Искусственное соединение элементов содержания. Классификация, область примененияния и основные требования к соединениям элементов дк. Углеводороды и их производные

Природные, искусственные и синтетические высокомолекулярные соединения
Высокомолекулярными соединениями называются соединения с большим молекулярным весом, выражающимся в десятках, сотнях тысяч и миллионах к. е.; другое название их, широко сейчас применяемое, хотя и менее точное, — полимеры.
Молекулы высокомолекулярных соединений, имеющие значительно большие размеры, чем молекулы веществ с небольшим молекулярным весом, называются поэтому макромолекулами. Они содержат большое число чаще всего одних и тех же групп атомов, называемых элементарными звеньями. Звенья соединены друг с другом в определенном порядке ковалентными связями. Число звеньев в макромолекуле называется степенью полимеризации. Например, у природных высокомолекулярных соединений элементарными звеньями являются: у целлюлозы и крахмала — остатки глюкозы С6Н10О6 (С6Н10Ов) или целлюлоза (где п. — степень полимеризации, доходящая здесь до 10—20 тыс. у целлюлозы, а черточками обозначены связи, соединяющие звенья в макромолекулу), у природного или натурального каучука это — остатки изопрена (—СН—С = СН—СН2—)я, где п. = 2000—5000, натуральный каучук СН3 И т. д.
У некоторых высокомолекулярных соединений в макромолекулах содержатся различные по составу или структуре элементарные звенья; например, у белков — остатки различных аминокислот.
Характерное отличие высокомолекулярных соединений от веществ с небольшим молекулярным весом заключается в том, что у любого из высокомолекулярных соединений макромолекулы неодинаковы, так как содержат различное число элементарных звеньев. Следовательно, полимеры представляют собой сложнейшие смеси так называемых полимергомологов, отличающихся друг от друга величиной степени полимеризации, но близких по свойствам вследствие сходства строения; определяемый для полимеров молекулярный вес является, следовательно, лишь средним молекулярным весом для всех полимергомологов.
С древнейших времен люди использовали для своих нужд природные высокомолекулярные соединения, содержащиеся в различных продуктах. Белки и крахмал пищевых продуктов составляли основу питания людей и домашних животных. Целлюлоза хлопка и льна, белки — фиброин шелка и кератин шерсти — применялись для изготовления тканей, а коллаген кожи —для пошива обуви. Из древесины, состоящей из целлюлозы, гемицеллюлоз и лигнина, сооружались жилища, мосты и т. д. В середине XIX в. началось изготовление резиновых плащей и обуви из натурального каучука. В конце XIX в. переработкой природных полимеров — причем в процессе переработки вся структура макромолекулы в целом изменяется мало, а происходит лишь превращение некоторых функциональных групп — начинают получать искусственные высокомолекулярные соединения. Такой переработке стала подвергаться прежде всего целлюлоза в ее сложные эфиры: в тринитроцеллюлозу для изготовления бездымного пороха; динитроцеллюлозу для получения пластмасс — целлулоида и др.; ацетилцеллюлозу для получения ацетатного шелка, пластмасс; получение ксантогената и регенерация из него целлюлозы лежат в основе получения вискозного волокна. Создается промышленность искусственных волокон и пластмасс.
В 10-х годах XX в. впервые возникает производство синтетических высокомолекулярных соединений — синтетических феноло-формальдегидных смол для изготовления пластмасс. Синтетические высокомолекулярные соединения в отличие от искусственных получаются не путем переработки природных, а синтезом из соединений с небольшими молекулярными весами, при котором из сотен или тысяч молекул последних возникает одна макромолекула. Позже в 30-х годах под руководством С. В. Лебедева создается впервые в большом масштабе производство синтетического каучука, а в 40-х годах — производство синтетических волокон: сперва — найлона, затем — капрона и др. В последние годы вырабатывается большое число различных синтетических смол — для изготовления пластмасс и синтетических волокон — и синтетических каучуков. В настоящее время мировое производство синтетических и искусственных высокомолекулярных соединений получило большое развитие и темпы его роста в несколько раз выше, чем для производств цветных (кроме А1) и черных металлов, а также и природных полимерных продуктов.
Синтетические и искусственные продукты в мировом производстве каучуков составляли в 1959 г. уже 44%, а для волокон 19,5%. Значительное увеличение выработки синтетических полимеров объясняется их ценными свойствами и связанным с этим быстрым возрастанием областей их применения, что будет рассмотрено подробнее ниже.

«Искусственные спутники Земли» - Есть ли у Земли естественный спутник? Вечер. Соедините два круга длиной планкой. Наблюдают за состоянием лесов, полей, за пожарами. Полученные результаты заносятся в тетрадь. Спутники-наблюдатели. Взаимное притяжение Солнца и Земли. Люди научились выводить спутники на орбиту. Какова тема урока? Спутники-исследователи.

«Органическая шерсть» - Размеры: Рост 44, недоношенные, маловесные Рост 50, 0-3 мес. Рост 86, 1-2 года Чепчик и шапочка-шлем. Содержите малыша в комфортном тепле и не сковывает движения. Конверт для автокресла. Рост 44, недоношенные, маловеные Рост 50, 0-3 мес. Наружный шов не раздражает детскую кожу. Энергетика шерсти похожа на энергетику мамы.

«Шиповые соединения» - Проушины и гнезда получают с помощью долот и стамесок. Для упрочнения соединений применяют нагели. Размечают шипы и проушины с обеих сторон заготовки. Из клеевых соединений наиболее распространены шиповые. Диаметр сверла должен быть равен диаметру шканта. Детали и шканты там изготовляют станочники, а соединяют сборщики.

«Органические вещества» - Предмет органической химии. Сравните данное понятие с понятием «степень окисления». Строение молекулы пропана С3 Н8 отражают формулы: Приведите конкретные примеры. Валентность. Например, химическое строение метана: 3.Теория химического строения. 4. Вопросы и задания. Структурная формула. Сокращённая структурная формула.

