сорта частиц и отсутствия межчастичной интерференции на картине МУР в координатах можно выделить несколько линейных областей. Разделив эти области можно найти соответствующие им радиусы гирации частиц разного сорта (рис. 5).

Не смотря на выше перечисленные достоинства при получении структурной информации, метод МУР обладает рядом существенных недостатков .

Значительное искажение в картину МУР может внести двойное брэгговское отражение (ДБО), которое возникает при прохождении рентгеновских лучей через кристаллические материалы. Схема, объясняющая возникновение ДБО, приведена на рис. 6. Пусть первичный пучок рентгеновских лучей падает на мозаичный кристалл, состоящий из слегка разориентированных блоков. Если, например, блок 1 находится к s 0 под брегговским углом υ , то от него отразится луч s 1 , который на своем пути может встретить блок 2, находящийся по отношению к s 1 в отражающем положении, поэтому от блока 2 отразится луч s 2 . Если нормали n 1 иn 2 к отражающим плоскостям обоих блоков расположены в одной плоскости (например, в плоскости чертежа), то луч s 2 попадет, как и луч s 1 , в центральное пятно P 0 рентгенограммы. Блок 2 отражает и в том случае, когда он повернут вокруг s 1 так, что нормаль n 2 продолжает составлять угол (π/2)-υ с s 1 , но уже не лежит в одной плоскости с n 1 . Тогда дважды отраженный луч выйдет из плоскости чертежа и переместится по образующей конуса, осью которого является s 1 . В результате на фотопленке около центрального пятна P 0 появится короткий штрих, являющийся наложением следов дважды отраженных лучей.

Рис 6. Схема, поясняющая возникновение двойного брегговского отражения.

Штрихи ДБО ориентированы перпендикулярно к линии P 0 P , соединяющей центральное пятно P 0 с брегговским максимумом P; их длина тем больше, чем больше угол мозаичности кристалла.

Избавиться от ДБО при исследовании МУР монокристаллом несложно: достаточно ориентировать последний по отношению к первичному пучку так, чтобы ни одна система плоскостей (hkl ) не находилась в отражающем положении.

При исследовании поликристаллов исключить ДБО практически нельзя, так как всегда найдутся кристаллиты, отражающие первичный пучок. ДБО будет отсутствовать только при использовании излучений с длиной волны λ > d max (d max – наибольшее межплоскостное расстояние для данного кристаллита). Так, например, при исследовании меди следует применять Al K α – излучение, что представляет значительные экспериментальные трудности.

При сравнительно больших углах рассеяния (ε > 10") МУР нельзя отделить от эффекта ДБО. Но при ε < 2" интенсивность МУР на порядок выше интенсивности ДБО. Отделение истинного МУР от ДБО в этом случае основано на различном характере зависимостей МУР и ДБО от используемой длины волны. Для этого получают кривые интенсивности I (ε/λ) на двух излучениях, например, CrK α и CuK α . Если обе кривые совпадают, то это свидетельствует, что все рассеяние обусловлено эффектом МУР. Если кривые разойдутся так, что в каждой точке ε/λ отношение интенсивностей окажется постоянным, то все рассеяние обусловлено ДБО.

Когда присутствуют оба эффекта, то

I 1 = I 1 ДБО + I 1 ДБО; I 2 = I 2 ДБО + I 2 ДБО

Б. Я. Пинесом и др. показано, что поскольку при ε 1 /λ 1 = ε 2 /λ 2

I 1 МУР /I 2 МУР = 1 и I 1 ДБО /I 2 ДБО = К,

I 2 ДБО = (I 1 – I 2)ε 1 /λ 1 = ε 2 /λ 2 (К – 1),

где постоянную К вычисляют теоретически для каждого конкретного случая.

По эффекту ДБО можно определить средние углы разориентации блоков внутри кристаллитов или монокристаллах .

где и – экспериментальная и исправленная интенсивности МУР, – вектор дифракции, – угол рассеяния, – длина волны; – постоянный коэффициент; – переменная интегрирования . Следует также отметить, что формулу Гинье можно обосновано применять лишь в случаях предусматривающих отсутствие интерференции лучей рассеянных различными частицами, простоту форм и электронную однородность рассеивающих частиц (шар, эллипс, пластинка при ), в противном случае зависимость не будет содержать линейных областей, и обработка картин МУР существенно усложняется .

2.2. Анализ нанокомпозитной структуры методами рентгеновской дифракции на большие и малые углы.

Среди косвенных методов определения размера частиц основное место принадлежит дифракционному методу. Одновременно этот метод является наиболее простым и доступным, так как рентгеновское иссле­дование структуры распространено повсеместно и хорошо обеспечено соответствующей аппаратурой. С помощью дифракционного метода наряду с фазовым составом, параметрами кристаллической решётки, статическими и динамическими смещениями атомов из положения равновесия и микронапряжениями в решётке можно определить размер зёрен (кристаллитов).

