Электроэнергия в жизни человека вывод. Альтернативность электрического тока в повседневной жизни. Зачем нужно экономить энергию

Электроэнергия в жизни современного общества совершенно неотъёмная его часть. Прежде чем вы включите компьютер, или откроете холодильник, или просто позвоните в дверь квартиры - на мгновение попробуйте представить себе, что всё это единовременно стало недоступным. Не работает лифт в подъезде; на перекрёстках заторы из автомобилей, пешеходов - не работают светофоры; на заправках не заправляются автомобили; стоит метрополитен, троллейбусы, трамваи. В автомобилях не работает стартера, генераторы - это - то же электричество. Смесь бензина и воздуха в двигателе внутреннего сгорания загорается от электрического разряда на свече зажигания. Дизельный двигатель так же не заведется: не работает стартерный электродвигатель и не греются калильные свечи. Из транспорта только лошади и паровозы. Коневодство из спортивной отрасли займет важное место в жизни человека: это и автобус, и такси, и перевозка грузов. Авиация без электричества остается на земле. В воздух будет возможно подняться лишь на воздушном шаре, который летит лишь туда, куда несёт его ветер. Причем наполнить его можно лишь горячим воздухом; для промышленного производства водорода или гелия опять же надо электричество. Перелететь океан на таком воздушном шаре, например, из Европы в Америку будет настоящим подвигом.

Морской транспорт сразу потеряет в скорости, и цена перевозок возрастет также, как и уменьшаться масштабы морских перевозок. Паровые судовые машины требуют много угля, качественной воды, имеют меньшую скорость и дальность плавания. Современное производство остановится полностью. Все станки и агрегаты работают от электропривода. Тогда получается, каждый завод, или фабрика будет иметь свои паровые машины, котлы. Пар будет вращать различный привод: молоты, пресса, крупные станки. Каждый цех будет иметь свою сложную механическую передачу от главной паровой машины завода. Такие передачи часто служили причиной травм и увечий рабочих людей в 19 веке.

Вместо электросварки для соединения металлов применят заклепки. Обработка металлов, производство высокого качества сталей, сплавов - современные технологии исчезнут вместе с электричеством просто мгновенно. Интернет, телефон и даже изобретение 19 века - телеграф - тут же исчезнут. Жизнь человека вернется в конец 18 и начало 19 века; расстояние уже в 1000 километров это уже путешествие, которое меняет жизнь человека; получить простое письмо из соседнего удаленного на 50 километров города будет уже событие. При отсутствии электричества темп жизни стремительно упадет; расстояния становятся огромными, мир - необъятным и малоизвестным.

Современное потребление электроэнергии имеет структуру практически одинаковую для всех развитых стран. Россия относится к числу мировых энергетических держав, имеет много электростанций: тепловых, атомных, гидравлических. С начала 20 века, когда электричество было лишь в крупных городах и на больших предприятиях энергетика в нашей стране сильно изменилась. Потребление электроэнергии в России имеет свою выраженную структуру:

Непосредственно на человека используется более 33 % выработанной электроэнергии. Не многим меньше приходится на производство. Потребление электроэнергии непосредственно человеком - более трети.

Современный человек настолько привык к благам цивилизации, что представить ему жизнь без электричества достаточно сложно. Разберем простой пример. Перед нами - современная квартира. Рассмотрим, кто чего стоит. Какое количество электроэнергии потребляют бытовые приборы?

  • 1. Холодильник (300 л): 240-320 кВт·ч в год
  • 2. Стиральная машина (5 кг белья, 60°C): 0,85-1,05 кВт·ч за цикл
  • 3. Электрическая сушилка белья (7 кг белья): 2,4-4,4 кВт·ч за цикл
  • 4. Электроплита с духовкой: конфорка (диаметром 145-180 мм) 1-2,3 кВт·ч за час; духовка (200°C): 0,9-1,1 кВт·ч за час
  • 5. Кофеварка (на приготовление 8-12 чашек): 0,8-1,2 кВт·ч
  • 6. Компьютер: 0,1-0,5 кВт·ч
  • 7. Телевизор (82 см LCD): 0,1-0,2 кВт·ч
  • 8. Лампа накаливания: 60 кВт·ч
  • 9. Энергосберегающая флуоресцентная лампа: 16 кВт·ч.

