Для чего нужны жгутики бактериям и в чем их отличие от пилей, ворсинок, фимбрий. Жгутиковые бактерии - описание, особенности и интересные факты Строение жгутика бактерий

Подвижность очень многих протистов обеспечивается наличием жгутиков или ресничек. И те и другие устроены оди­наково. Жгутики и у простейших, и у жгутиковых или ресничных клеток многоклеточ­ных животных и растений всегда лишь часть локомоторной системы клетки, которая состоит из кинетосомы (или центриоли), жгутика (или ундулиподия) и корневых выростов кинетосомы (или ее дериватов (производных)). Кроме передвижения в толще воды, жгутики и реснички применяются для временного или постоянного прикрепления к субстрату или для создания пищевых потоков воды при питании взвешенными частицами.

Жгутик – это трубчатый вырост клеточной поверхности, окруженный мембраной, которая служит продолжением мембраны, покрывающей всю клетку. Он содержит пучок белковых фибрилл, так называемую аксонему. Аксонемой или аксиальной нитью называют микротрубочковое образование, которое состоит из двух центральных микротрубочек, окруженных кольцом из девяти пар (дублетов) микротрубочек, состоящих из плотно спаянных друг с другом субфибрилл. Тонкое строение жгутиков всех эукариотных организмов удивительно однотипно в своих главных чертах.

Важнейшим элементом жгутиковой системы служит базальное тело или кинетосома. Это цилиндр, стенки которого образованы девятью группами микротрубочек, объединенными по три (триплеты). Чаще всего в клетке присутствуют две кинетосомы, расположенные примерно под прямым углом друг к другу. От них отходят один или два жгутика. Кинетосома не плавает в цитоплазме сама по себе, поскольку закреп­лена системой корешков.

Современные представления о системе Protista во многом базируются на строе­нии жгутика и его производных. Широкое распространение у них жгутиков и ресничек позволяет сравнивать между собой почти все таксоны, а также дает возможность использовать дополнительные признаки жгутикового аппарата, число которых при­ближается уже к 100, в систематике и филогении. Многие черты строения жгути­коносцев, в том числе и форма тела, определяются наличием у них этой своеобраз­ной системы.

Количество жгутиков, их относительная и абсолютная длина, место и способ прикрепления жгутиков, характер их движения, их направленность очень разнообразны у разных групп, но постоянны внутри отдельных групп родственных организмов.

Обычно выделяют 4 морфотипа жгутиконосцев.

Изоконты имеют от 2 до 8 жгутиков равной длины, направленных в одну сторону, с одинаковыми способами биения. К ним относится большинство подвижных клеток зеленых водорослей.

Анизоконты имеют 2 жгутика неравной длины, направленные в одну сторону, отличающиеся по способу биения. Такие жгутики характерны для бесцветных жгутиконосцев.

У гетероконтных имеются 2 жгутика неравной длины (один направлен вперед, другой - назад), различающиеся по способу биения. Они характерны и для подвижных клеток водорослей, и для так называемых зооспоровых грибов, и для бесцветных жгутиконосцев.

Стефаноконты имеют венчик жгутиков на переднем конце клетки. Это характер­но для многожгутиковых гамет и зооспор некоторых зеленых водорослей.

Одножгутиковые формы обычно не выделяются в особую группу. Многие из них рассматриваются как утратившие вторично жгутик особи, так как у подавляющего большинства есть еще одна безжгутиковая кинетосома.

Основная функция жгутика - движение. В активной работе жгутика движущим началом являются периферические мик­ротрубочки и их ручки, обладающие АТФ-азной активностью. Центральные микротрубочки имеют опорное значение. Формы движения жгутика различны, но обычно это винтообразное движение, позволяющее жгутиконосцу «ввинчиваться» в воду, совершая до 40 оборотов в секунду. У инфузорий и многожгути­ковых протистов движение ресничек организовано по типу метахрональных волн. Жгутики и реснички часто используются также и для питания. Среди жгутиконосцев имеются виды, проводящие большую часть жизненного цикла в прикрепленном состоянии. В этот период жгутик теряет обычную для него функцию движения и превращается в органеллу прикрепления, стебелек или ножку. Еще одна функция жгутика заключается в том, что он сво­ими движениями очищает поверхность тела от нали­пающих на него мелких посторонних частиц.