«Развитие органической химии» - Азимов А.Н. Краткая история химии. Лекции. Проследить эволюцию химических идей и представлений в период от предыстории до настоящего времени. Тенденции развития органической химии. Презентация. Познакомиться с достижениями, современным состоянием и перспективами развития химии. Ремесленная органическая химия: пивоварение, виноделие, изготовление лекарств, красителей.

«Искусственный отбор Дарвин» - Выведение селекционерами 150 пород голубей, множества пород собак, сортов капусты… Учение Ч. Дарвина об искусственном отборе. Методы селекции. Лабораторная работа «Сравнение пород животных». Изучение Ч. Дарвином практики сельского хозяйства Англии. Искусственный отбор – процесс создания новых пород животных и сортов культурных растений путём систематического отбора и размножения особей с определёнными, ценными для человека признаками и свойствами.

Все вещества, которые содержат углеродный атом, помимо карбонатов, карбидов, цианидов, тиоционатов и угольной кислоты, представляют собой органические соединения. Это значит, что они способны создаваться живыми организмами из атомов углерода посредством ферментативных или прочих реакций. На сегодняшний день многие органические вещества можно синтезировать искусственно, что позволяет развивать медицину и фармакологию, а также создавать высокопрочные полимерные и композитные материалы.

Классификация органических соединений

Органические соединения являются самым многочисленным классом веществ. Здесь присутствует порядка 20 видов веществ. Они различны по химическим свойствам, отличаются физическими качествами. Их температура плавления, масса, летучесть и растворимость, а также агрегатное состояние при нормальных условиях также различны. Среди них:

  • углеводороды (алканы, алкины, алкены, алкадиены, циклоалканы, ароматические углеводороды);
  • альдегиды;
  • кетоны;
  • спирты (двухатомные, одноатомные, многоатомные);
  • простые эфиры;
  • сложные эфиры;
  • карбоновые кислоты;
  • амины;
  • аминокислоты;
  • углеводы;
  • жиры;
  • белки;
  • биополимеры и синтетические полимеры.

Данная классификация отражает особенности химического строения и наличие специфических атомных групп, определяющих разность свойств того или иного вещества. В общем виде классификация, в основе которой лежит конфигурация углеродного скелета, не учитывающая особенностей химических взаимодействий, выглядит по-другому. Соответственно ее положениям, органические соединения делятся на:

  • алифатические соединения;
  • ароматические вещества;
  • гетероциклические вещества.

Данные классы органических соединений могут иметь изомеры в разных группах веществ. Свойства изомеров различны, хотя их атомный состав может быть одинаковым. Это вытекает из положений, заложенных А. М. Бутлеровым. Также теория строения органических соединений является руководящей основой при проведении всех исследований в органической химии. Ее ставят на один уровень с менделеевским Периодическим законом.

Само понятие о химическом строении ввел А. М. Бутлеров. В истории химии оно появилось 19 сентября 1861 года. Ранее в науке существовали различные мнения, а часть ученых вовсе отрицало наличие молекул и атомов. Потому в органической и неорганической химии не было никакого порядка. Более того, не существовало закономерностей, по которым можно было судить о свойствах конкретных веществ. При этом были и соединения, которые при одинаковом составе проявляли разные свойства.

Утверждения А. М. Бутлерова во многом направили развитие химии в нужное русло и создали для нее прочнейший фундамент. Посредством нее удалось систематизировать накопленные факты, а именно, химические или же физические свойства некоторых веществ, закономерности вступления их в реакции и прочее. Даже предсказание путей получения соединений и наличие некоторых общих свойств стало возможным благодаря данной теории. А главное, А. М. Бутлеров показал, что структуру молекулы вещества можно объяснить с точки зрения электрических взаимодействий.

Логика теории строения органических веществ

Поскольку до 1861 года в химии многие отвергали существование атома или же молекулы, то теория органических соединений стала революционным предложением для ученого мира. И поскольку сам Бутлеров А. М. исходит лишь из материалистических умозаключений, то ему удалось опровергнуть философские представления об органике.

Ему удалось показать, что молекулярное строение можно распознать опытным путем посредством химических реакций. К примеру, состав любого углевода можно выяснить посредством сжигания его определенного количества и подсчета образовавшейся воды и углекислого газа. Количество азота в молекуле амина подсчитывается также при сжигании путем измерения объема газов и выделения химического количества молекулярного азота.

Если рассматривать суждения Бутлерова о химическом строении, зависящем от структуры, в обратном направлении, то напрашивается новый вывод. А именно: зная химическое строение и состав вещества, можно эмпирически предположить его свойства. Но самое главное - Бутлеров объяснил, что в органике встречается огромное количество веществ, проявляющих разные свойства, но имеющие одинаковый состав.

Общие положения теории

Рассматривая и исследуя органические соединения, Бутлеров А. М. вывел некоторые важнейшие закономерности. Он объединил их в положения теории, объясняющей строение химических веществ органического происхождения. Положения теории таковы:

  • в молекулах органических веществ атомы соединены между собой в строго определенной последовательности, которая зависит от валентности;
  • химическое строение - это непосредственный порядок, согласно которому соединены атомы в органических молекулах;
  • химическое строение обуславливает наличие свойств органического соединения;
  • в зависимости от строения молекул с одинаковым количественным составом возможно появление различных свойств вещества;
  • все атомные группы, участвующие в образовании химического соединения, имеют взаимное влияние друг на друга.

Все классы органических соединений построены согласно принципам данной теории. Заложив основы, Бутлеров А. М. смог расширить химию как область науки. Он пояснил, что благодаря тому, что в органических веществах углерод проявляет валентность равную четырем, обуславливается многообразие данные соединений. Наличие множества активных атомных групп определяет принадлежность вещества к определенному классу. И именно за счет наличия специфических атомных групп (радикалов) появляются физические и химические свойства.