Каждое государство, общество имеет свою систему производства и распределения электроэнергии. Электроэнергия - это товар, который невозможно хранить. Производство электроэнергии и распределение определяется потреблением. Задачи распределения и транспортировки электроэнергии решаются линиями электропередачи, распределительными устройствами, подстанциями. Линии электрических передач могут быть как кабельными, расположенными обычно под землей, так и воздушными - высокие столбы с проводами. В городе заметны трансформаторные подстанции: небольшие сооружения, где высокое напряжение преобразуется в "домашние" 220 вольт. При этом на каждой подстанции всегда написана её мощность, номер и распределительные устройства высокого напряжения (6 или 10 тысяч вольт) и низкого (0,4 кВ - это значит по каждому из трех проводников идет электрический ток напряжением 220 вольт относительно земли). Как правило, все линии электропередач имеют высокое напряжение. Соответственно, эти линии имеют свою охранную зону, где находиться постороннему человеку не надо.

Электричество делает нашу жизнь комфортней, более интересной. Производство с электричеством представляется эффективным и высокотехнологичным с минимальным присутствием ручного труда; применение компьютерных технологий освобождает человека даже от таких задач как непосредственный контроль технологического процесса. Так, например, автоматизация сборочных конвейеров на заводах БМВ в Германии практически 100 %. Транспорт с применением электричества становится более комфортным и доступным; расстояния в несколько тысяч километров не представляют больших препятствий. Авиация и вся наземная инфраструктура невозможна без электроснабжения и электросвязи, электричества вообще.

Вместе с тем, технические задачи по производству, транспортировке, распределению и потреблению электроэнергии требуют неукоснительного соблюдения правил безопасности, исключение из работы любых неисправных электротехнических устройств, дисциплины и ответственности. При этом необходимо помнить, что блага цивилизации дорогого стоят, и относится к ним нужно бережно.

Понятно, что единовременно и добровольно лишиться "электрического комфорта" вряд ли найдётся охотников, даже в качестве эксперимента. Между тем, производство электроэнергии растёт, и единственная причина этого роста - рост потребления. Возникает важнейший вопрос - экономия ресурсов, и в первую очередь - электроэнергии. Потому как производство электроэнергии включает огромный список решаемых задач, привлекаемых ресурсов, зачастую невосполнимых.

Термин «постоянный ток» имеет несколько видов определений, и каждое из них заслуживает особого внимания. Чаще всего данным понятием называют электрический ток, имеющий неизменные от времени свойства, направления и параметры. Существование постоянного тока возможно только в замкнутой цепи. Обусловлено это необходимостью поддержания постоянного напряжения, которое является основополагающим для данного явления. Несмотря на различные источники постоянного тока, данное определение всегда остается неизменным.

Постоянный ток имеет ряд источников, которые активно используются в повседневной Основными из них являются электромашинные генераторы. Источниками также служат фотоэлементы, и термоэлементы. Простейшим видом источника постоянного тока можно назвать аккумуляторы (гальванические элементы). В данном случае постоянный ток имеет отличительную черту - возможность его многократного использования, что делает такие элементы достаточно полезными и дешевыми в повседневной эксплуатации. Согласитесь, если каждый раз приобретать обычные батарейки на фотоаппарат, то себестоимость фотоснимков существенно возрастет. Добиться этого процесса можно благодаря свойству обратимости химических реакций.

Электрические машины и представляют собой электромеханические источники постоянного тока. Источник питания постоянного тока - преобразование механического На этом основаны различные электрооборудования автомобилей и других транспортных средств. И на этом же основана добыча электроэнергии альтернативными методами - ветровые и гидростанции.

Существует несколько видов преобразователей постоянного тока. Самый распространенный вариант - выпрямитель, который чаще всего используется в приборах, работающих от электрической сети. Выпрямители классифицируются в зависимости от мощности, от основной схемы выпрямления, в зависимости от количества фаз, которые используются в его работе. Также совместно с ними используются усилители постоянного тока. Кроме того, возможны варианты классификации по управлению выходными параметрами, по наличию устройств стабилизации. Все возможные варианты классификации перечислить практически невозможно. Но, так или иначе, практически все они присутствуют в наших домах и квартирах, так как без них практически невозможно использование современной аппаратуры.

