Галлий применение. Какой металл тает в руках Что обозначает назначение элемента галлий

Широкого промышленного применения галлий еще не получил. В настоящее время определились следующие области использования галлия.
Термометры для высокой температуры. Галлий обладает низкой температурой плавления (29,8°) при высокой температуре кипения (~2200°). Это позволяет использовать его для изготовления кварцевых термометров для измерения высоких температур (600-1300°).
Легкоплавкие сплавы. Галлий с рядом металлов (висмут, свинец, олово, кадмий, индий, таллий и др) образует легкоплавкие сплавы, имеющие температуру плавления ниже 60°. Так, например, сплав галлия с 25% In плавится при температуре 16°, точка плавления сплава галлия с 8% Sn равна 20°. Температура плавления эвтектического сплава (82% Ga, 12% Sn и 6% Zn) равна 17°.
Предложен ряд легкоплавких сплавов, содержащих галлий, для сигнальных устройств (спринклерных предохранителей), применяемых в пожарном деле, действие которых основано на расплавлении сплава при превышении определенной температуры, что вызывает автоматическое включение системы распыления воды.
Легкоплавкий сплав, содержащий 60% Sn, 30% Ga и 10% In, предложен для термометров взамен ртути.
В последнее время привлечено внимание к возможности использования галлия и его сплавов в качестве жидкой среды для отвода тепла на энергетических установках, например тепла, выделяющегося в атомных котлах. Преимуществом галлия как теплопроводной жидкости является высокая температура кипения, сочетающаяся с высокой теплопроводностью. Однако препятствием к использованию галлиевого теплоносителя служит взаимодействие галлия с большинством металлов при высоких температурах.
Предложено использовать сплавы галлия в зубном деле вместо амальгам ртути. Для зубных пломб рекомендованы следующие сплавы; 40-80% Bi; 30-60% Sn; 0,5-0,8% Ga и 61,5% Bi; 37,2% Sn; 1,3% Ga.
Зеркала. Галлий обладает способностью хорошо прилипать к стеклу, что позволяет изготовлять галлиевые зеркала. Зеркало можно изготовить путем сдавливания галлия между двумя нагретыми листами стекла. Галлиевые зеркала обладают высокой
отражательной способностью. Для длины волны 4,360 А отражательная способность составляет 75,6%, для волны 5,890 А - 71,3%. Жидкий галлий отражает 88% падающего на зеркало света.
Другие области применения. Предложено применять сплав алюминия с галлием вместо ртути в качестве катода ламп ультрафиолетового излучения, используемых в медицине. Получаемое при этом излучение обогащено лучами голубых и красных частей спектра, что улучшает терапевтическое действие излучения.
Возможна замена галлием ртути в ртутных выпрямителях. Весьма высокая температура кипения металла позволяет работать со значительно большими нагрузками, чем при использовании ртути.
Известно применение солей галлия в качестве компонента светящихся красок (для возбуждения флуоресцентного свечения соединений). Соли галлия используют также в аналитической химии, в медицине и в качестве катализаторов в органическом синтезе.

15.07.2019

15.07.2019

С развитием технического прогресса миру было явлено множество различной техники и оборудования. И одними из необходимых машин в современном строительстве, производстве и...

15.07.2019

В традиционном и привычном видении, мягкая мебель представляет собой два кресла и диван. Тем не менее, в настоящий момент мягкая мебель приобрела более расширенный...

15.07.2019

Девять лет назад были внесены определённые изменения в лицензирование определённых сфер в области обеспечения безопасности. С этого момента строительные и другие фирмы...

15.07.2019

На сегодняшний день тепловые карты, с помощью которых происходит отслеживание того, как пользователи ведут себя на веб-сайте либо же на лендинге, считаются одним из...

15.07.2019

В первые дни текущего месяца сразу несколько компаний из Китайской Народной Республики практически в одно время заключили договора на длительный период времени с...

14.07.2019

Вилочные погрузчики являются разновидностью складского транспорта, который применяется для погрузочно-разгрузочных работ, транспортировки и штабелирования поддонов,...