Определение дифракционным методом размера зёрен, частиц (или областей когерентного рассеяния) основано на изменении формы профиля дифракционного отражения при уменьшении размера зёрен. При обсуждении дифракции под когерентным рассеянием понимается рассеяние дифрагирующего излучения, при котором обеспечивается выполнение условий интерференции. В общем случае размер отдельного зерна может не совпадать с размером области когерентного рассеяния.

В дифракционных экспериментах изучение дефектов структуры проводят по уширению дифракционных отражений от поликристалла или порошка. Однако при практическом применении этого метода для определения размера зёрен зачастую сравнивают ширину дифракционных отражений от вещества с крупным размером зёрен (частиц) и от того же вещества в наносостоянии. Такое определение уширения и последующая оценка среднего размера частиц не всегда верны и могут давать очень большую (несколько сотен процентов) ошибку. Дело в том, что уширение следует определять относительно дифракционных отражений от бесконечно большого кристалла. Реально это означает, что сравнивать измеренную ширину дифракционных отражений следует с инструментальной шириной, т. е. с шириной функции разрешения дифрактометра, заранее определенной в специальном дифракционном эксперименте. Кроме того, точное определение ширины дифракционных отражений возможно только путем теоретического восстановления формы экспериментального отражения. Весьма существенно, что могут быть и другие, помимо малого размера кристаллитов, физические причины уширения дифракционных отражений. Поэтому важно не только определить величину уширения, но и выделить вклад в него, обусловленный именно малым размером частиц.

Поскольку дифракционный метод определения размера частиц яв­ляется самым распространенным и доступным, рассмотрим особенно­сти его применения более подробно .

Ширина дифракционной линии может зависеть от ряда причин. К ним относятся малые размеры кристаллитов, наличие разного рода дефектов, а так же неоднородность образцов по химическому составу. Уширение, обусловленное микродеформациями и хаотически распределенными дислокациями, зависит от порядка отражения и про­порционально tg υ. Величина уширения, вызванного негомогенностью Δх ; (или Δу), пропорциональна (sin 2 υ)/cos υ. В случае нанокристаллических веществ наиболее интересно уширение, связанное с малым размером D кристаллитов (D < 150 нм), причем в этом случае величина уширения пропорциональна seс υ. Рассмотрим вывод выражения, учитываю­щего уширение дифракционного отражения, обусловленное конечным размером частиц поликристаллического вещества.

Пусть v - усреднённая по объёму высота колонки плоскостей когерентного рассеяния, - усреднённый по объёму диаметр ча­стиц. Для частиц со сферической формой интегрирование приводит к выражению

Введем в рассмотрение вектор рассеяния s = 2sin υ / λ, где λ - длина волны излучения. Математически его дифференциал (или неопределенность с физической точки зрения, поскольку в конечном кристалле волновой вектор становится плохим квантовым числом) равен

ds= (2.12)

В этом выражении величина d(2υ) является интегральной шириной дифракционного отражения (линии), выраженной в углах 2υ и измеряемой в радианах. Интегральная ширина определяется как интегральная интенсивность линии, деленная на её высоту, и не зависит от формы дифракционной линии. Это позволяет использовать интегральную ширину для анализа дифракционного рентгеновского, синхротронного или нейтронографического эксперимента, выполненного на разных установках с отличающейся функцией разрешения дифрактометра и в разных интервалах углов.

Неопределенность вектора рассеяния ds обратно пропорциональна усреднённой по объёму высоте колонки плоскостей когерентного рассеяния v, поэтому произведение этих величин равно единице, v·ds = 1. Из этого соотношения ясно, что при бесконечной высоте колонки (т. е. при бесконечно большом размере кристаллитов) неопределенность ds равна нулю. Если же высота колонки мала и стремится к нулю, то неопределенность ds волнового вектора и, соответственно, ширина d (2υ) дифракционной линии становятся очень большими. Поскольку v = 1/ds, то для дифракционной линии произвольной формы размер зерна (в предположении, что все зёрна являются сферическими) с учётом (2.11) и (2.12) можно определить как