Эндоплазматические органеллы

В эндоплазме протистов находятся одно или не­сколько ядер, а также все органеллы и структуры, свойственные эукариотической клетке: ЭПР, рибосо­мы, аппарат Гольджи, митохондрии, пероксисомы, гидрогеносомы, пластиды (у автотрофных протис­тов), лизосомы, пищеварительные вакуоли. Некото­рые протисты обладают также специфичными только для них органеллами.

Экструсомы. Эти органеллы представляют собой специальные вакуоли, окруженные мембраной, которая у зрелых экструсом обычно контактирует с плазмалеммой. В ответ на различные внешние раздражения (механические, химические, электрические и др.) они выбрасывают наружу свое содержимое. По своему строению это мукополисахариды (сложные соединения углеводов с белками). Известно 10 разных типов экструсом. Одни содержат ядови­тые вещества, способные обездвиживать и убивать жертву (простейших и другие мелкие организмы). Другие выполняют защитную функцию или облегчают движение, выделяя слизь.

Пластиды. Пластиды имеются у фототрофных и близких к ним протистов и представлены хлоропластами и лейкопластами. Основными пигментами хлоропластов являются хлорофиллы. Для разных групп фототрофных протистов характерны определенные наборы хлорофиллов. Из вторичных пигментов у водорослей встречают­ся каротины и ксантофиллы, которые в больших кон­центрациях могут маскировать зеленый хлорофилл и придавать хлоропластам разнообразную окраску от желто-зеленой до красновато-коричневой.

Аппарат Гольджи обнаружен практически у всех исследованных видов протистов. Наиболее часто аппарат Гольджи расположен по соседству с ядром и представлен одной или несколь­кими стопками плоских цистерн (диктиосом), окру­женных мелкими пузырьками. Однако аппарат Гольджи у некоторых протистов он образован одиночны­ми цистернами. Отсутствие диктиосом обычно тракту­ется как примитивный признак. Однако отсутствие диктиосом у современных протис­тов не может однозначно свидетельствовать об их при­митивности, поскольку формирование и разборка диктиосом в большой степени зависят от внешних воздействий на клетку (например, снижение концентрации кислорода в среде) или от физиологических перестроек самого протиста (переход к инцистированию).

Лизосомы и другие органеллы и включения. В клетках протистов, как и в клетках многоклеточных животных, присутствуют лизосомы. Эти цитоплазматические тельца в форме мелких пузырьков (первич­ные лизосомы) образуются в аппарате Гольджи. В них локализованы пищеварительные гидролитичес­кие ферменты. Вторичные лизосомы, или пищеварительные вакуоли, хорошо выражены только у гетеротрофных протистов, питающихся путем фагоцитоза.

В эндоплазме разных протистов в большем или меньшем количестве присутствуют резервные питательные вещества, используемые в процессах мета­болизма. Чаще всего это различные полисахариды (гликоген, крахмал, амилоплектин и др.), нередко - липиды и иные жировые включения. Количество ре­зервных веществ зависит от физиологического состо­яния простейшего, характера и количества пищи, от стадии жизненного цикла и варьирует в широких пре­делах. Однако некоторые крупные группы протистов запасают специфические вещества. Например, эвгленовые запасают парамил, который не встречается у других протистов.

Все бактерии подразделяются на подвижные и неподвижные. Органами движения у бактерий являются жгутики. Они состоят из белка флагеллина, который по своей структуре относится к сократительным белками типа миозина.

Основанием жгутика является базальное тельце, состоящее из системы дисков (блефаропласта: 1 диск - наружная сторона клеточной стенки, 2 диск - внутренняя сторона клеточной стенки, 3 диск - цитоплазматическая мембрана), "вмонтированных" в цитоплазматическую мембрану и клеточную стенку. Длина жгутика больше длины тела самого микроба.
По числу жгутиков и их расположению подвижные микроорганизмы подразделяются на:

1. Монотрихи, имеющие на конце тела один жгутик (самые подвижные). Например, Vibrio cholerae.