Постоянный ток в основном применяется в работе различной техники. практически всех электронных схем служит именно электрический ток. Для существования постоянного тока достаточно наличие двух обязательных условий - свободные электрические заряды и электрическое поле.

В современном мире электроэнергия в основном вырабатывается специальными электростанциями. Происходит это исключительно на основе технико-экономических соображений. Благодаря работе электростанций постоянный ток распределяется между многочисленными приемниками, которые потребляют энергию не постоянного, а переменного тока. И только дойдя до конкретного пункта назначения, преобразовывается в постоянный ток, благодаря нехитрым приспособлениям. Еще одна область применения постоянного тока в современном мире - железные дороги. Многие модели электровозов работают преимущественно благодаря потреблению электрического тока.

Как видим, из всего выше перечисленного можно сделать вывод о том, что постоянный ток надежно занял лидирующие места в процессе жизнедеятельности человека. Сложно себе даже представить, что произойдет с человечеством, если в одночасье исчезнет электричество и постоянный ток!

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Электрический ток в повседневной жизни человека

ток миостимулятор организм

Электричество одно из величайших достижений человечества. Прирученный электрон доставляет в наши дома и квартиры свет и тепло, связывает нас с внешним миром посредством сети интернет и с помощью телефонной связи. Однако многие из нас даже не задумываются о том, что электрический ток безопасен только до тех пор, пока находиться под «замком» изоляции проводов и, вырвавшись оттуда, может стать безжалостным зверем готовым сжечь ваше жилье, а в некоторых случаях способным убить вас. Что же такое электрический ток и что необходимо для его возникновения и существования в течение нужного нам времени?

Слово “ток” означает движение или течение чего-то. Электрическим током называется упорядоченное (направленное) движение заряженных частиц. Чтобы получить электрический ток в проводнике, надо создать в нем электрическое поле. Чтобы электрический ток в проводнике существовал длительное время, необходимо все это время поддерживать в нем электрическое поле. Электрическое поле в проводниках создается и может длительное время поддерживаться источниками электрического тока. В настоящее время человечество использует четыре основные источника тока: статический, химический, механический и полупроводниковый (солнечные батареи), но во всяком из них совершается работа по разделению положительно и отрицательно заряженных частиц. Раздельные частицы накапливаются на полюсах источника тока, - так называют места, к которым с помощью клемм или зажимов подсоединяют проводники. Один полюс источника тока заряжается положительно, другой - отрицательно. Если полюсы соединить проводником, то под действием поля свободные заряженные частицы в проводнике будут двигаться, возникнет электрический ток. Электрический ток опасен тем, что человек не может определить своими органами чувств его наличие и зачастую поражение током для человека становиться полной неожиданностью.

Первое, что нужно знать об электричестве это то, что сила повреждения человеческого организма зависит не от напряжения, а именно от тока, примером тому могут служить, популярные сегодня, миостимуляторы для наращивания мышц и сжигания жировых клеток. Напряжение в данных приборах может достигать 1000 вольт, однако сила тока настолько мала, что человек получает только стимуляцию мышц. Электрический ток бывает двух видов постоянным и переменным. Встретить постоянный ток можно, например, в батарейках или аккумуляторе автомобиля. Четкое разделение на «плюс» и «минус» определяют постоянный ток. С переменным током все несколько сложнее. Дело в том, что полярность при переменном токе меняется с определенной частотой, то есть «плюс» и «минус» меняются местами. Например, стандартом для нашей электрической сети является частота в 50 герц, то есть «плюс» и «минус» поменяются местами 100 раз в секунду. Говорить, что один род тока вызовет более плачевные последствия, чем другой нельзя, они по-разному влияют на человеческий организм и последствия их воздействия зависят от окружающей среды и физического состояния организма человека. Как видите, что постоянный, что переменный ток одинаково опасен для человека и его воздействие может вызвать тяжелые последствия. Очень много известно случаев, когда по неосторожности, халатности и даже из-за, казалось бы, безобидной шалости люди погибали, получали увечья. Последствие удара электрическим током определяется сопротивлением человеческого тела в момент удара. Чем сопротивление меньше, тем тяжелее будут последствия воздействия тока на организм. Электрический ток облегчает и делает нашу жизнь лучше, но стоит нам проявить беспечность, недальновидность, позволить безответственности взять верх над здравым смыслом, даже самые привычные и, казалось бы, безопасные электроприборы начнут представлять смертельную опасность для нас.