13.07.2019

Строительная арматура является тем каркасом, который обеспечивает прочность строений, возводимых с использованием бетонного раствора, а также кирпичной кладки. Как бы...

13.07.2019

Утилизация аккумуляторов автомобилей нужна для того, чтобы уменьшить объёмы токсичных веществ среди твёрдых бытовых отходов. Батареи аккумуляторов содержат тяжёлые...

13.07.2019

Крупнейшая горная металлургическая корпорация из Ирана IMIDRO и ещё пять металлургических заводов заключили договор о взаимодействии в ходе воплощения в жизнь программы,...

С точки зрения химика галлий (Ga, лат. Gallium) - элемент главной подгруппы третьей группы периодической системы химических элементов Д. И. Менделеева, имеющий атомный номер 31. По химическим свойствам галлий близок к алюминию, но в данном отношении каких-либо уникальных свойств, достойных упоминания, он не имеет.

Галлий как простое вещество в чистом виде представляет собой хрупкий серебристо-белый металл. Самая главная его особенность состоит в том, что плавится галлий при температуре 29,76° C, таким образом расплавить его можно в теплой воде, на батарее и даже в руке! Хотя по легкоплавкости галлий занимает лишь третье место в мире металлов, он является единственным металлом, который можно безопасно подержать жидким в ладони: ртуть (первое место, т.пл. -38,83 °C) очень ядовита, цезий (второе место, т.пл. 28,6 °C) настолько химически активен, что воспламеняется на воздухе.

Легкоплавкость, относительно низкая химическая активность и очень малая летучесть галлия с одной стороны и внешняя схожесть с другими металлами с другой стороны позволяют использовать галлий для фокусов. Кроме упомянутой выше способности металла плавится в руке очень эффектно можно использовать и его практически моментальное плавление в горячей воде: из галлия изготовляют чайную ложку и дают размешать ею горячий чай. Как нетрудно догадаться, ложка тает и стекает на дно стакана.

Другим интересным физическим свойством галлия является температура кипения 2204° C – это означает, что галлий находится в жидком виде в очень широком интервале температур, таким образом находя применение в высокотемпературных термометрах. При этом галлий практически не испаряется при комнатной температуре (да и при 100 градусах тоже): он в 4.520.000.000.000.000.000.000.000.000.000 раз менее летуч, чем вода и в 390.000.000.000.000.000.000.000.000 раз менее летуч, чем ртуть (для расчетов взяты давления паров при 30 °C)

Галлий – типичный рассеянный элемент, его также относят и к редким. Рассеянный означает, что он не имеет собственных минералов (за исключением редкого минерала галлита), а встречается в качестве примеси в различных рудах. Галлий является постоянным спутником алюминия и цинка, поэтому его производство всегда привязано к переработке алюминиевых или сульфидных полиметаллических (в особенности цинковых) руд. Обычно извлечение галлия из цинковых концентратов сопряжено со многими трудностями, обусловливающими высокую стоимость металла, поэтому на протяжении уже нескольких десятилетий основным источником (95%) получения галлия являются отходы алюминиевой промышленности. Среднее содержание галлия в земной коре составляет порядка 15-20 г на тонну. Для сравнения: в одной тонне земной коры железа – около 50 кг, алюминия – 80 кг, кальция – 34 кг. Таким образом, на каждую тонну добытого алюминия приходится не более 200 г галлия.

Пожалуй, самое известное свойство галлия, это его температура плавления, она составляет 29.76 °C. Это второй по легкоплавкости металл в периодической системе (после ртути). Легкоплавкость, а также низкая токсичность металлического галлия позволили сделать эту фотографию. Кстати, галлий - один из немногих металлов, расширяющихся при затвердевании расплава (другие - Bi, Ge).

Галлодент, эвтектика галлия с оловом
Металлический галлий малотоксичен, одно время он даже применялся для изготовления пломб (вместо амальгамных). Это применение основано на том, что при смешивании порошка меди с расплавленным галлием получается паста, которая через несколько часов затвердевает (из-за образования интерметаллического соединения) и потом может выдержать нагрев до 600 градусов без плавления. Галлий очень хрупок (его можно расколоть как стекло).