2. Лофотрихи, имеющие пучок жгутиков на одном из полюсов клетки. Например, Burkholderia (Pseudomonas) pseudomalei - возбудитель мелиоидоза.
3. Амфитрихи, имеющие жгутик на обоих полюсах клетки. Например, Spirillum volutans.
4. Перитрихи, имеющие жгутики по всему периметру клетки. Например, Escherichia coli, Salmonella typhi.

Выявление жгутиков. Жгутики очень тонкие, поэтому их можно обнаружить только при специальной обработке. В частности, вначале при помощи протравы достигается разбухание и увеличение их размера, а затем производится окраска препарата, благодаря чему они становятся видимыми при световой микроскопии. Выявлять жгутики можно окраской по Морозову, Леффлеру, а также электронной микроскопией. Обнаружить жгутики можно и по активной подвижности бактерий.

Движение микробов наблюдают в препаратах "раздавленной" и "висячей" капли из живых культур. Микроскопируют эти препараты сухим или иммерсионным объективом в темном поле или в фазовом контрасте. Кроме того, подвижность можно определить по характеру роста бактерий в полужидком агаре.

Пили у бактерий.

Пили (pili), синонимы: ворсинки, фимбрии, - тонкие полые нити белковой природы, покрывающие поверхность бактериальных клеток. В отличие от жгутиков не выполняют двигательную функцию.

Пили отходят от поверхности клетки и состоят из белка пилина .

По своему функциональному назначению подразделяются на 2 типа.

1) Пили первого типа имеются у большинства бактерий, поэтому они получили название "ворсинки общего типа" (common pili). Обусловливают прикрепление или адгезию бактерий к определенным клеткам организма хозяина. Адгезия является первоначальной стадией любого инфекционного процесса.
2) Пили второго типа (синонимы: конъюгативные, или половые - sex pili) имеются только у бактерий-доноров, имеющих специальную плазмиду. Их количество невелико - 1-4 на клетку.

Половые пили выполняют следующие функции:

1. Участвуют в передаче генетического материала от одной клетки к другой при конъюгации бактерий.

2. На них адсорбируются специфические вирусы бактерий – бактериофаги

Споры бактерий, условия образования, расположение, механизм и этапы окраски по Ауески.

Споры - своеобразная форма покоящихся бактерий с грамположительным типом строе­ния клеточной стенки.

Спорообразование - это способ сохранения вида (генофора) во внешней среде при неблагоприятных условиях, а не способ размножения.

Споры образуются при неблагоприятных условиях существования бактерий (высуши­вание, дефицит питательных веществ и др.). Внутри бактериальной клетки образуется одна спора (эндоспора).

Стадии спорообразования

1. Подготовительная. В цитоплазме бактерий образуется уплотненный участок, не имеющий свободной воды, называемый "спорогенной зоной", в которой содержится нуклеоид.

2. Стадия предспоры (проспоры). Вокруг спорогенной зоны образуется оболочка из двойной цитоплазматической мембраны.

3. Образование кортекса, состоящего из пептидогликана и наружной мембраны с повышенным содержанием солей кальция и липидов.

4. Стадия созревания. С внешней стороны наружной мембраны образуется оболочка споры, после чего вегетативная часть клетки лизируется, освобождая спору.