Углеводороды и их производные

Данные органические соединения углерода и водорода являются самыми простыми по составу среди всех веществ группы. Они представлены подклассом алканов и циклоалканов (насыщенных углеводородов), алкенов, алкадиенов и алкатриенов, алкинов (непредельных углеводородов), а также подклассом ароматических веществ. В алканах все атомы углерода соединены только одинарной С-С связью, из-за чего в состав углеводорода уже не может быть встроен ни один атом Н.

В непредельных углеводородах водород может встраиваться по месту наличия двойной С=С связи. Также С-С связь может быть тройной (алкины). Это позволяет данным веществам вступать во множество реакций, связанных с восстановлением или присоединением радикалов. Все остальные вещества для удобства изучения их способности вступать в реакции рассматриваются как производные одного из классов углеводородов.

Спирты

Спиртами называются более сложные, чем углеводороды органические химические соединения. Они синтезируются в результате протекания ферментативных реакций в живых клетках. Самым типичным примером является синтез этанола из глюкозы в результате брожения.

В промышленности спирты получают из галогеновых производных углеводородов. В результате замещения галогенового атома на гидроксильную группу и образуются спирты. Одноатомные спирты содержат лишь одну гидроксильную групп, многоатомные - две и более. Примером двухатомного спирта является этиленгликоль. Многоатомный спирт - это глицерин. Общая формула спиртов R-OH (R - углеродная цепь).

Альдегиды и кетоны

После того как спирты вступают в реакции органических соединений, связанные с отщеплением водорода от спиртовой (гидроксильной) группы, замыкается двойная связь между кислородом и углеродом. Если данная реакция проходит по спиртовой группе, расположенной у концевого углеродного атома, то в результате ее образуется альдегид. Если углеродный атом со спиртовой расположен не на конце углеродной цепи, то результатом реакции дегидратации является получение кетона. Общая формула кетонов - R-CO-R, альдегидов R-COH (R - углеводородный радикал цепи).

Эфиры (простые и сложные)

Химическое строение органических соединений данного класса усложненное. Простые эфиры рассматриваются как продукты реакции между двумя молекулами спиртов. При отщеплении воды от них образуется соединение образца R-O-R. Механизм реакции: отщепление протона водорода от одного спирта и гидроксильной группы от другого спирта.

Сложные эфиры - продукты реакции между спиртом и органической карбоновой кислотой. Механизм реакции: отщепление воды от спиртовой и карбоновой группы обеих молекул. Водород отщепляется от кислоты (по гидроксильной группе), а сама ОН-группа отделяется от спирта. Полученное соединение изображается как R-CO-O-R, где буковой R обозначены радикалы - остальные участки углеродной цепи.

Карбоновые кислоты и амины

Карбоновыми кислотами называются особенные вещества, играющие важную роль в функционировании клетки. Химическое строение органических соединений такое: углеводородный радикал (R) с присоединенной к нему карбоксильной группой (-СООН). Карбоксильная группа может располагаться только у крайнего атома углерода, потому как валентность С в группе (-СООН) равна 4.

Амины - это более простые соединения, которые являются производными углеводородов. Здесь у любого атома углерода располагается аминный радикал (-NH2). Существуют первичные амины, у которых группа (-NH2) присоединяется к одному углероду (общая формула R-NH2). У вторичных аминов азот соединяется с двумя углеродными атомами (формула R-NH-R). У третичных аминов азот соединен с тремя углеродными атомами (R3N), где р - радикал, углеродная цепь.

Аминокислоты

Аминокислоты - комплексные соединения, которые проявляют свойства и аминов, и кислот органического происхождения. Существует несколько их видов в зависимости от расположения аминной группы по отношению к карбоксильной. Наиболее важны альфа-аминокислоты. Здесь аминная группа расположена у атома углерода, к которому присоединена карбоксильная. Это позволяет создавать пептидную связь и синтезировать белки.

Углеводы и жиры

Углеводы являются альдегидоспиртами или кетоспиртами. Это соединения с линейной или циклической структурой, а также полимеры (крахмал, целлюлоза и прочие). Их важнейшая роль в клетке - структурная и энергетическая. Жиры, а точнее липиды, выполняют те же функции, только участвуют в других биохимических процессах. С точки зрения химического строения жир является сложным эфиром органических кислот и глицерина.

К d-блоку относятся 32 элемента периодической системы. d-Элементы входят в 4--7-й большие периоды. У атомов IIIБ-группы появляется первый электрон на d-орбитали. В последующих Б-группах происходит заполнение d-подуровня до 10 электронов (отсюда название d-элементы). Строение внешних электронных оболочек атомов d-блока описывается общей формулой (n-1)d a ns b , где а = 1--10, b = 1--2.

Особенностью элементов этих периодов является непропорционально медленное возрастание атомного радиуса с возрастанием числа электронов. Такое относительно медленное изменение радиусов объясняется так называемым лантаноидным сжатием вследствие проникновения ns-электронов под d-электронный слой. В результате наблюдается незначительное изменение атомных и химических свойств d-элементов с увеличением атомного номера. Сходство химических свойств проявляется в характерной особенности d-элементов образовывать комплексные соединения с разнообразными лигандами.

Важным свойством d-элементов является переменная валентность и, соответственно, разнообразие степеней окисления. Эта особенность связана главным образом с незавершенностью предвнешнего d-электронного слоя (кроме элементов IБ- и IIБ-групп). Возможность существования d-элементов в разных степенях окисления определяет широкий диапазон окислительно-восстановительных свойств элементов. В низших степенях окисления d-элементы проявляют свойства металлов. С увеличением атомного номера в группах Б металлические свойства закономерно уменьшаются.

В растворах кислородсодержащие анионы d-элементов с высшей степенью окисления проявляют кислотные и окислительные свойства. Катионные формы низших степеней окисления характеризуются основными и восстановительными свойствами.

d-элементы в промежуточной степени окисления проявляют амфотерные свойства. Эти закономерности можно рассмотреть на примере соединений молибдена:

С изменением свойств меняется окраска комплексов молибдена в различных степенях окисления (VI -- II):

В периоде с увеличением заряда ядра наблюдается уменьшение устойчивости соединений элементов в высших степенях окисления. Параллельно возрастают окислительно-восстановительные потенциалы этих соединений. Наибольшая окислительная способность наблюдается у феррат-ионов и перманганат-ионов. Следует отметить, что у d-элементов при нарастании относительной электроотрицательности усиливаются кислотные и неметаллические свойства.