Большие кристаллы галлия
Еще одна интересная особенность галлия - способность его расплава к переохлаждению. Расплавленный галлий можно охладить примерно на 10-30 градусов ниже точки плавления, и он останется жидким, но если бросить в такой расплав кусочек твердого галлия или сухого льда, из него мгновенно начнут расти крупные кристаллы. На фотографии - затвердевающий слиток галлия. На фото хорошо видно, что кристаллизация началась в трех местах, и одновременно начали расти три больших монокристалла, которые затем встретились и образовали слиток (это произошло примерно через два часа после съемки).

Галлиевая ложка
Самодельная ложка из галлия. Видео с плавлением этой ложки:

Высокотемпературный галлиевый термометр Кварцевый термометр с галлием Галлий в термометре
А вот еще одно применение галлия.
Галлий находится в жидком состоянии в очень большом интервале температур, и, по идее, галлиевыми термометрами можно было бы измерять температуру аж до 2000 градусов. Впервые применять галлий в качестве термометрической жидкости предложили довольно давно. Галлиевыми термометрами уже измеряют температуру до 1200 градусов, но обычному человеку, увидеть в лаборатории эти термометры в живую удается не часто.
Такие термометры слабо распространены по нескольким причинам. Во-первых, при высоких температурах галлий является очень агрессивным веществом. При температурах выше 500 °C, он разъедает практически все металлы, кроме вольфрама, а также многие другие материалы. Кварц устойчив к действию расплавленного галлия до 1100 °C, но проблема может возникнуть из-за того, что кварц (а также большинство других стекол) отлично смачивается этим металлом. То есть, галлий просто налипнет на стенки термометра изнутри, и узнать температуру будет невозможно. Еще одна проблема может возникнуть при охлаждении термометра ниже 28 градусов. При затвердевании галлий ведет себя подобно воде - он расширяется и может просто разорвать термомер изнутри. Ну и последняя причина, по которой сейчас высокотемпературный галлиевый термометр можно встретить очень редко, это развитие техники и электроники. Не секрет, что цифровым термометром пользоваться гораздо удобнее, чем жидкостным. Современные температурные контроллеры, в комплекте, например, с платино-платинородиевыми термопарами, позволяют измерять температуру в интервале от -200 до +1600°C с точностью, недостижимой для жидкостных термометров. К тому же, термопара может находиться на значительном расстоянии от контроллера.

Галлий образует легкоплавкие эвтектические сплавы со многими металлами, причем некоторые из них, плавятся уже при температуре ниже комнатной.
Сплав галлия с индием плавится при температуре 15.7°C, то есть при комнатной температуре это жидкость. Чтобы приготовить такой сплав, не обязательно даже нагревать ожин из металлов до плавления, достаточно просто плотно сжать кусочки галлия и индия. На видео видно, что из места соприкосновения двух металлов (большой цилиндрик - галлий, маленький - индий), начинает капать эвтектический сплав.

Интересный эксперимент можно провести не только с плавлением, но так же и с затвердеванием галлия. Во первых, галлий это одно из немногих веществ, которые расширяются при затвердевании (так же как и вода), а во вторых, цвет расплавленного металла довольно сильно отличается от цвета твердого.
Небольшое количество жидкого галлия, наливаем в стеклянный пузырек и сверху помещаем маленький кусочек твердого галлия (затравка для кристаллизации, так как галлий способен переохлаждаться). На видео хорошо видно как начинают расти кристаллы металла (они имеют синеватый оттенок, в отличие от серебристо-белого расплава). Через некоторое время, расширяющийся галлий разрывает пузырек.
Средняя часть видео (рост кристаллов галлия) ускорена в десять раз, чтобы видео было не очень длинным.

Так же как и из ртути, из расплавленного галлия можно сделать "бьющееся сердце", правда из-за того, что галлий более электроположительный металл чем железо, оно работает наоборот. При касании кончиком гвоздя, капли расплавленного галия, она "расплывается" из-за уменьшения поверхностного натяжения. А как только контакт с гвоздем прерывается, поверхностное натяжение увеличивается и капля снова собирается, до касания гвоздя.