где d (2 ) - интегральная ширина дифракционной линии. На практике часто пользуются не интегральной шириной, а полной шириной дифракционной линии на половине высоты FWHM (full width at half maximum). Связь между интегральной шириной линии и FWHM зависит от формы экспериментальной дифракционной линии и в каждом конкретном случае должна определяться специально. Для линии в виде прямоугольника и треугольника интегральная ширина линии в точности равна FWHM. Для функций Лоренца и Гаусса связь описывается выражениями: d (2 ) L ≈ 1,6∙FWHM L (2 ) и d (2 ) G ≈ 1,1∙FWHM G (2 ), а для псевдо-функции Фойгта, которая будет рассмотрена ниже, эта связь более сложная и зависит от соотношения вкладов Гаусса и Лоренца. Для дифракционных линий в малых углах соотношение между интегральным уширением и FWHM можно принять равным d(2 ) ≈ 1,47 ∙ FWHM(2 ); подставляя это соотношение в (2.13), получим формулу Дебая:

В общем случае, когда частицы вещества имеют произвольную форму, средний размер частиц можно найти по формуле Дебая-Шеррера:

где - постоянная Шеррера, значение которой зависит от формы частицы (кристаллита, домена) и от индексов (hkl ) дифракционного отражения.

В реальном эксперименте из-за конечного разрешения дифрактометра линия уширяется и не может быть меньше, чем инструментальная ширина линии. Иначе говоря, в формуле (2.15) следует использовать не ширину FWHM(2υ) отражения, а её уширение β относительно инструментальной ширины. Поэтому в дифракционном эксперименте средний размер частиц определяют по методу Уоррена:

где уширение дифракционного отражения. Заметим, что .

Полную ширину на половине высоты FWHM R или инструментальную ширину дифрактометра можно измерить на хорошо отожжённом и полностью гомогенном веществе (порошке) с частицами размером 1-10 мкм. Иначе говоря, за эталон сравнения нужно брать отражение без каких-либо дополнительных, кроме инструментального, уширений. Если функция разрешения дифрактометра описывается функцией Гаусса, a υ R - её второй момент, то FWHM R =2.355υ R .

Дифракционные отражения описывают функциями Гаусса g(υ) и Лоренца l(υ):

, (2.17)

или их суперпозицией V l () + (1-c) g() - псевдо-функцией Фойгта:

где относительный вклад функции Лоренца в общую интенсивность отражения; параметры распределений Лоренца и Гаусса; А - нормирующий множитель.

Рассмотрим особенности распределений Гаусса и Лоренца, которые необходимы далее. Для распределения Гаусса параметр является вторым моментом функции. Второй момент , выраженный в углах , связан с полной шириной на половине высоты, измеренной в углах 2 , известным соотношением () = FWHM(2 )/(2·2,355). Это соотношение легко получить непосредственно из распределения Гаусса. На рис. 6 а показано распределение Гаусса, описываемое функцией

где - второй момент функции Гаусса, т. е. значение аргумента, соответствующее точке перегиба функции, когда . Найдем величину , при которой функция (2.20) принимает значение, равное половине её высоты. В этом случае и , откуда . Как видно на рисунке 6 а, полная ширина функции Гаусса на половине высоты равна .

Для распределения Лоренца параметр совпадает с полушириной этой функции на половине высоты. Пусть функция Лоренца,

принимает значение, равное половине высоты, т. е. (рис. 6 б). Значение аргумента, которое соответствует такому значению функции, найдем из уравнения

откуда и .Таким образом, действительно для функции Лоренца . Второй момент функции Лоренца, т. е. значение аргумента, соответствующего точке перегиба функции, можно найти из условия . Расчет показывает, что второй момент функции Лоренца равен .

Псевдо-функция Фойгта (2.19) обеспечивает наилучшее по сравнению с функциями Гаусса и Лоренца описание экспериментального дифракционного отражения.

Учитывая это, функцию разрешения дифрактометра представим как псевдо-функцию Фойгта; для упрощения записи примем, что в (2.19) А=1. Тогда

Поскольку функция разрешения есть суперпозиция функций Лоренца и Гаусса, то в нулевом приближении ее ширину можно аппроксимировать выражением

Если , то . Пусть некоторая эффективная функция Гаусса , площадь которой совпадает с площадью псевдо-функции Фойгта, имеет ширину , равную , тогда второй момент такой функции . Таким образом псевдо-функция разрешения Фойгта и эффективная функция Гаусса эквивалентны по полуширине. Это позволяет, в нулевом приближении, заменить функцию (2.22) функцией

где при условии, что .

Экспериментальная функция , описывающая форму произвольного дифракционного отражения, является сверткой функции распределения и функции разрешения (2.24), т. е.