С увеличением устойчивости соединений при движении сверху вниз в Б-группах одновременно уменьшаются их окислительные свойства.

Можно предположить, что в ходе биологической эволюции отбирались соединения элементов в промежуточных степенях окисления, которые характеризуются мягкими окислительно-восстановительными свойствами. Преимущества такого отбора очевидны: они способствуют плавному протеканию биохимических реакций. Уменьшение ОВ потенциала создает предпосылки для более тонкой «регулировки» биологических процессов, что обеспечивает выигрыш энергии. Функционирование организма становится менее энергоемким, а значит более экономичным по потреблению пищевых продуктов.

С точки зрения эволюции для организма становится оправданным существование d-элементов в низших степенях окисления. Известно, что ионы Мn 2+ , Fе 2+ , Со 2+ при физиологических условиях не являются сильными восстановителями, а ионы Сu 2+ и Fе 2+ практически не проявляют в организме восстановительных свойств. Дополнительное снижение реакционной способности происходит при взаимодействии этих ионов с биоорганическими лигандами.

Может показаться, что вышесказанному противоречит важная роль биоорганических комплексов молибдена(V) и (VI) в различных организмах. Однако и это согласуется с общей закономерностью. Несмотря на высшую степень окисления такие соединения проявляют слабые окислительные свойства.

Необходимо отметить высокие комплексообразующие способности d-элементов, которые обычно значительно выше, чем у s- и p-элементов. Это прежде всего объясняется возможностями d-элементов быть как донорами, так и акцепторами пары электронов, образующих координационное соединение.

В случае гидроксокомплекса хрома [Сr(ОН) 6 ] 3- ион металла является акцептором пары электронов. Гибридизация 3d 2 4sp 3 -орбиталей хрома обеспечивает более устойчивое энергетическое состояние, чем при расположении электронов хрома на орбиталях гидроксогрупп.

Соединение [СrСl 4 ] 2- образуется, наоборот, в результате того, что неподеленные d-электроны металла занимают свободные d-орбитали лигандов, поскольку в данном случае энергия этих орбиталей ниже.

Свойства катиона Сr 3+ показывают непостоянство координационных чисел d-элементов. Чаще всего, это четные числа от 4 до 8, реже встречаются числа 10 и 12. Необходимо отметить, что существуют не только одноядерные комплексы. Известны многочисленные ди-, три- и тетра-ядерные координационные соединения d-элементов.

Примером может служить биядерный комплекс кобальта [Со 2 (NН 3) 10 (О 2)](NО 3) 5 , который может служить моделью переносчика кислорода.

Более 1/3 всех микроэлементов организма составляют d-элементы. В организмах они существуют в виде комплексных соединений или гидратированных ионов со среднем временем обмена гидратной оболочки от 10 -1 до 10 -10 с. Поэтому можно утверждать, что «свободные» ионы металлов в организме не существуют: это либо их гидраты, либо продукты гидролиза.

В биохимических реакциях d-элементы наиболее часто проявляют себя как металлы-комплексообразователи. Лигандами при этом выступают биологически активные вещества, как правило, органического характера или анионы неорганических кислот.

Белковые молекулы образуют с d-элементами бионеорганические комплексы -- кластеры или биокластеры. Ион металла (металл-комплексо-образователь) располагается внутри полости кластера, взаимодействуя с электроотрицательными атомами связывающих групп белка: гидроксильных (--ОН), сульфгидрильных (--SН), карбоксильных (--СООН) и аминогрупп белков (Н 2 N -). Для проникновения иона металла в полость кластера необходимо, чтобы диаметр иона был соизмерим с размером полости. Таким образом, природа регулирует формирование биокластеров с ионами d-элементов определенных размеров.

Наиболее известные металлоферменты: карбоангидраза, ксантиноксидаза, сукцинатдегидрогеназа, цитохромы, рубредоксин. Они представляют собой биокластеры, полости которых образуют центры связывания субстратов с ионами металла.

Биокластеры (белковые комплексы) выполняют различные функции.

Транспортные белковые комплексы доставляют к органам кислород и необходимые элементы. Координация металла идет через кислород карбоксильных групп и азот аминогрупп белка. При этом образуется устойчивое хелатное соединение.

В качестве координирующего металла выступают d-элементы (кобальт, никель, железо). Пример железосодержащего транспортного белкового комплекса -- трансферрин.

Другие биокластеры могут выполнять аккумуляторную (накопительную) роль -- это железосодержащие белки: гемоглобин, миоглобин, ферритин. Они будут рассмотрены при описании свойства группы VIIIБ.

Элементы Zn, Fе, Со, Мо, Сu -- жизненно необходимы, входят в состав металлоферментов. Они катализируют реакции, которые можно разделить на три группы:

Кислотно-основные взаимодействия. Участвует ион цинка, входящий в состав фермента карбоангидразы, катализирующего обратимую гидратацию СО 2 в биосистемах.

Окислительно-восстановительные взаимодействия. Участвуют ионы Fе, Со, Сr, Мо. Железо входит в состав цито-хрома, в ходе процесса происходит перенос электрона:

Fе 3+ > Fе 2+ + е -

3. Перенос кислорода. Участвуют Fе, Сu. Железо входит в состав гемоглобина, медь -- в состав гемоцианина. Предполагается, что эти элементы связываются с кислородом, но не окисляются им.

Соединения d-элементов избирательно поглощают свет с разными длинами волн. Это приводит к появлению окраски. Квантовая теория объясняет избирательность поглощения расщеплением d-подуровней ионов металлов под действием поля лигандов.