Желающие могут скачать

Что составляет 29,76 о С. Если поместить его в теплую ладонь, оно постепенно начинает переходить из твердого состояния в жидкую форму.

Краткий экскурс в историю

Как называется металл, который плавится в руке? Как уже было отмечено выше, такой материал известен под определением галлий. Его теоретическое существование предсказал в далеком 1870 году отечественный ученый, автор таблицы химических элементов - Дмитрий Менделеев. Основой к возникновению такого предположения стало изучение им свойств многочисленных металлов. На то время ни одному теоретику не могло прийти в голову, что металл, который плавится в руках, существует в реальности.

Возможность синтеза чрезвычайно легкоплавкого материала, появление которого предсказывал Менделеев, доказал французский ученый Эмиль Лекок де Буабодран. В 1875 году ему удалось выделить галлий из цинковой руды. Во время опытов с материалом ученый получил металл, который плавится в руках.

Известно, что Эмиль Буабодран испытывал значительные трудности с выделением нового элемента из цинковой руды. В ходе первых опытов ему удалось добыть всего лишь 0,1 грамма галлия. Однако даже этого оказалось достаточно, чтобы подтвердить удивительное свойство материала.

Где встречается галлий в природе

Галлий относится к элементам, которые не встречаются в виде залежей руд. Материал очень рассеян в земной коре. В природе он встречается в составе крайне редких минералов, таких как галлит и зенгеит. В ходе лабораторных опытов небольшое количество галлия можно выделить из руд цинка, алюминия, германия, железа. Иногда его находят в бокситах, залежах угля, прочих месторождениях полезных ископаемых.

Как получают галлий

В настоящее время ученые чаще всего синтезируют металл, который плавится в руках, из алюминиевых растворов, что добываются в ходе переработки глинозема. В результате удаления основной массы алюминия и проведения процедуры неоднократного концентрирования металлов получают щелочной раствор, в котором находится незначительная доля галлия. Выделяют такой материал из раствора путем электролиза.

Сферы применения

Галлий по сей день не нашел применения в промышленности. Виной всему широкое использование алюминия, который обладает схожими свойствами в твердом виде. Несмотря на это, галлий выглядит перспективным материалом, поскольку обладает отменными полупроводниковыми качествами. Такой металл потенциально может быть использован для производства элементов транзисторов, высокотемпературных выпрямителей тока, солнечных батарей. Галлий выглядит прекрасным решением для изготовления покрытий оптических зеркал, которые будут обладать высочайшей отражательной способностью.

Главным препятствием на пути к применению галлия в промышленных масштабах остается высокая стоимость его синтеза из руд и минералов. Цена за тонну такого металла на мировом рынке составляет более 1,2 миллиона долларов.

На сегодняшний день галлий нашел эффективное применение лишь в сфере медицины. Металл в жидкой форме применяется в целях замедления потери костной массы у людей, что страдают от онкологических недугов. Его используют для быстрой остановки кровотечений при наличии крайне глубоких ран на теле пострадавших. В последнем случае закупорка сосудов галлием не приводит к образованию тромбов.

Как уже отмечалось выше, галлий - металл, который плавится в руках. Поскольку температура, что требуется для перехода материала в жидкое состояние, составляет чуть больше 29 о С, его достаточно подержать в ладонях. Через некоторое время изначально твердый материал начнет плавиться буквально на глазах.

Довольно увлекательный эксперимент можно провести с затвердеванием галлия. Представленный металл имеет свойство расширяться в ходе затвердевания. Для проведения интересного опыта достаточно поместить жидкий галлий в стеклянный пузырек. Далее необходимо начать охлаждать емкость. Через некоторое время можно заметить, как в пузырьке станут образовываться кристаллы металла. Они будут иметь синеватый цвет, в отличие от серебристого оттенка, который характерен для материала в жидком состоянии. Если не прекращать охлаждение, кристаллизирующийся галлий в конечном итоге разорвет стеклянный пузырек.