Из (2.25) ясно, что второй момент экспериментальной функции . (2.26)

Уширение β дифракционного отражения выражается через полную ширину отражения на половине высоты как .Если вторые моменты и полная ширина выражены в одинаковых единицах (все в углах или все в углах 2 ), то и уширение отражения (hkl) равно

Как уже отмечалось, уширения, вызванные малым размером зёрен, деформациями и негомогенностью, пропорциональны sec , tg и (sin ) 2 /cos , соответственно, поэтому благодаря разной угловой зависимости можно разделить три разных вида уширения. При этом следует иметь в виду, что размер областей когерентного рассеяния, определяемый из размерного уширения, может соответствовать размеру индивидуальных частиц (кристаллитов), но может также отражать субдоменную структуру и характеризовать среднее расстояние между дефектами упаковки или эффективный размер мозаичных блоков и т. д. Кроме того, нужно учитывать, что форма дифракционного отражения зависит не только от размера, но и от формы наночастиц. В неоднофазных наноматериалах заметное искажение формы наблюдаемых дифракционных линий может быть следствием суперпозиции дифракционных отражений нескольких фаз.

Рассмотрим, как можно разделить уширение, обусловленное несколькими разными факторами, на примере наноструктурированных карбидных твёрдых растворов системы Zr C – Nb C. При рентгеновском исследовании этих твёрдых растворов было обнаружено, что дифракционные отражения на рентгенограммах образцов (ZrС) 0.46 (NbС) 0,54 сильно уширены. Известно, что эти твёрдые растворы имеют склонность к распаду в твёрдом состоянии, однако по рентгеновским данным образцы были однофазны. Для выяснения причины уширения отражений (негомогенность, малый размер зёрен или деформации) был выполнен количественный анализ профиля дифракционных отражений с использованием псевдо-функции Фойгта (2.19). Проведенный анализ показал, что ширина всех дифракционных отражений существенно превышает ширину функции разрешения дифрактометра.

В кубической кристаллической решётке кристаллиты имеют размеры одного порядка в трех перпендикулярных направлениях. В этом случае для кристаллов с кубической симметрией коэффициент отражений с различными кристаллографическими индексами Миллера (hkl) кубической кристаллической решётки, можно вычислить по формуле

Деформационные искажения и обусловленные ими неоднородные смещения атомов из узлов решётки могут возникать при хаотическом размещении дислокаций в объёме образца. В этом случае смещения атомов определяются суперпозицией смещений от каждой дислокации, что можно рассматривать как локальное изменение межплоскостных расстояний. Иначе говоря, расстояние между плоскостями непрерывно меняется от (d 0 -Δd) до (d 0 +Δd) (d 0 и Δd - межплоскостное расстояние в идеальном кристалле и среднее по величине изменение расстояния между плоскостями (hkl) в объёме V кристалла, соответственно). В этом случае величина ε = Δd / d 0 есть микродеформация решётки, которая характеризует усреднённую по кристаллу величину однородной деформации. Дифракционный максимум от областей кристалла с измененным межплоскостным расстоянием возникает под углом , несколько отличающимся от угла о для идеального кристалла, и в результате этого происходит уширение отражения. Формулу для уширения линии, связанного с микродеформацией решётки, легко вывести, продифференцировав уравнение Вульфа-Брегга: ; .Уширение линии в одну сторону от максимума линии, соответствующего межплоскостному расстоянию d, при изменении межплоскостного расстояния на +Δd равно , а при изменении на - (рис. 6 а) функции разрешения рентгеновского дифрактометра определяли в специальных экспериментах на отожжённых крупнозернистых соединениях, не имеющих области гомогенности (большой размер зёрен, отсутствие деформационных искажений и однородность состава образцов исключали уширение отражений): монокристалле гексагонального карбида кремния 6Н-SiC и на стехиометрическом карбиде вольфрама WС. Сопоставление найденных величин; в - зависимость экспериментального уширения дифракционных отражений образца (ZrС) 0.46 (NbС) 0,54 от

Guinier A., Fournet G. Small-angle scattering of x-rays. New York-London: J. Wiley and Sons. Chapman and Hall Ltd. 1955.

Игнатенко П. И., Иваницын Н. П. Рентгенография реальных кристаллов. - Донецк: ДГУ, 2000. – 328 с.

Русаков, А. А. Рентгенография металлов - М. : Атомиздат, 1977. - 479 с.

Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии. – М.: ФИЗМАТЛИТ, 2005. – 416 с.

При работе на повышенных напряжениях , как и при рентгенографии на обычных напряжениях, необходимо использовать все известные способы борьбы с рассеянным рентгеновским излучением.

Количество рассеянных рентгеновых лучей уменьшается с уменьшением поля облучения, что достигается ограничением в поперечнике рабочего пучка рентгеновых лучей. С уменьшением поля облучения, в свою очередь, улучшается разрешающая способность рентгеновского изображения, т. е. уменьшается минимальный размер определяемой глазом детали. Для ограничения в поперечнике рабочего пучка рентгеновых лучей далеко еще недостаточно используются сменные диафрагмы или тубусы.