Хорошо известны следующие цветные реакции на d-элементы:

Мn 2+ + S 2- = МnSv (осадок телесного цвета)

Нg 2+ + 2I - = НgI 2 v(желтый или красный осадок)

К 2 Сr 2 О 7 + Н 2 SО 4 (конц.) = К 2 SО 4 + Н 2 О + 2СrО 3 v

(кристаллы оранжевого цвета)

Приведенные выше реакции используются в аналитической химии для качественного определения соответствующих ионов. Уравнение реакции с дихроматом показывает, что происходит при приготовлении «хромовой смеси» для мытья химической посуды. Эта смесь необходима для удаления как неорганических, так и органических отложений с поверхности химических склянок. Например, жировых загрязнений, которые всегда остаются на стекле после прикосновения пальцев.

Необходимо обратить внимание на то, что d-элементы в организме обеспечивают запуск большинства биохимических процессов, обеспечивающих нормальную жизнедеятельность.

Искусственные радиоактивные изотопы образуются в результате деятельности человека: использование ядерной энергии в военных и мирных целях, применение радиоактивных веществ в экономике страны (промышленность, транспорт, сельское хозяйство, медицина, научные исследования и др.). Радионуклиды - продукты деления ядер-ного оружия и выбросы радиационно опасных объектов накапливаются в окружающей среде, в том числе и гидросфере.[ ...]

Искусственное оструктуривание почв осуществляется введением в них небольшого количества структурообразующих веществ, по преимуществу органических соединений (П. В. Вершинин).[ ...]

ВЕЩЕСТВО АНТРОПОГЕННОЕ химическое соединение, включенное в геосферы благодаря деятельности человека. Отличают В. а., входящие в биологический круговорот, а потому рано или поздно утилизируемые в экосистемах, и искусственные соединения, чуждые природе, очень медленно разрушаемые живыми организмами и абиотическими агентами и остающиеся вне биосферного обмена веществ. Эти последние накапливаются в биосфере и служат угрозой жизни. Особым случаем В. а. служат химические соединения и элементы, естественно входящие в природные образования, но перемещаемые человеком из одних геосфер в другие или искусст венно концентрируемые им. Примером таких элементов могут служить тяжелые металлы, извлекаемые человеком из глубин Земли па ее поверхность и здесь рассеиваемые, и радиоактивные вещества, в ес тественных условиях обычно рассредоточенные на больших пространствах и в небольших концентрациях.[ ...]

Состав искусственных радионуклидов, попадающих в водную среду, в настоящее время определяется в основном продуктами деления ядерно-го топлива. Соотношение между ними может меняться в зависимости от типа реактора, его мощности и условий протекания реакций. Заметим также, что в период с

Вредные вещества содержатся в отходах самых разнообразных видов промышленности: цветной металлургии (соли цветных металлов), машиностроения (цианиды, соединения бериллия, мышьяка и т. д.), производства пластмасс (бензин, эфир, фенол, метилакрилат и т. д.) и искусственного волокна (фосфор, органические соединения, соединения цинка, меди), азотной промышленности (полистирол, хлорбензол, канцерогенные смолы и т. д.), лесной, деревообрабатывающей и целлюлозно-бумажной промышленности (фенол, метиловый спирт, скипидар и т. д.), мясной промышленности (органическое вещество) и многих других.[ ...]

Сравним искусственную экосистему космического корабля с какой-либо естественной, например, с экосистемой пруда. Наблюдения показывают, что количество организмов в этом биотопе остается (с некоторыми сезонными колебаниями) в основном постоянным. Такую экосистему называют стабильной. Равновесие сохраняется до тех пор, пока не изменятся внешние факторы. Основные из них - приток и отток воды, поступление различных питательных веществ, солнечное излучение. В экосистеме пруда живут различные организмы. Так, после создания искусственного водохранилища оно постепенно заселяется бактериями, планктоном, затем рыбами и высшими растениями. Когда развитие достигло определенной вершины и внешние воздействия остаются долгое время неизменными (приток воды, веществ, излучения, с одной стороны, и отток или испарение, вынос веществ и отток энергии - с другой), экосистема пруда стабилизируется. Между живыми существами устанавливается равновесие.[ ...]

Существуют искусственно создаваемые экосистемы, которые обеспечивают непрерывный процесс обмена веществ и энергии как внутри природы, так и между ней и человеком. Они подразделяются по воздействию хозяйственного развития на: естест венные, сохранившиеся в неприкосновенности; модифицированные, изменившиеся от деятельности человека; трансформированные, преобразованные человеком.[ ...]

Ксенобиотики - вещества, полученные искусственным синтезом и не входящие в число природных соединений.[ ...]

Радиоактивные вещества находят широкое применение во многих отраслях народного хозяйства. Искусственные радиоактивные изотопы применяются для дефектоскопии металлов, при изучении структуры и износа материалов, при разделении веществ и синтезе химических соединений, в аппаратах и приборах, выполняющих контрольно-сигнальные функции в медицине и др.[ ...]

Метод получения искусственных смесей генерированием токсичных веществ из буферных растворов разработан японскими химиками . Осушенный и очищенный от примесей подогретый воздух пропускают с фиксированной скоростью через поглотители с водными растворами (рН=5-12) цианида калия (получение цианистоводородной кислоты), сульфида натрия (сероводород) сульфита или гидросульфита натрия (диоксид серы), нитрата натрия (оксиды азота) и гидрокарбоната аммония (аммиак). Метод позволяет создавать концентрации этих веществ 10-4-10-5% с погрешностью не более 2-3% (отн.).[ ...]

Как и упрощенная искусственная экосистема космического корабля, экосистема пруда способна к самоподдержанию. Неограниченному росту препятствуют взаимодействия между растениями-продуцентами, с одной стороны, животными и растениями (кон-сументами и редуцентами) - с другой. Консументы могут размножаться лишь до тех пор, пока они не перерасходуют запас имеющихся питательных веществ. Если их размножение окажется чрезмерным, то рост их численности прекратится, так как им не хватит пищи. Продуцентам в свою очередь постоянно требуются минеральные вещества. Они же вновь пускают в оборот отходы жизнедеятельности. Таким образом возобновляется круговорот: растения (продуценты) поглощают эти минеральные вещества и с помощью солнечной энергии воспроизводят из них богатые энергией питательные вещества.[ ...]