Реснички и жгутики содержат высокоупорядоченную структуру, называемую аксонемой

Аксонема состоит из девяти наружных дуплетов микротрубочек, окружающих пару центральных микротрубочек

Радиальные спицы представляют собой комплекс из нескольких полипептидов, которые связывают каждый наружный дуплет с центром аксонемы

С каждым внешним дуплетом связываются динеины, домены моторов которых распространяются на примыкающие внешние дуплеты

Динеин сдвигает внешние дуплеты по отношению друг к другу; структурные связи между другими дуплетами переводят скольжение в наклон аксонемы

Кинезины участвуют в сборке жгутиков, транспортируя белки аксонемы в отдаленный конец жгутика

Неподвижные первичные реснички участвуют в сенсорных процессах

Наряду с транспортировкой карго в клетках, микротрубочки также участвуют в перемещении клеток в окружающей среде. Это перемещение осуществляется с помощью ресничек и жгутиков , длинных и тонких выростов, которые отходят как волоски на поверхности многих клеток. Каждая такая органелла состоит из длинного пучка микротрубочек, окруженного выростом плазматической мембраны. Взаимодействие между микротрубочками вызывает изгиб структуры, который возможен в разных направлениях. В результате этих движений жидкость может продвигаться вдоль поверхности клеток, как показано на рисунке ниже. Для группы неподвижных клеток, например эпителиальных, это позволяет жидкой среде и различным объектам перемещаться вдоль поверхности ткани. В случае изолированных, неприкрепленных клеток они сами движутся в жидкости (т. е. плавают). Реснички и жгутики присутствуют у многих одноклеточных организмов, таких как Paramecium и Chlamydomonas (зеленая водоросль), а также находятся на сперматозоидах у большинства эукариот. У млекопитающих реснички покрывают апикальные участки некоторых эпителиальных клеток и совершают синхронные движения. При этом возникают волны движения ресничек, которые проходят по поверхности ткани. В трахее это движение используется для удаления слизи и дебриса из дыхательных путей; в яйцеводе оно обеспечивает транспортировку яйцеклетки из яичника в матку, а в мозгу создает циркуляцию цереброспинальной жидкости.

Реснички и жгутики обладают одинаковой структурой и механизмом подвижности, однако в некоторых отношениях они различаются. Наиболее существенные различия касаются длины, их количества в клетке и характера движения. Реснички короче (10-15 мкм) и количество их на клетку достигает 100 или больше. Каждая ресничка генерирует усилие за счет наклона у основания. Внешняя часть реснички остается жесткой и перегиб у основания сдвигает ее в движение, напоминающее гребок весла в воде. После этого наступает восстановительный размах, при котором перегиб реснички распространяется от основания на конец, подготавливая ресничку к следующему циклу движения. На рисунке ниже представлено движение реснички Для того чтобы проследить за отдельными стадиями движения, для регистрации использовали замедленную видеосъемку. Движения реснички столь интенсивны (много наклонов в секунду), что при съемке в обычном режиме она выглядит нечетко.

Обычно длиннее (10-200 мкм), чем реснички, и обычно клетка содержит только один или два жгутика. Они также генерируют силу при изгибе; при этом, как показано на рисунке ниже, от основания к вершине жгутика распространяется S-образная волна. Для ресничек и жгутиков характерен общий механизм движения, в основе которого лежит изгибание структуры. Различные пути распространения изгиба вдоль органеллы обусловливают различные формы волн, генерируемых ресничками и жгутиками. Поскольку два типа органелл представляют собой вариации на одну и ту же тему, мы рассмотрим их общие свойства и будем пользоваться термином жгутик для описания структуры и подвижности обеих органелл, если специально не оговаривается, что речь идет о ресничках.

При отделении от клетки жгутики продолжают биение. Это говорит о том, что оно обеспечивается самой органеллой. После удаления плазматической мембраны изолированные жгутики также продолжают биться при условии, что у них сохранился запас АТФ. Эти данные свидетельствуют о том, что движения обеспечиваются белковым содержимым жгутика и энергией гидролиза АТФ.

Внутренний белковый компонент жгутика представляет собой упорядоченную структуру, состоящую по крайней мере из 250 различных полипептидов. Эта структура называется аксонемой. Структура аксонемы жгутиков одинакова для столь различных организмов, как одноклеточное простейшее Chlamydomonas и человек.