Для уменьшения количества рассеянных рентгеновых лучей следует применять, где это возможно, компрессию. При компрессии уменьшается толщина исследуемого объекта и, само собой разумеется, становится меньше центров образования рассеянного рентгеновского излучения. Для компрессии используются специальные компрессионные пояса, которые входят в комплект рентгенодиагностических аппаратов, но они недостаточно часто используются.

Количество рассеянного излучения уменьшается с увеличением расстояния между рентгеновской трубкой и пленкой. При увеличении этого расстояния и соответствующем диафрагмировании получается менее расходящийся в стороны рабочий пучок рентгеновых лучей. При увеличении расстояния между рентгеновской трубкой и пленкой необходимо уменьшать поле облучения до минимально возможных размеров. При этом не должна «срезаться» исследуемая область.

С этой целью в последних конструкциях рентгенодиагностических аппаратов предусмотрен пирамидальный тубус со световым центратором. С его помощью достигается возможность не только ограничить снимаемый участок для повышения качества рентгеновского изображения, но и исключается излишнее облучение тех частей тела человека, которые не подлежат рентгенографии.

Для уменьшения количества рассеянных рентгеновых лучей исследуемую деталь объекта следует максимально приближать к рентгеновской пленке. Это не относится к рентгенографии с непосредственным увеличением рентгеновского изображения. При рентгенографии с непосредственным увеличением изображения рассеянное изучение практически не достигает рентгеновской пленки.

Мешочки с песком, используемые для фиксации исследуемого объекта, надо располагать дальше от кассеты, так как песок является хорошей средой для образования рассеянного рентгеновского излучения.

При рентгенографии , производимой на столе без использования отсеивающей решетки, под кассету или конверт с пленкой следует подкладывать лист просвинцованной резины возможно больших размеров.
Для поглощения рассеянных рентгеновых лучей применяются отсеивающие рентгеновские решетки, которые поглощают эти лучи при выходе их из тела человека.

Освоение техники производства рентгеновских снимков при повышенных напряжениях на рентгеновской трубке является именно тем путем, который приближает нас к идеальному рентгеновскому снимку, т. е. такому снимку, на котором хорошо видны в деталях и костная, и мягкая ткани.

ДИФФУЗНОЕ РАССЕЯНИЕ РЕНТГЕНОВСКИХ ЛУЧЕЙ - рассеяние рентгеновских лучей веществом в направлениях, для к-рых не выполняется Брэгга - Вулъфа условие .

В идеальном кристалле упругое рассеяние волн атомами, находящимися в узлах периодич. решётки, вследствие происходит только при определ. направлениях . вектора Q , совпадающих с направлениями векторов обратной решётки G : Q= k 2 -k 1 , где k 1 и k 2 - волновые векторы падающей и рассеянной волн соответственно. Распределение интенсивности рассеяния в пространстве обратной решётки представляет собой совокупность d-образных пиков Лауэ - Брэгга в узлах обратной решетки. Смещения атомов из узлов решётки нарушают периодичность кристалла, и интерференц. картина меняется. В этом случае в распределении интенсивности рассеяния, наряду с максимумами (сохраняющимися, если в искажённом кристалле можно выделить усреднённую периодич. решётку), появляется плавная составляющая I 1 (Q) , соответствующая Д. р. р. л. на несовершенствах кристалла.

Наряду с упругим рассеянием, Д. р. р. л. может быть обусловлено неупругими процессами, сопровождающимися возбуждением электронной подсистемы кристалла, т. е. комптоновским рассеянием (см. Комптона эффект )и рассеянием с возбуждением плазменных (см. Плазма твердотельная) . С помощью расчётов или спец. экспериментов эти составляющие можно исключить, выделив Д. р. р. л. на несовершенствах кристалла. В аморфных, жидких и газообразных веществах, где отсутствует дальний порядок, рассеяние только диффузное.

Распределение интенсивности I 1 (Q )Д. р. р. л. кристаллом в широкой области значений Q , соответствующих всей элементарной ячейке обратной решётки или нескольким ячейкам, содержит детальную информацию о характеристиках кристалла и его несовершенствах. Экспериментально I 1 (Q )может быть получено с помощью метода, использующего монохроматич. рентгеновское и позволяющего поворачивать кристалл вокруг разных осей и изменять направления волновых векторов k 1 , k 2 , варьируя, т. о., Q в широком интервале значений. Менее детальная информация может быть получена Дебая - Шеррера методом или Лауэ методом .