Экосистема может быть и искусственной. Примером такой экосистемы, крайне упрощенной и неполной по сравнению с естест венной, является космический корабль. Его пилоту в течение длительного времени приходится жить в замкнутом пространстве корабля, обходясь органиченными запасами пищи, кислорода и энергии. При этом желательно по возможности восстанавливать и вторично использовать израсходованные запасы вещества и отходы. Для этого в космическом корабле предусмотрены специальные установки регенерации, а в последнее время ведутся опыты и с живыми организмами (растениями и животными), кот орые должны участвовать в переработке отходов жизнедеятельности космонавта, используя энергию солнечного света.[ ...]

Пчелиный воск - сложное химическое вещество, вырабатывается восковыми железами пчел. В его состав входит примерно 15 химически самостоятельных компонентов. Его используют в фармацевтическом производстве, зубоврачебной практике, парфюмерной, деревообрабатывающей, кожевенной, бумажной, авиационной и др. отраслях промышленности. Кроме того, в очень большом количестве он необходим для приготовления искусственной вощины. Получают воск при переработке воскового сырья.[ ...]

Так же опасны сточные воды заводов искусственного волокна, коксохимических и газосланцевых предприятий, содержащие смолистые вещества, фенолы, меркаптаны, органические кислоты, альдегиды, спирты, красители. Их токсическое действие распространяется на большие расстояния, особенно в реках с сильным течением, так как органические примеси сточных вод минерализуются медленно. Накопление жидких отходов в специальных водоемах - хвостохранилищах также чревато большой опасностью для окружающей среды: известны случаи прорыва подобных накопителей и отравления на большом протяжении вод Днестра, Северского Донца и некоторых других.[ ...]

Общие сведения. Современные методы искусственной биологической очистки позволяют снизить БПК20 и концентрацию взвешенных веществ в сточных водах до 10- 15 мг/л.[ ...]

Биологическая очистка сточных вод в искусственных сооружениях осуществляется в биологических фильтрах, аэротенках и окситенках. В качестве примера на рис. 18.22 представлена схема биологического фильтра с принудительной подачей воздуха. Исходная сточная вода по трубопроводу 3 портупает в фильтр 2 и через водораспределительные устройства 4 равномерно разбрызгивается по площади фильтра. При разбрызгивании сточная вода поглощает часть кислорода воздуха. В процессе фильтрования через загрузку 5, в качестве которой используют, например, шлак, щебень, керамзит, пластмассу, гравий, на загрузочном материале образуется биологическая пленка, микроорганизмы которой поглощают органические вещества. Интенсивность окисления органических примесей в пленке существенно увеличивается при подаче сжатого воздуха через трубопровод / и опорную решетку в направлении, противоположном фильтрованию. Очищенная от органических примесей вода выводится из фильтра через трубопровод 7.[ ...]

Ролью микроорганизмов в круговороте веществ человек стал интересоваться лишь после открытия их голландским ученым Антоном Левенгуком в 1674 г., а всерьез исследовать микромир, рассчитывать на его помощь ученые начали с середины XIX в.: бурно развивающаяся промышленность производила такое количество отходов, что веками сложившиеся биоценозы уже не могли с ними справиться. В 1887 г. один из основателей метода биологической очистки Дибдин писал: для очистки сточной жидкости целесообразно применять «специфические микроорганизмы, специально для тех целей культивируемые; потом выдержать жидкость в течение достаточного времени, энергично ее аэрируя, и, наконец, спустить в водоем». В США и других странах с 1890 г. работали и работают биофильтры, в которых жидкие отходы проходят через слой камней, в котором поддерживается смешанная флора микроорганизмов. Естественный или искусственный поток воздуха, противоположный току отходов, обеспечивает аэрацию.[ ...]

В технике водоснабжения устраиваются искусственные водохранилища, искусственные озера, в которых возникает обилие флоры и фауны, заселяющих всю толщу воды. В процессе жизнедеятельности эти организмы истощают питательные вещества, а вследствие антагонистических отношений происходит частичное уничтожение микрофлоры водной фауной, и с помощью бактериофагов завершается борьба с вредными бактериями.[ ...]

Гидросфера загрязняется радиоактивными веществами, имеющими два вида происхождения: естественное и искусственное.[ ...]

Как аккумулятор солнечной энергии, живое вещество должно одновременно реагировать как на внешние (космические) воздействия, так и на внутренние изменения. Увеличение или снижение количества живого вещества в одном месте биосферы должно приводить к синхронному процессу с обратным знаком в другом регионе в силу того, что освободившиеся биогены могут быть ассимилированы остальной частью живого или будет наблюдаться их недостаток. Однако следует учитывать скорость процесса, в случае антропогенного изменения намного более низкую, чем прямое нарушение природы человеком. Кроме того, не всегда происходит адекватная замена. Снижение же размеров особей, участвующих в энергетических процессах, вводит в действие большую группу термодинамических закономерностей из всех групп приведенных выше обобщений (разд. 3.2-3.9). Меняется вся структура живого вещества и его качество, что в конечном итоге не может идти на пользу человеку - одному из участников процесса жизни. Человечество нарушает природные закономерности распределения живого вещества планеты и берет на себя, в свой антропогенный канал, не менее 1,6Х Ю13 Вт энергии в год, или 20% продукции всей биосферы1. Кроме того, люди искусственно и нескомпенсированно снизили количество живого вещества Земли, видимо, не менее чем на 30%. Это заставляет сделать вывод, что планета стоит перед глобальным термодинамическим (тепловым) кризисом, который проявится во многих формах одновременно. Поскольку это инерционный процесс, начальные фазы его мало заметны, но остановить кризисные явления будет чрезвычайно трудно.[ ...]