Одноклеточная водоросль Chlamydomonas reinhardtii в световом и флуоресцентном микроскопах.
В верхней части клетки видны два больших жгутика.
Во флуоресцентном микроскопе микротрубочки флуоресцируют красным; показывая, что жгутики состоят из .
Клетки Chlamydomonas способны передвигаться в воде за счет биений жгутиков.

Строение аксонемы представлено на рисунке ниже. Наиболее примечательным элементом структуры, особенно заметным на поперечном срезе, являются определенным образом организованные дуплеты микротрубочки, расположенные вдоль всей аксонемы. Девять необычных «двойных микротрубочек» расположены по кругу. Каждая пара состоит из одной обычной микротрубочки, содержащей 13 протофиламентов (т. н. А трубочка) и одной неполной микротрубочки (В трубочка). Эта микротрубочка состоит из 10-11 протофиламентов и связана со стенкой А трубочки. В центре кольца, образованного дуплетами микротрубочек, находятся две обычных микротрубочки, содержащие 13 протофиламентов («центральная пара»). Такое расположение микротрубочек в аксонеме сокращенно описывается как «9+2». Все микротрубочки обладают одинаковой полярностью, их плюс-концы направлены к кончику жгутика, а минус-концы - к его основанию. С микротрубочками связываются различные белки, оказывающие на них стабилизирующее действие.

В аксонеме микротрубочки связаны между собой множеством различного типа связей. Белки, которые формируют эти связи, необходимы для организации микротрубочек в единую согласованную систему, способную двигаться и координировать эти движения для придания им волнового характера. Соседние дуплеты микротрубочек соединены между собой по периферии аксонемы белком, называемым нексином. Дуплеты микротрубочек также связаны с микротрубочками, расположенными в центре, с помощью полипептидных комплексов, которые образуют как бы спицы с видимыми головками. Эти структуры имеют сложное строение: спицы и их головки содержат 17 различных полипептидов. Головки расположены вокруг внутренней оболочки, структуры, окружающей две центральные микротрубочки. Усилие в аксонеме генерируется с помощью аксонемных динеинов (их также называют «ресничатыми» или «жгутиковыми» динеинами). Эти белки связывают между собой соседние дуплеты микротрубочек; хвостовой домен связывается с А трубочкой в одного дуплета, а головной домен с В трубочкой следующего дуплета. Различные связи, образованные нексином, спицами и динеинами, расположены через правильные промежутки по всей длине аксонемы, однако они характеризуются разной периодичностью. Поэтому все три компонента трудно наблюдать в электронном микроскопе на препаратах, представляющих собой поперечные срезы аксонем. Однако, когда удается видеть все три структурных элемента, они напоминают колесо с массивными спицами и втулкой.

Структура и расположение динеинов в остальной части аксонемы представляются сложными. В аксонеме содержится более одной формы динеина, каждая из них достаточно велика и состоит из большего числа различных полипептидов по сравнению с динеином, содержащимся в цитоплазме. Различные формы содержат один, два иди три моторных домена, и расположены в разных местах аксонемы. Смежные дуплеты микротрубочки связаны двумя наборами молекул динеина, которые называются внутренними и внешними ручками. Внешние ручки содержат только динеины с двумя или тремя головками, а белки с одной или двумя головками находятся во внутренних ручках.

Каким образом все эти связи обеспечивают подвижность жгутико в и задают соответствующий характер биения? Основной вопрос заключается в том, как функционируют динеины в этой структуре, поскольку они представляют собой моторы и с них должно начинаться движение. Для того чтобы выяснить роль динеина в обеспечении подвижности, необходимо отделить жгутики от клеток и удалить мембрану аксонемы. После этого аксонемы подвергают кратковременной обработке протеазой для того, чтобы разрушить нексиновые связи между внешними дуплетами микротрубочек. Если затем к препарату аксонем добавить АТФ, то микротрубочки сдвигаются по отношению к друг другу. Этот эффект вызывается динеинами, хвосты которых связаны с дублетом микротрубочек, генерирующих усилие в направлении от плюс- к минус-концу соседней пары. В интактной аксонеме динеин не может сдвигать внешние дублеты, поскольку они связаны между собой с помощью нексина. Поэтому усилие, генерируемое динеином, приводит к сгибанию жгутика.