В идеальном кристалле Д.р.р.л. обусловлено только тепловыми смещениями и нулевыми колебаниями атомов решётки и может быть связано с процессами испускания и поглощения одного или неск. . При небольших Q осн. роль играет однофононное рассеяние, при к-ром возбуждаются или исчезают только фононы с q =Q-G , где G -вектор обратной решётки, ближайший к Q . Интенсивность такого рассеяния I 1Т (Q )в случае одноатомных идеальных кристаллов определяется ф-лой

где N - число элементарных ячеек кристалла, f -структурная амплитуда, -Дебая-Уоллера фактор, т - масса атома, -частоты и . векторы фононов j -й ветви с волновым вектором q . При малых q частоты , т. е. при приближении к узлам обратной решётки возрастает как 1/q 2 . Определяя для векторов q , параллельных или перпендикулярных направлениям , , в кубических кристаллах, где однозначно задаются соображениями , можно найти частоты колебаний для этих направлений.

В неидеальных кристаллах дефекты конечных размеров приводят к ослаблению интенсивностей правильных отражений I 0 (Q )и к Д.р.р.л. I 1 (Q )на статич. смещениях и изменениях структурных амплитуд , обусловленных дефектами (s - номер ячейки вблизи дефекта, -тип или ориентация дефекта). В слабо искажённых кристаллах с невысокой концентрацией дефектов (-число дефектов в кристалле) и интенсивность Д.р.р.л.

где и -компоненты Фурье .

Смещения убывают с расстоянием r от дефекта как 1/r 2 , вследствие чего при малых q и вблизи узлов обратной решётки I 1 (Q )возрастает как 1/q 2 . Угл. зависимость I 1 (Q )качественно различна для дефектов разного типа и симметрии, а величина I 1 (Q )определяется величиной искажений вокруг дефекта. Исследование распределения I 1 (Q )в кристаллах, содержащих точечные дефекты (напр., междоузельные атомы и вакансии в облучённых материалах, примесные атомы в слабых твёрдых растворах), дает возможность получить детальную информацию о типе дефектов, их симметрии, положении в решётке, конфигурации атомов, образующих дефект, тензорах диполей сил, с к-рыми дефекты действуют на кристалл.

При объединении точечных дефектов в группы интенсивность I 1 в области малых q сильно возрастает, но оказывается сосредоточенной в сравнительно небольших областях пространства обратной решётки вблизи её узлов, а при (R 0 - размеры дефекта) быстро убывает.

Изучение областей интенсивного Д. р. р. л. даёт возможность исследовать размеры, форму и др. характеристики частиц второй фазы в стареющих растворах, . петли малого радиуса в облучённых или деформиров. материалах.

При значит. концентрациях крупных дефектов кристалл сильно искажён не только локально вблизи дефектов, но и в целом, так что в большей части его объёма . Вследствие этого фактор Дебая - Уоллера и интенсивность правильных отражений I 0 экспоненциально убывают, а распределение I 1 (Q )качественно перестраивается, образуя несколько смещённые из узлов обратной решётки уширенные пики, ширина к-рых зависит от размеров и концентрации дефектов. Экспериментально они воспринимаются как уширенные брэгговские пики (квазилинии на дебаеграмме), а в нек-рых случаях наблюдаются дифракц. дублеты, состоящие из пар пиков I 0 и I 1 . Эти эффекты проявляются в стареющих сплавах и облучённых материалах.

В концентриров. растворах, однокомпонентных упорядочивающихся кристаллах, сегнетоэлектриках неидеальность обусловлена не отд. дефектами, а флуктуац. неоднородностями концентрации и внутр. параметров и I 1 (Q )удобно рассматривать как рассеяние на q -й. флуктуац. волне этих параметров (q=Q-G) . Напр., в бинарных растворах А - B c одним атомом в ячейке в пренебрежении рассеянием на статич. смещениях

где f А и f В -атомные факторы рассеяния атомов А и В, с - концентрация -параметры корреляции, - вероятность замещения пары узлов, разделённых вектором решётки а , атомами А. Определив I 1 (Q )во всей ячейке обратной решётки и проведя преобразование Фурье ф-ции , можно найти для разл. координац. сфер. Рассеяние на статич. смещениях исключается на основании данных об интенсивности I 1 (Q ) в неск. ячейках обратной решётки. Распределения I 1 (Q )могут быть использованы также для непосредств. определения энергий упорядочения раствора для разных а в модели парного взаимодействия и его термодинамич. характеристик. Особенности Д.р.р.л. металлич. растворами позволили развить дифракц. метод исследования ферма-поверхности сплавов.

В системах, находящихся в состояниях, близких к точкам фазового перехода 2-го рода и критич. точкам на кривых распада, флуктуации резко возрастают и становятся крупномасштабными. Они вызывают интенсивное критич. Д. р. р. л. в окрестностях узлов обратной решётки. Его исследование позволяет получить важную информацию об особенностях фазовых переходов и поведении термодинамич. величин вблизи точек перехода.