В качестве сорбентов применяют различные искусственные и природные пористые материалы: золу, опилки, торф, коксовую мелочь, силикагели, активные глины и др. Эффективными сорбентами являются активированные угли различных марок, активность сорбента характеризуется количеством поглощаемого вещества на единицу объема или массы сорбента (кг/м3, кг/кг).[ ...]

Удобрения - неорганические и органические вещества, применяемые в сельском хозяйстве и рыбоводстве для повышения урожайности культурных растений и рыбопродуктивности прудов. Они бывают: минеральные (или химические), органические и бактериальные (искусственное внесение микроорганизмов с целью повышения плодородия почв). Минеральные удобрения, добытые из земных недр или промышленно полученные химические соединения, содержат основные элементы питания (азот, фосфор, калий) и важные для жизнедеятельности микроэлементы (медь, бор, марганец и пр.). Органические удобрения - это перегной, торф, навоз, птичий помет (гуано), компосты, биологические добавки и др.[ ...]

Технология приготовления этих видов топлива различна, однако все они имеют малую зольность и небольшое содержание летучих веществ (5-10 %).[ ...]

Природные воды могут содержать радиоактивные вещества естественного и искусственного происхождения. Естественной радиоактивностью воды обогащаются, проходя через породы, содержащие радиоактивные элементы (изотопы урана, радия, тория, калия и др.). Солями с искусственной радиоактивностью вода заражается при попадании в нее стоков от промышленных, исследовательских предприятий и медицинских учреждений, использующих радиоактивные препараты. Природная вода также заражается радиоактивными элементами при экспериментальных взрывах термоядерного оружия.[ ...]

Без строжайшего соблюдения доз и мер предосторожности, дефолианты представляют серьезную опасность для животных и человека. Иногда дефолианты и дефлоранты (для уничтожения цветков растений) используются в военных целях для варварского уничтожения лесных массивов на территории противника. Так, в 60-70-х гг. США применяли эти химические вещества для военных действий в Индокитае, в частности во Вьетнаме над лесными массивами и полями было распылено более 22 млн литров чрезвычайно токсичного дефолианта («оранжевая смесь»). Это привело к полному уничтожению лесов и посевов сельскохозяйственных культур на обширных площадях.[ ...]

Природные экологические системы в противоположность искусственным (производству) характеризуются замкнутым обращением вещества, причем отходы, связанные с существованием отдельной популяции, являются исходным материалом, обеспечивающим существование другой или чаще нескольких других популяций, входящих в данный биогеоценоз. Биогеоценоз, под которым подразумевается эволюционно сложившаяся совокупность популяций растений, животных и микроорганизмов, свойственная определенной местности, имеет циклическое обращение веществ. Часть веществ экосистемы в связи с перемещениями воздуха, воды, эрозией почвы и т. п. переносится по поверхности Земли и участвует в более общем круговороте веществ в биосфере. Циклическое обращение веществ в отдельных экосистемах и во всей биосфере, сформировавшееся за миллионновековую ее эволюцию, представляет собой прообраз экологически оправданной технологии производства.[ ...]

Если в данной воде какой-нибудь из этих элементов отсутствует, то искусственно добавляют его. Богаты этими веществами бытовые сточные воды, поэтому их часто добавляют, например, к воде красильно-отбельных фабрик.[ ...]

Специальные сосуды для гидрокультуры изготовляются во многих моделях из различных искусственных веществ и керамики. Имеются сосуды разных размеров для отдельных растений и большие контейнеры для декоративных композиций. Большие сосуды нередко снабжены держателем для растений (в виде палки), который крепится к специальной пластине на дне контейнера. Гидропонные горшки состоят из наружного сосуда и внутреннего решетчатого вкладыша или вкладыша с многочисленными отверстиями. В каждом сосуде, вне зависимости от его размера, есть указатель уровня раствора. Большей частью это смотровое окошечко со шкалой.[ ...]

В основе метода определения дегидрогеназной активности лежит способность некоторых веществ - индикаторов приобретать стойкую окраску при переходе из окисленного состояния в восстановленное. Индикатор является как бы искусственным субстратом-акцептором водорода, который при биохимическом окислении переносится на это вещество с окисляемого субстрата ферментами дегидрогеназами. Критерием активности фермента служат скорость обесцвечивания метиленового синего или количество восстановленного ТТХ, т. е. образовавшегося при этом три-фенилфомазона, имеющего красный цвет.[ ...]

Формула (5.57) имеет преимущества перед ранее применявшимися, по которым при V = 0 концентрация вредного вещества получалась равной бесконечности и приходилось искусственно вводить ограничение расчетной скорости.[ ...]

Среда урбосистем, как ее географическая, так и геологическая части, наиболее сильно изменена и по сути дела стала искусственной, здесь возникают проблемы утилизации и реутилизации вовлекаемых в оборот природных ресурсов, загрязнения и очистки окружающей среды, здесь происходит все большая изоляция хозяйственно-производственных циклов от природного обмена веществ (биогеохимических оборотов) и потока энергии в природных экосистемах. И, наконец, именно здесь наибольшая плотность населения и искусственная среда, которые угрожают не только здоровью человека, но и выживанию всего человечества. Здоровье человека - индикатор качества этой среды.[ ...]

Под окружающей нас средой понимается совокупность «чистой» природы и среды, созданной человеком, - распаханные поля, искусственные сады и парки, обводненные пустыни, осушенные болота, крупные города с особым тепловым режимом, микроклиматом, водоснабжением, большим оборотом различных органических и неорганических веществ и т. д.[ ...]

Нарушение устойчивости коллоидных систем при коагуляции или флокуляции и контактной фильтрации достигается за счет введения веществ, которые способствуют слипанию или соединению коллоидных частиц. Макромолекулы природных и искусственных веществ, в частности полиэлектролитов, имеют высокую тенденцию к накоплению на поверхности раздела фаз. Такие вещества успешно используют в качестве агрегатирующих агентов. Соли железа и алюминия, используемые как коагулянты и дестабилизаторы, также относятся к агрегатирующим агентам благодаря их способности образовывать полиядерныепродукты гидролиза Мп(0Н)т2+, которые хорошо адсорбируются на поверхности раздела частица - вода. С ростом концентрации нейтральных электролитов (не проявляющих специфического взаимодействия) коллоиды также становятся менее устойчивыми из-за того, что диффузная часть двойного электрического слоя сжимается противоионами .[ ...]