Размещено на Allbest.ru

Подобные документы

    Получение направленного движения зарядов. Признаки электрического тока. Движение заряженных частиц в проводнике. Электрический ток в металлах. Действие, сила, плотность тока. Постоянный и переменный ток. Определение природы носителей тока в металлах.

    презентация , добавлен 22.08.2015

    Номенклатура силовых трансформаторов. Устройство и принцип действия трансформаторов. Конструкции линий электропередач и их составляющие. Виды и применение счетчиков электроэнергии. Действие электрического тока на организм человека, оказание первой помощи.

    отчет по практике , добавлен 20.11.2013

    Напряженность электростатического поля, его потенциал. Постоянный электрический ток. Магнитное поле тока. Явление электромагнитной индукции. Вихревое электрическое поле. Гармонические колебания, электромагнитные волны. Элементы геометрической оптики.

    презентация , добавлен 28.06.2015

    Понятие электромагнитных волн, их сущность и особенности, история открытия и исследования, значение в жизни человека. Виды электромагнитных волн, их отличительные черты. Сферы применения электромагнитных волн в быту, их воздействие на организм человека.

    реферат , добавлен 25.02.2009

    Принцип действия и область применения электрических машин постоянного тока. Допустимые режимы работы двигателей при изменении напряжения, температуры входящего воздуха. Обслуживание двигателей, надзор и уход за ними, ремонт, правила по безопасности.

    курсовая работа , добавлен 25.02.2010

    Химические источники тока как устройства, вырабатывающие электрический ток за счет энергии окислительно-восстановительных реакций химических реагентов, принцип их действия и оценка эффективности. Условия существования постоянного электрического тока.

    презентация , добавлен 28.01.2014

    Общие теоретические сведения о линейных и нелинейных электрических цепях постоянного тока. Сущность и возникновение переходных процессов в них. Методы проведения и алгоритм расчета линейных одно- и трехфазных электрических цепей переменного тока.

    курсовая работа , добавлен 01.02.2012

    Причины электрического тока. Закон Ома для неоднородного участка цепи. Закон Ома в дифференциальной форме. Работа и мощность. Закон Джоуля–Ленца. Плотность тока, уравнение непрерывности. КПД источника тока. Распределение напряженности и потенциала.

    презентация , добавлен 13.02.2016

    История создания и принцип работы электродвигателя. Способы возбуждения электрических двигателей постоянного тока. Основные типы двигателей и их разновидности. Конструкция двухтактного двигателя внутреннего сгорания. Принцип работы зажигания двигателя.

    презентация , добавлен 05.05.2011

    История открытия и создания двигателей постоянного тока. Принцип действия современных электродвигателей. Преимущества и недостатки двигателей постоянного тока. Регулирование при помощи изменения напряжения. Основные линейные характеристики двигателя.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Содержание

    Введение

    Цель работы.

    Что такое электричество?

    Почему электричество называется электричеством?

    Где применяют электричество?

    Электричество - двигатель науки.

    Где в природе есть электричество?

    Какое электричество было у древних людей?

    Проведение опыта.

    Заключение.

    Введение.

Почему я заинтересовалась этой темой?

Мне интересно, что такое электричество и можно ли его получить в походных условиях, там, где нет доступных, привычных нам источников электрического тока.

    Цель работы

    Изучить, что такое электричество.

    Рассказать ребятам, что такое электричество и где оно «живет».

    Провести эксперимент по извлечению электричества из овощей и фруктов, оказавшихся под рукой.

    Что такое электричество?

Сейчас трудно представить человеческую жизнь без использования электроэнергии. Оно вырабатывается, например, в батарейках, но главный его источник - электростанции, откуда оно поступает в наши дома по толстым проводам, или кабелям. Попробуйте представить себе, как течет вода в реке. Точно так же движется по проводам электричество. В реке течет вода, а в проводах проходят маленькие частицы, которые называются электронами. Вот почему электричество называется электрическим током. Электрический ток - это упорядоченное движение потока электронов внутри проводника, например, куска проволоки.