Диффузное рассеяние тепловых нейтронов на статич. неоднородностях аналогично Д. р. р. л. и описывается подобными ф-лами. Изучение рассеяния нейтронов даёт возможность исследовать также динамич. характеристики колебаний атомов и флуктуац. неодно-родностей (см. Неупругое рассеяние нейтронов ).

Лит.: Джеймс Р., Оптические принципы дифракции рентгеновских лучей, пер. с англ., M., 1950; Иверонова В. И., Ревкевич Г. П., Теория рассеяния рентгеновских лучей, 2 изд., M., 1978; Иверонова В. И., Кацнельсон А. А., Ближний порядок в твёрдых растворах, M., 1977; Каули Дж., Физика дифракции, пер. с англ., M., 1979; Кривоглаз M А., Дифракция рентгеновских лучей и нейтронов в неидеальных кристаллах, К., 1983; его же, Диффузное рассеяние рентгеновских лучей и нейтронов на флуктуационных неоднородностях в неидеальных кристаллах, К., 1984.

M. А. Кривоглаз .

Дифракция рентгеновских лучей – рассеяние рентгеновских лучей, при котором из начального пучка лучей возникают вторичные отклоненные пучки с той же длиной волны, появившиеся в результате взаимодействия первичных рентгеновских лучей с электронами вещества. Направление и интенсивность вторичных пучков зависят от строения (структуры) рассеивающего объекта.

2.2.1 Рассеяние рентгеновских лучей электроном

Рентгеновские лучи, являющиеся электромагнитной волной, направленные на исследуемый объект, воздействуют на какой-либо электрон, слабо связанный с ядром, и приводят его в колебательное движение. При колебательном движении заряженной частицы происходит излучение электромагнитных волн. Их частота равна частоте колебаний заряда, а, следовательно, частоте колебаний поля в пучке "первичных" рентгеновских лучей. Это когерентное излучение. Оно играет основную роль при изучении структуры, так как именно оно участвует в создании картины интерференции . Итак, под воздействием рентгеновских лучей колеблющийся электрон испускает электромагнитное излучение, таким образом "рассеивая" рентгеновские лучи. Это и есть дифракция рентгеновских лучей. При этом часть полученной от рентгеновских лучей энергии электрон поглощает, а часть отдает в виде рассеянного луча. Эти рассеянные различными электронами лучи интерферируют между собой, то есть взаимодействуют, складываются и могут не только усиливать, но и ослаблять друг друга, а также гасить (законы погасания играет важную роль в рентгеноструктурном анализе). Следует помнить, что лучи, создающие интерференционную картину, и рентгеновские лучи – когерентны, т.е. рассеяние рентгеновских лучей происходит без изменения длины волны.

2.2.2 Рассеяние рентгеновских лучей атомами

Рассеяние рентгеновских лучей атомами отличается от рассеяния на свободном электроне тем, что на внешней оболочке атома может быть Z-электронов, каждый из которых, подобно свободному электрону, испускает вторичное когерентное излучение. Излучение, рассеянное электронами атомов, определяется как суперпозиция этих волн, т.е. происходит внутриатомная интерференция. Амплитуда рентгеновских лучей, рассеянных одним атомом А а, имеющим Z-электронов, равна

А a = A э F (5)

где F – структурный фактор.

Квадрат структурной амплитуды, указывает во сколько раз интенсивность рассеянного излучения атомом больше интенсивности рассеянного излучения одним электроном :

Атомная амплитуда I a определяется распределением электронов в атоме вещества, анализируя величину атомной амплитуды, можно вычислить распределение электронов в атоме.

2.2.3 Рассеяние рентгеновских лучей кристаллической решеткой

Представляет наибольший интерес для практической работы. Теорию интерференции рентгеновских лучей впервые обосновал Лауэ. Она позволяла теоретически вычислять места положения интерференционных максимумов на рентгенограммах.

Однако широкое практическое применение интерференционного эффекта стало возможным лишь после того, как английские физики (отец и сын Брэгги) и одновременно с ними русский кристаллограф Г.В. Вульф создали в высшей степени простую теорию, обнаружив более простую связь между расположением максимумов интерференции на рентгенограмме и строением пространственной решетки. При этом они рассматривали кристалл не как систему атомов, а как систему атомных плоскостей, предполагая, что рентгеновские лучи испытывают зеркальное отражение от атомных плоскостей.

На рис 11 изображен падающий луч S 0 и отклоненный плоскостью (HKL) луч S HKL .

В соответствии с законом отражения эта плоскость должна быть перпендикулярна плоскости, в которой лежат лучи S0 и SHKL, и делить угол между ними пополам , т.е. угол между продолжением падающего луча и отклоненного луча равен 2q.