Реснички и жгутики генерируют биение за счет распространения сгибательного движения по аксонеме. Сгибание начинается в основании реснички или жгутика и распространяется по направлению к дистальному концу. Сгибание происходит потому, что динеин активен только в пределах небольшого участка аксо-немы. Для того чтобы обеспечить сгибание, динеины активируются последовательно как вдоль длины, так и по периферии аксонемы. Активность динеинов контролируется центральными микротрубочками и спицами; жгутики мутантных клеток, у которых эти структуры отсутствуют, не способны совершать биение. У некоторых организмов центральные микротрубочки быстро вращаются, и в это время они могут передавать сигналы на спицы, которые, в свою очередь, активируют динеин. В центральных микротрубочках и в спицах находится несколько киназ и фосфатаз. Предполагается, что при вращении центральных трубочек запускается локальная система передачи сигнала, которая активирует динеины. Посредством быстрой локальной активации и инактивации специфических изоформ динеина аксонемы генерируют движения и регулируют силу и частоту биений.

В основании жгутика находится структура, которая называется базальным тельцем. Эти структуры обладают таким же строением, как и центриоли. Каждое базальное тело представляет собой цилиндр, состоящий из 9 триплетов микротрубочек, каждая из которых состоит или из 13 (трубочка А) или из 11 протофиламентов (трубочки В и С). Трубочки А и В служат матрицами при сборке 9 наружных дуплетов микротрубочек аксонемы. Базальное тело остается связанным с основанием аксонемы и служит для прикрепления последней к телу клетки.

Как происходит сборка жгутика , можно выяснить, удалив его с поверхности клетки и проследив образование нового. Жгутик регенерирует менее чем за час и в ходе этого процесса функционирует (т. е. осуществляет биения). Рост нового жгутика происходит на плюс-концах микротрубочек аксонемы, расположенных в дистальных участках каждого жгутика. Сборка жгутика предполагает, что необходимые компоненты аксонемы должны транспортироваться на концы структур и по мере роста собираться в аксонемы. Транспорт осуществляется в больших белковых комплексах, которые движутся в направлении кончика жгутика по наружной поверхности аксонемы, расположенной непосредственно под плазматической мембраной. Это движение называется интрафлагеллярным транспортом (IFT) и осуществляется с участием кинезина. Белковые комплексы также могут двигаться от вершины жгутика к его основанию (к минус-концам микротрубочек), однако функциональное значение этого направления транспорта неизвестно. IFT по направлению к телу клетки происходит за счет цитоплазматического динеина.

Хотя большинство ресничек представляют собой подвижные образования, существуют формы этих структур, которые не обладают подвижностью и играют в клетках особую роль. Первичные реснички представляют собой неподвижные органеллы, обнаруженные практически во всех клетках позвоночных, исключая клетки крови. В отличие от подвижных ресничек, у клеток обычно находится только одна неподвижная ресничка. На рисунке ниже представлен наиболее типичный пример. Аксонема первичной реснички не содержит центральных микротрубочек, и поэтому ее структура часто обозначается как «9+0». Снаружи большинство первичных ресничек выглядят как обычные реснички. Они начинаются на поверхности клеток и имеют вид простого короткого волоска. Однако, у некоторых высокодифференцированных типов клеток дистальный участок первичной реснички сильно вытянут и превратился в специальный домен, размеры которого сравнимы с размерами самой клетки. Это, например, имеет место в клетках палочек и колбочек, которые содержат фоторецепторы, участвующие в восприятии света сетчаткой глаза. В палочках кончики ресничек вытянуты и образуют большой домен, называемый наружным сегментом, который содержит стопки мембранных дисков, заполненные белковым фоторецептором, родопсином. На рисунке ниже представлен соответствующий пример. Основание первичной реснички соединяет наружный сегмент с остальной частью клетки, аксонема лишь немного вдается в область, где начинается наружный сегмент. За счет транспорта IFT типа, мембранные везикулы, содержащие родопсин, перемещаются из тела клетки в наружный сегмент, и вероятно, это необходимо для его образования и функционирования.