Электрически ток движется по проводам только в том случае, если они соединены в замкнутое кольцо - электрическую цепь. Возьмем, например, фонарик: провода, соединяющие батарейку, лампочку и выключатель, образуют замкнутую цепь. Пока по цепи идет ток, лампочка горит. Если цепь разомкнуть - скажем, отсоединить провод от батарейки, - лампочка погаснет.

  1. Почему электричество называется электричеством?

Древнегреческий философ Фалес Милетский целенаправленно ставил разнообразные опыты с «электроном», что по-гречески и означает «янтарь». Мы знаем об этих незатейливых опытах не слишком много. Более-менее известно, что философ вытачивал из янтаря разнообразные фигурки - палочки, пластины, шарики и кубики, которые затем натирал всяческими тканями, шкурками и шерстью.

Но термин «электричество» появился без малого 500 лет назад. Английский физик Уильям Гильберт исследовал электрические явления и заметил, что многие предметы, подобно янтарю, после натирания притягивают к себе более мелкие частицы. Поэтому в честь ископаемой смолы он назвал это явление электричеством (от. лат. Electricus (электрикус) - янтарный).

Итак, слово «электричество » происходит от греческого названия янтаря - электрон.

  1. Где применяют электричество?

Сегодня нам трудно представить жизнь без электричества, но электричество постепенно раскрывало перед человечеством все свои тайны. Только в 19 веке люди научились использовать электричество в жизни.

Когда была создана первая лампочка, в жизнь людей вошло электрическое освещение. Потом человечество научилось при помощи электричества передавать на расстоянии звук и изображение, так появились телевизор, телефон, радио и так далее. В каждом современном доме имеется различная бытовая техника, и вся она работает за счет электричества.

Люди научились не только использовать, но и добывать электричество. Так появились электростанции, были созданы аккумуляторы и генераторы.

Ко всему прочему, электричество является двигателем науки . Многие приборы, которые используются учеными для изучения окружающего мира, тоже работают от него.

Постепенно электроэнергия завоевывает и космос. Мощные батареи стоят на космических кораблях, а на планете возводятся солнечные батареи и устанавливаются ветряки, которые получают энергию от природы.

Электричество в современном мире используют повсюду: в медицине, строительстве, промышленности и повседневной жизни. Поэтому электричество играет важную роль в жизни человека.

ВНИМАНИЕ! Электричество опасно для жизни. С электроприборами и розетками следует обращаться очень осторожно. Не лазайте по мачтам линии электропередачи, а еще лучше - не подходите к ним вообще!

  1. Где в природе есть электричество?

Электрические заряды есть также в природе, к примеру, молния — мощный разряд электричества.

Между прочим, нервная система человека функционирует за счет электрических импульсов, которые поступают от раздраженного участка в мозг. Внутри нейронов мозга сигналы передаются электрическим путем.

Но не только человек генерирует в себе электрические токи. Многие обитатели морей и океанов способны вырабатывать электричество. Например, электрический угорь способен создать напряжение до 500 вольт, а мощность заряда ската достигает 0,5 киловатт. К тому же отдельные виды рыб используют электрическое поле, которое создают вокруг себя, с помощью чего легко ориентируются в мутной воде и на глубине, куда не проникает солнечный свет.

    Какое электричество было у древних людей?

4000 лет назад у древних людей было электричество. Во время раскопок недалеко от Багдада нашли глиняный горшок времен месопотамского царства. Внутри были медный цилиндр и железный стержень. Зачем? Археологи терялись в догадках.

Горшок в шутку назвали багдадской батарейкой. Современные батарейки устроены похоже — два разных металла и электролит. В такой же горшок налили уксус в качестве электролита, опустили медный цилиндр и железный стержень — пошел электрический ток.

Такие же горшки с металлическими вставками нашли и в Египте. Получается, об электричестве знали много тысяч лет назад. Для того чтобы сделать простейшую батарейку, не нужен даже горшок. Сосуд с уксусом заменит обычный лимон. Роль железного стержня исполнит обычный шуруп. Вместо цилиндра — медная проволока. Если к устройству подключить вольтметр, батарейка заработает.Некоторые исследователи утверждают, что древние египтяне освещали подземные галереи с помощью электричества. На подземных стенах и потолках нет следов копоти, которые непременно остались бы, если мастера работали бы при свете, например, факела.