В заключение

Вот мы и выяснили, какой металл плавится в руке. Сегодня галлий можно отыскать в продаже для проведения собственных опытов. Однако обращаться с материалом следует крайне осторожно. Твердый галлий является нетоксичным веществом. Однако продолжительный контакт с материалом в жидкой форме может привести к самым непредвиденным последствиям для здоровья, вплоть до остановки дыхания, паралича конечностей и вхождения человека в состояние комы.

Галлиевые термометры позволяют в принципе измерить температуру от 30 до 2230° С. Сейчас выпускаются галлиевые термометры для температур до 1200° С.

Элемент № 31 идет на производство легкоплавких сплавов, используемых в сигнальных устройствах. Сплав галлия с индием плавится уже при 16° С. Это самый легкоплавкий из всех известных сплавов.

Как элемент III группы, способствующий усилению в полупроводнике «дырочной» проводимости, (чистотой не меньше 99,999%) применяют как присадку к германию и кремнию.

Интерметаллические соединения галлия с элементами V группы - сурьмой и мышьяком - сами обладают полупроводниковыми свойствами.

Добавка галлия в стеклянную массу позволяет получить стекла с высоким коэффициентом преломления световых лучей, а стекла на основе Ga2О3 хорошо пропускают инфракрасные лучи.

Жидкий отражает 88% падающего на него света, твердый - немногим меньше. Поэтому делают очень простые в изготовлении галлиевые зеркала - галлиевое покрытие можно наносить даже кистью.

Иногда используют способность галлия хорошо смачивать твердые поверхности, заменяя им в диффузионных вакуумных насосах. Такие насосы лучше «держат» вакуум, чем ртутные.

Предпринимались попытки применить в атомных реакторах, но вряд ли результаты этих попыток можно считать успешными. Мало того, что галлий довольно активно захватывает нейтроны (сечение захвата 2,71 барна), он еще реагирует при повышенных температурах с большинством металлов.

Галлий не стал атомным материалом. Правда, его искусственный радиоактивный изотоп 72Ga (с периодом полураспада 14,2 часа) применяют для диагностики рака костей. Хлорид и нитрат галлия-72 адсорбируются опухолью, и, фиксируя характерное для этого изотопа излучение, медики почти точно определяют размеры инородных образований.

Как видите, практические возможности элемента № 31 достаточно широки. Использовать их полностью пока не удается из-за трудности получения галлия - элемента довольно редкого (1,5-10-3% веса земной коры) и очень рассеянного.

Собственных минералов галлия известно немного. Первый и самый известный его минерал, галлит CuGaS2, обнаружен лишь в 1956 г. Позже были найдены еще два минерала, совсем уже редких.

Обычно же галлий находят в цинковых, алюминиевых, железных рудах, а также в каменном угле - как незначительную примесь. И что характерно: чем больше эта примесь, тем труднее ее извлечь, потому что галлия больше в рудах тех металлов ( , ), которые близки ему по свойствам. Основная часть земного галлия заключена в минералах алюминия.

Извлечение галлия - «удовольствие» дорогое. Поэтому элемент № 31 используется в меньших количествах, чем любой его сосед по периодической системе.

Не исключено, конечно, что наука ближайшего будущего откроет в галлии нечто такое, что он станет совершенно необходимым и незаменимым, как это случилось с другим элементом, предсказанным Менделеевым,- германием.

ПОИСКИ ЗАКОНОМЕРНОСТЕЙ. Свойства галлия предсказаны Д. И. Менделеевым за пять лет до открытия этого элемента. Гениальный русский химик строил свои предсказания на закономерностях изменения свойств по группам периодической системы. Но и для Лекока де Буабодрана открытие галлия не было счастливой случайностью. Талантливый спектроскопист, он еще в 1863 г. обнаружил закономерности в изменении спектров близких по свойствам элементов. Сравнивая спектры индия и алюминия, он пришел в выводу, что у этих элементов может быть «собрат», линии которого заполнили бы пробел в коротковолновой части спектра. Именно такую недостающую линию он искал и нашел в спектре цинковой обманки из Пьеррфита.