Использование наружного сегмента палочки в качестве светового сенсора может иллюстрировать широкое распространение такой возможности среди первичных ресничек. Возможно, что подобная функция первичных ресничек только начинает исследоваться. В других типах клеток содержатся более примитивные первичные реснички, в которых могут быть локализованы различные типы рецепторов. Локализация рецепторов в первичных ресничках может превратить их в некое подобие антенн, которые могут улавливать изменения в окружении и передавать эту информацию в клетку.

Некоторые редкие болезни человека связаны с мутациями , в результате которых реснички и жгутики утрачивают подвижность. Больные, которым эти мутации передаются по наследству, обычно страдают хроническими респираторными инфекциями, поскольку неподвижные жгутики не способны выводить из дыхательных путей слизь, а также захваченные патогенные микроорганизмы и раздражители. Больные мужчины часто оказываются бесплодными, так как сперматозоиды у них лишены подвижности. К числу широко известных заболеваний, связанных с неподвижностью ресничек и жгутиков, относится синдром Картагенера. Наряду с респираторными инфекциями и бесплодием, у половины больных отмечается извращенное расположение внутренних органов, при котором изменяется нормальная левосторонняя их асимметрия. Предполагается, что на одном из этапов раннего развития, до момента закладки внутренних органов, в результате биения жгутиков, в эмбрионе создается циркуляция жидкой среды, и возникает градиент секретирующих-ся веществ, способствующих морфогенезу, что определяет левостороннюю асимметрию. В отсутствие морфогенного градиента органы занимают случайное положение слева и справа. У мышей с мутациями по флагеллярным динеинам или моторам ответственным за IFT, также отмечается извращенное расположение внутренних органов. Это говорит о том, что мутации, влияющие на подвижность жгутиков или на их образование, могут приводить к порокам развития.

Оглавление темы "Анатомия бактериальной клетки. Физиология бактерий.":
1. Анатомия бактериальной клетки. Поверхностные структуры бактерии. Капсула бактерий. Организация капсул. Окраска капсул бактерий. Состав капсул. Антигенные свойства капсул.

3. Микроворсинки бактерий. Фимбрии бактерий. F-пили (секс-пили) бактерии. Клеточная оболочка бактерий. Гликокаликс.
4. Клеточная стенка бактерий. Функции клеточной стенки. Строение клеточной стенки бактерии. Пептидогликан. Муреиновый мешок. Структура пептидогликана (муреина)
5. Грамотрицательные бактерии. Клеточная стенка грамотрицательных бактерий. Строение клеточной стенки грамотрицательных бактерий.
6. Грамположительные бактерии. Клеточная стенка грамположительных бактерий. Строение клеточной стенки грамположительных бактерий. Аутолизины бактерий. Сферопласты. Протопласты.
7. Цитоплазматическая мембрана (ЦПМ) бактерии. Состав цитоплазматической мембраны бактерий. Транспортные системы. Мезосомы. Периплазматическое пространство.
8. Цитоплазма бактерий. Бактериальный геном. Бактериальные рибосомы. Запасные гранулы бактерии.
9. Физиология бактерий. Питание бактерий. Тип питания бактерии. Голозои. Голофиты. Вода. Значимость воды для бактерий.
10. Усваиваемые бактериальной клеткой соединения. Пути поступления веществ в бактериальную клетку. Пассивный перенос. Диффузия.

По характеру движения подвижные бактерии разделяют на плавающие и скользящие (ползающие ). Орган движения плавающих бактерий - жгутики ; подвижность скользящих бактерий обеспечивают волнообразные сокращения тела.