На барельефах египетских храмов можно разглядеть в руках жрецов продолговатый предмет, напоминающий колбу электрической лампы. Внутри «лампы» вместо спирали извивается змея.

  1. Проведение опыта. Как я зажгла лампочку при помощи овощей и фруктов.

Для изготовления батарейки из овощей и фруктов мне понадобились:

    овощи, фрукты,

    оцинкованные гвозди,

    отрезки медной проволоки,

    провода с зажимами,

    светодиод,

    мультиметр.

В исследуемый плод необходимо воткнуть оцинкованный гвоздь и отрезок толстой медной проволоки (электроды).

Далее следует щупы устройства измерения (мультиметр) присоединить к концам электродов. Мультиметр покажет напряжение в Вольтах, возникающее на концах проводника.Данные измерений сгруппировала. Итак, подопытные овощи и фрукты дают следующее напряжение (В):

Фото

Овощ/фрукт

напряжение (В):

Солёный огурчик

Картошка

Свежий огурчик

В группе моих овощей (фруктов) лидером по полученному напряжению стало яблоко, а свекла очутилась в отстающих. Но напряжения в 1 В оказалось недостаточно, чтобы зажечь светодиодную лампочку. Стала экспериментировать, чтобы это исправить и все-таки получить свет. Я соединила последовательно несколько различных овощей (фруктов) при помощи электродов и проводов. Цепочка из трех яблок дала напряжение 2,93 В. Для примера - две пальчиковые батарейки дают напряжение 3,10 В (см. табл. ниже). Этого достаточно, чтобы засветился маленький светодиод.

Результаты измерений представлены в таблице ниже:

Думаю, если необходимо зажечь настоящую лампочку 220В в светильнике, то для этого понадобится большое количество фруктов, дешевле будет использовать картошку, но и тогда её потребуется целый мешок.

А вот наглядный пример положительного результата моего опыта:

  1. Заключение

В ходе исследования выяснилось, что от данного природного источника питания извлечь много электричества не получится, но для подзарядки батареи мобильного телефона или аккумулятора фотоаппарата и иных приборов, потребляющих небольшой ток, этого будет достаточно.

Источники информации:

    Детская энциклопедия «1001 вопрос и ответ».

    Бескрайний интернет.

    Любимые родители.

В жизни современного человека огромную роль играет электричество. До сих пор многие не понимают, как когда-то люди жили без электрического тока. В наших домах есть свет, вся бытовая техника, начиная от телефона и заканчивая компьютером, работает от электрического напряжения. Кто изобрёл электричество и в каком году это произошло, знают далеко не все. А вместе с тем это открытие положило начало новому периоду в истории человечества.

На пути к появлению электричества

Древнегреческий философ Фалес, живший в 7 веке до нашей эры, выяснил, что если потереть янтарь о шерсть, то к камню начнут притягиваться мелкие предметы. Лишь спустя много лет, в 1600 году, английский физик Уильям Гилберт ввел термин «электричество» . С этого момента ученые стали уделять ему внимание и проводить исследования в этой области. В 1729 Стивен Грей доказал, что электричество можно передавать на расстоянии. Важный шаг был сделан после того, как французский ученый Шарль Дюфэ открыл, как он считал, существование двух видов электричества: смоляного и стеклянного.

Первым, кто попробовал объяснить, что такое электричество, был Бенджамин Франклин, портрет которого нынче красуется на стодолларовой купюре. Он считал, что все вещества в природе имели «особую жидкость». В 1785 был открыт закон Кулона. В 1791 году итальянский ученый Гальвани исследовал мышечные сокращения у животных. Он выяснил, проводя опыты на лягушке, что мышцы постоянно возбуждаются мозгом и передают нервные импульсы.

Огромный шаг на пути к изучению электричества был сделан в 1800 году итальянским физиком Алессандром Вольта , который придумал и изобрел гальванический элемент - источник постоянного тока. В 1831 году англичанин Майкл Фарадей изобрел электрический генератор, который работал на основе электромагнитной индукции.

Огромный вклад в развитие электричества внес выдающийся ученый и изобретатель Никола Тесла. Он создал приборы, которые до сих пор используются в быте. Одна из самых известных его работ - двигатель переменного тока, на основе которого был создан генератор переменного тока. Также он проводил работы в области магнитных полей. Они позволяли использовать переменный ток в электродвигателях.