ИГРА СЛОВ? По которые историки науки видят в названии элемента № 31 не только патриотизм, но и нескромность его первооткрывателя. Привито считать, что слово «галлий» происходит от латинского Gallia (Франция). Но при желании в том же слове можно усмотреть намек на слово «петух» 1 По-латыни «петух» - gallus, по-французски - le coq. Лекок де Буабодран?

В ЗАВИСИМОСТИ ОТ ВОЗРАСТА, В минералах галлий часто сопутствует алюминию. Интересно, что соотношение этих элементов в минерале зависит от времени образования минерала. В полевых шпатах один атом галлия приходится на 120 тыс. атомов алюминия. В нефелинах, образовавшихся намного позже, это соотношение уже 1:6000, а в еще более «молодой» окаменевшей древесине - всего 1:13.

ПЕРВЫЙ ПАТЕНТ. Первый патент на применение галлия взят еще в самом начале XX в. Элемент № 31 хотели использовать в дуговых электрических лампах.

СЕРУ ВЫТЕСНЯЕТ, СЕРОЙ ЗАЩИЩАЕТСЯ. Интересно происходят взаимодействие галлия с серной кислотой. Оно сопровождается выделением элементной серы. При этом обволакивает поверхность металла и препятствует его дальнейшему растворению. Если же обмыть металл горячей водой, реакция возобновится и будет идти до тех пор, пока на галлии не нарастет новая «шкура» из серы.

ВРЕДНОЕ ВЛИЯНИЕ. Жидкий галлий взаимодействует с большинством металлов, образуя и интерметаллические соединения с довольно низкими механическими свойствами. Именно поэтому соприкосновение с галлием приводит многие конструкционные материалы к потере прочности. Наиболее устойчив к действию галлия : при температуре до 1000° С он успешно противостоит агрессивности элемента № 31.

И ОКИСЬ ТОЖЕ! Незначительные добавки окиси галлия заметно влияют на свойства окисей многих металлов. Так, примесь Ga2Оз к окися цинка значительно уменьшает ее спекаемость. Зато цинка в таком окисле намного больше, чем в чистом. А у двуокиси титана при добавления Ga2О3 резко падает электропроводность.

КАК ПОЛУЧАЮТ ГАЛЛИЙ. Промышленных месторождений галлиевых руд в мире на найдено. Поэтому галлий приходится извлекать из очень небогатых им цинковых и алюминиевых руд.

Поскольку и содержание в них галлия неодинаковы, способы получения элемента № 31 довольно разнообразны. Расскажем для примера, как извлекают галлий из цинковой обманки - минерала, в котором этот элемент был обнаружен впервые.

Прежде всего цинковую обманку ZnS обжигают, а образовавшиеся выщелачивают серной кислотой. Вместе с многими другими металлами галлий переходит в раствор. Преобладает в этом растворе сульфат цинка - основной продукт, который надо р очистить от примесей, в том числе и от галлия. Первая стадия очистки - осаждение так называемого железного шлама. При постепенной нейтрализации кислого раствора этот шлам выпада о в осадок. 13 нем оказывается около 10% алюминия, 15% железа и (что для пас сейчас наиболее важно) 0,05-0,1% галлия. Для из влечения галлия шлам выщелачивают кислотой или едким натром - гидроокись галлия амфотерна. Щелочной способ удобнее, поскольку в этом случае можно делать аппаратуру из менее дорогих материалов.

Под действием щелочи соединения алюминия и галлия переходят в раствор. Когда этот раствор осторожно нейтрализуют, гидроокись галлия выпадает в осадок. Но в осадок переходит и часть алюминия. Поэтому осадок растворяют еще раз, теперь уже в соляной кислоте. Получается раствор хлористого галлия, загрязненный преимущественно хлористым алюминием. Разделить эти удается экстракцией. Приливают эфир и, в отличие от AlCl3, GaCl3 почти полностью переходит в органический растворитель. Слои разделяют, отгоняют эфир, а полученный хлорид галлия еще раз обрабатывают концентрированным едким натром, чтобы перевести в осадок и отделить от галлия примесь железа. Из этого щелочного раствора и получают металлический галлий. Получают электролизом при напряжении 5,5 в. Осаждают галлий на медном катоде.

Поделиться