Пространственная решетка построена, из ряда плоскостей P 1 , P 2 , P 3 …

Рассмотрим взаимодействие такой системы параллельных; плоскостей с первичным лучом на примере двух смежных плоскостей Р и P 1 (рис. 12):

Рис. 12. К выводу формулы Вулъфа-Брэгга

В точки О и О 1 падают параллельные лучи SO и S 1 O 1 под углом q к плоскостям Р и Р 1 . Причем в точку О 1 волна попадает с опозданием, равным разности хода волн, которая равна AO 1 = d sinq, Эти лучи зеркально отразятся от плоскостей Р и P 1 под тем же углом q, Разность хода отраженных волн равна O 1 B = d sinq. Совокупная разность хода Dl=2d sinq. Отраженные от обеих плоскостей лучи, распространяющиеся в виде плоской волны, должны интерферировать между собой.

Разность фаз обоих колебаний равна:

(7)

Из уравнения (7) следует, что когда разность хода лучей кратна целому числу волн, Dl=nl=2d sinq, разность фаз будет кратна 2p, т.е. колебания будут находиться в одной фазе, "горб" одной волны совпадает с "горбом" другой, и колебания усиливают Друг друга. В этом случае на рентгенограмме будет наблюдаться интерференционный пик. Итак, получаем, что равенство 2d sinq = nl (8) (где n – целое число, называемое порядком отражения и определяемое разностью хода лучей, отраженных соседними плоскостями)

является условием получения интерференционного максимума. Уравнение (8) называется формулой Вульфа-Брэгга. Эта формула положена в основу рентгеноструктурного анализа. Следует помнить, что введенный термин "отражение от атомной плоскости"" условен.

Из формулы Вульфа-Брэгга следует, что если пучок рентгеновских лучей с длиной волны l падает на семейство плоскопараллельных плоскостей, расстояние между которыми равно d, то отражения (интерференционного максимума) не будет до тех пор, пока угол между направлением лучей и поверхностью не будет отвечать этому уравнению.

Дифра́кция рентгеновских лучей - рассеяние рентгеновских лучей кристаллами или молекулами жидкостей и газов, при котором из начального пучка лучей возникают вторичные отклоненные пучки (дифрагированные пучки) той же длины волны, появившиеся в результате взаимодействия первичных рентгеновских лучей с электронами вещества. Направление и интенсивность вторичных пучков зависят от строения рассеивающего объекта. Дифрагированные пучки составляют часть всего рассеянного веществом рентгеновского излучения. Наряду с рассеянием без изменения длины волны наблюдается рассеяние с изменением длины волны - так называемое комптоновское рассеяние. Явление дифракции рентгеновских лучей, доказывающее их волновую природу, впервые было экспериментально обнаружено на кристаллах немецкими физиками М. Лауэ, В. Фридрихом, П. Книппингом в 1912 году.

Кристалл является естественной трехмерной дифракционной решеткой для рентгеновских лучей, так как расстояние между рассеивающими центрами (атомами) в кристалле одного порядка с длиной волны рентгеновских лучей (~1Å=10-8 см). Дифракция рентгеновых лучей на кристаллах можно рассматривать как избирательное отражение рентгеновских лучей от систем атомных плоскостей кристаллической решетки. Направление дифракционных максимумов удовлетворяет одновременно трем условиям, определяемых уравнениями Лауэ.
Дифракционную картину получают от неподвижного кристалла с помощью рентгеновского излучения со сплошным спектром (так называемая лауэграмма) или от вращающегося или колеблющегося кристалла, освещаемого монохроматическим рентгеновским излучением, или от поликристалла, освещаемого монохроматическим излучением. Интенсивность дифрагированного луча зависит от структурного фактора, который определяется атомными факторами атомов кристалла, их расположением внутри элементарной ячейки кристалла, характером тепловых колебаний атомов. Структурный фактор зависит от симметрии расположения атомов в элементарной ячейке. Интенсивность дифрагированного луча зависит от размеров и формы объекта, от совершенства кристалла.
Дифракция рентгеновских лучей от поликристаллических тел приводит к возникновению конусов вторичных лучей. Осью конуса является первичный луч, а угол раствора конуса равен 4J (J - угол между отражающей плоскостью и падающим лучом). Каждый конус соответствует определенному семейству кристаллических плоскостей. В создании конуса участвуют все кристаллики, семейство плоскостей которых расположено под углом J к падающему лучу. Если кристаллики малы и их приходится очень большое количество на единицу объема, то конус лучей будет сплошным. В случае текстуры, то есть наличия предпочтительной ориентировки кристалликов, дифракционная картина (рентгенограмма) будет состоять из неравномерно зачерненных колец.

Поделиться