Расположение жгутиков - характерный признак, имеющий таксономическое значение. Варианты расположения жгутиков приведены на рис. 4-1. У некоторых бактерий жгутики расположены по всей поверхности клеточной стенки (например, у бактерий рода Proteus), такие бактерии известны как перитрихи [от греч. peri-, вокруг, + trichos, волос]. Некоторые бактерии снабжены только одним толстым жгутиком (например, представители рода Vibrio), они известны как монотрихи . Политрихи - бактерии, имеющие одиночный по виду жгутик, образованный пучком из 2-50 жгутиков. Полярные жгутики прикреплены к одному или обоим концам бактерии. Монополярно-политрихиальное расположение жгутиков имеют лофотрихи [от греч. lophos, пучок, + trichos, волос], к ним, например, относят представителей рода Pseudomonas. Биполярно-политрихиальное жгутикование имеют амфитрихи [от греч. amphi-, двусторонний, + trichos, волос] (например, бактерии рода Spirillum).

Рис. 4-1. Варианты расположения жгутиков (вверху) и движений бактерий (внизу) .

Жгутик - спирально изогнутая полая нить, образованная субъединицами флагеллина. У разных бактерий толщина жгутиков варьирует от 12 до 18 нм, что составляет не более 1/10 диаметра жгутиков водорослей и простейших. Жгутики также различают по длине и диаметру витка. Место прикрепления жгутика к бактериальной клетке имеет сложное строение и состоит из базальной структуры и так называемого «крюка» (рис. 4-2). У грамположительных бактерий в состав базальной структуры входит одна пара, а у грамотрицательных бактерий - две пары колец. Кольца играют роль «приводного диска» и «подшипника». Вся конструкция выполняет функцию хемомеханического преобразователя (флагеллиновый мотор). У спирохет за движение ответственна особая органел-ла - осевая нить, состоящая из двух рядов бактериальных жгутиков, расположенных продольно внутри клетки.

Бактериальные жгутики совершают поступательные и вращательные движения, проталкивая бактерии через среду подобно корабельному винту. Они также могут изменять направление вращения и тянуть клетку подобно пропеллеру. Скорость обратного движения в четыре раза меньше скорости поступательного движения. Некоторые перитрихи могут перемещаться по поверхности агара, то есть плавающие бактерии способны к передвижению по поверхности твёрдых сред. В частности, Proteus vulgaris распространяется по поверхности агара, образуя тонкий налёт (напоминающий таковой при выдохе на холодное стекло), а неподвижные штаммы протея лишены такой способности. Это явление получило название «феномен роения », а наблюдение за ним легло в основу некоторых понятий бактериальной серодиагностики. Так, жгутиковые Аг называют Н-Аг [от нем. Hauch, выдох, налёт], а Аг клеточной поверхности - О-Аг [от нем. фпе Hauch, без налёта1.


Рис. 4-2. Схема строения бактериального жгутика . БС - базальная структура, ВМ - внешняя мембрана, ЦПМ - цитоплазматическая мембрана, Р - ротор, О - ось, КО - кольцо жгутикового мотора, КР - крюк, С - цилиндрики-соединители, Н - нить жгутика, Ш - шапочка.

Способность бактерий к целенаправленному движению генетически обусловлена. Например, у Escherichia coli в регуляцию этого процесса вовлечено 3% генома (приблизительно 50 генов). Эти гены кодируют белки, образующие локомоторный аппарат, а также белки и ферменты, участвующие в преобразовании сигналов. Для жгутикового аппарата характерна периодическая изменчивость. Во многом этот процесс носит адаптивный характер и наиболее выражен у патогенных микроорганизмов. В частности, некоторые бактерии выработали систему вариабельности антигенных характеристик жгутиков, позволяющую им на какое-то время избегать направленных эффектов защитных иммунных механизмов.

Лабораторная диагностика подвижности бактерий

Подвижность бактерий определяют микроскопией препаратов в «раздавленной » или «висячей » капле. Способность к движению можно определять также после внесения культуры бактерий уколом в столбик полужидкого агара (подвижные виды растут по всей толще среды, неподвижные - по уколу) или посевом бактерий в водный конденсат скошенного столбика агара (подвижные виды переплывают из конденсата на поверхность среды и колонизируют её), либо определяют способность бактерий давать «феномен роения ».

Поделиться