Еще одним ученым внесшим вклад в развитие электричества, был Георг Ом, который экспериментальным путем вывел закон электрической цепи. Другим выдающимся ученым был Андре-Мари Ампер. Он изобрел конструкцию усилителя, которая представляла собой катушку с витками.

Также важную роль в изобретении электричества сыграли:

  • Пьер Кюри.
  • Эрнест Резерфорд.
  • Д. К. Максвелл.
  • Генрих Рудольф Герц.

В 1870-х годах русским ученым А. Н. Лодыгиным была изобретена лампа накаливания. Он, предварительно откачав из сосуда воздух, заставил светиться угольный стержень. Чуть позже он предложил заменить угольный стержень на вольфрамовый. Однако запустить лампочку в массовое производство смог другой ученый - американец Томас Эдисон. Поначалу в качестве нити в лампе он использовал обугленную стружку, полученную из китайского бамбука. Его модель получилась недорогой, качественной и могла прослужить относительно долгое время. Значительно позже Эдисон заменил нить на вольфрамовую.

Никто не знает, в каком году изобрели электричество, но начиная с XIX века оно активно вошло в жизнь человека. Поначалу это было просто освещение, затем электрический ток начали применять и для других сфер жизни (транспорта, средств передачи информации, бытовой техники).

Использование освещения в России

Пытаясь выяснить, в каком году появилось электричество в России, учёные склоняются к мнению, что это случилось в 1879 году . Именно тогда был освещен Литейный мост в Петербурге. 30 января 1880 года был создан электротехнический отдел в Русском техническом обществе. Это общество и занималось развитием электричества в Российской империи. В 1883 году произошло знаковое в истории электричества событие - было выполнено освещение Кремля, когда к власти пришел Александр III. По его указу образовывается специальное общество, которое занимается разработкой генерального плана по электрификации Петербурга и Москвы.

Переменный и постоянный ток

Когда открыли электричество, между Томасом Эдисоном и Никола Теслой разгорелся спор, какой ток использовать в качестве основного, переменный или постоянный. Противостояние между учёными даже было прозвано «Войной токов». В этой борьбе победил переменный ток , так как он:

  • легко передается на большие расстояния;
  • не несет огромных потерь, передаваясь на расстоянии.

Основные области потребления

В повседневной жизни постоянный ток применяется довольно часто. От него работают различные бытовые приборы, генераторы и зарядные устройства. В промышленности его используют в аккумуляторах и двигателях. В некоторых странах им оснащаются линии электропередач.

Переменный ток способен меняться по направлению и величине в течение определенного промежутка времени. Он применяется чаще постоянного. В наших домах его источником служат розетки, к ним подключают различные бытовые приборы под разным напряжением. Переменный ток часто применяется в промышленности и при освещении улиц.

Сейчас электричество в наши дома поступает благодаря электрическим станциям . На них установлены специальные генераторы, которые работают от источника энергии. В основном эта энергия тепловая, которая получается при нагревании воды. Для нагревания воды используют нефть, газ, ядерное топливо или уголь. Пар, образовывающийся при нагревании воды, приводит в действие огромные лопасти турбин, которые, в свою очередь, запускают генератор. В качестве питания генератора можно использовать энергию воды, падающую с высоты (с водопадов или плотин). Реже используется сила ветра или энергия солнца.

Затем генератор при помощи магнита создает поток электрических зарядов, проходящих по медным проводам. Для того чтобы передавать ток на большие расстояния, необходимо повысить напряжение. Для этой роли используется трансформатор, который повышает и понижает напряжение. Потом электричество с большой мощностью передается по кабелям к месту его применения. Но перед попаданием в дом необходимо понизить напряжение с помощью другого трансформатора. Теперь оно готово к использованию.

Когда заводят разговор об электричестве в природе , первыми на ум приходят молнии, но это далеко не единственный его источник. Даже наши с вами тела имеют электрический заряд, он существует в тканях человека и передает нервные импульсы по всему организму. Но не только человек содержит в себе электрический ток. Многие обитатели подводного мира также способны выделять электричество, например, скат содержит в себе заряд мощностью 500 Ватт, а угорь может создать напряжение до 0,5 киловольт.

Поделиться