Метод получения растений из одной клетки основан на способности тканей растений ряда видов к неорганическому росту на специальных искусственных Средах, содержащих питательные вещества и регуляторы роста. При культивировании тканей растений на таких средах многие клетки оказываются способными к неограниченному размножению, образуя слои (массу) недифференцированных клеток, получивших название каллуса. Если затем каллус разделить на отдельные клетки и продолжить культивирование изолированных клеток на питательных средах, то из отдельных (одиночных) клеток могут развиться настоящие растения. Способность одиночных соматических клеток растений развиваться в настоящее (целое) растение называют тотипотентностыо. Возможно, тотипотентность присуща клеткам всех листостебельных растений. Но пока она обнаружена у растений ограниченного круга. В частности, эта способность обнаружена у клеток картофеля, моркови, табака и ряда других видов сельскохозяйственных культур. Этот метод клеточной инженерии растений уже вошел в широкую практику. Однако растения, развившиеся из одной клетки, характеризуются генетической нестабильностью, что связано с мутациями их хромосом. Поскольку генетическая нестабильность дает разнообразные формы растений, они очень полезны в качестве исходного материала для селекции.[ ...]

В содержании экологических отношений выделяют два структурных элемента - социально-экологические отношения, которые складываются между людьми в искусственной среде их обитания и косвенно воздействуют на естественную среду обитания людей и реально-практические отношения, которые включают, во-первых, отношения человека непосредственно к естественной среде обитания, во-вторых, отношения в материально-производственных сферах человеческой жизнедеятельности, связанных с процессом присвоения человеком природных сил, энергии и вещества и в-третьих, отношения человека к естественным условиям своего существования как общественного существа.[ ...]

Далее, очевидно, что наибольшая продукция зерна приходится на более раннюю стадию развития растений, чем максимальная общая чистая продукция (накопление сухого вещества) (фиг. 15, 2>). В последние годы урожаи зерновых значительно повысились благодаря тому, что было обращено внимание на структуру урожая. Выведены сорта с высоким отношением веса зерна к весу соломы, которые к тому же быстро дают листья, так что листовой индекс достигает 4 и остается на этом уровне до самой жатвы, которая проводится в момент наибольшего накопления питательных веществ (см. Лумис и др., 1967; Арми и Грир, 1967). Такой искусственный отбор не обязательно увеличивает общую продукцию сухого вещества для всего растения; он приводит к перераспределению этой продукции, в результате чего больше продукции приходится на зерно и меньше - на листья, стебли и корни (см. табл. 36).[ ...]

С тридцатых - сороковых годов нашего столетия в связи с развитием использования атомной энергии окружающая среда стала существенно загрязняться радиоактивными веществами и источниками излучения. Особо опасные загрязнения связаны с разработкой, испытанием и использованием (атомные бомбы, сброшенные на Хиросиму и Нагасаки) ядерного оружия. Радиационные методы окисления парафинов в производстве моющих средств позволяют заменить пищевые жиры синтетическими смолами. Радиоактивные изотопы (меченые атомы), введенные в процессы, и химические соединения повышают возможности изучения и совершенствования технологии. В производстве искусственного волокна радиоактивные изотопы используются для снятия зарядов статического электричества. Метод рент-генодефектоскопин получил широкое распространение ¡для обнаружения дефектов в отливках и сварных швах.[ ...]

Следующий предполагаемый этап на пути возникновения жизни - появление протоклеток. Выдающийся советский биохимик А.И.Опарин показал, что в стоящих растворах органических веществ образуются кооцерваты - микроскопические «капельки», ограниченные полупроницаемой оболочкой - первичной мембраной. В них могут концентрироваться органические вещества, быстрее идут реакции и обмен веществ с окружающей средой; они даже могут делиться, как бактерии. Подобный процесс при растворении искусственных протеи-ноидов наблюдал Фокс, назвавший эти капельки микросферами.[ ...]

Простейшие встречаются всюду в сточных водах, иле, испражнениях, почве, пыли, воде рек, озер, океанов, на очистных сооружениях, работающих в аэробных условиях. Они принимают активное участие в минерализации органических веществ в естественных и искусственных условиях очистки природных и сточных вод. Но следует помнить, что некоторые простейшие являются возбудителями заболеваний человека и животных.[ ...]

Переработка собранного лесосеменного сырья начинается с извлечения семян из шишек хозяйственно ценных пород (сосна обыкновенная, ель европейская, лиственница сибирская). Для этих целей служат естественная (воздушно-солнечная) и искусственная сушки, последняя осуществляется в специальных камерах шишкосушилок. Применяют стационарные (рис. 1.3) и передвижные шишкосушилки ШП-0,06 (рис. 1.4), СМ-45 стеллажного и барабанного типов, которые входят в комплексы по переработке шишек и имеют помещения для приёмки лесосеменного сырья, склады для его хранения и технологическое здание. В нём размещены сушильные камеры, в которые подаётся подогретый атмосферный воздух не выше 45 °С для ели и 50 °С для сосны. При таком режиме сушки, приближающемся к естественному, не происходит как запаривания, как и перегрева семян. Повышение температуры сушки выше указанных пределов приводит к уплотнению запасного питательного вещества в клетках семени, что ослабляет жизнедеятельность его зародыша. Нарушается обмен веществ, затрудняется работа ферментов в момент прорастания семени, развиваются болезнетворные бактерии и споры грибов, приводящие к гибели семян.[ ...]

Иное дело - антропогенная, созданная человеком экологическая система. Для нее справедливы все основные законы природы, но в отличие от природного биогеоценоза она не может рассматриваться как открытая. Рассмотрим, например, экосистему искусственного аэрационного сооружения для очистки сточных вод - аэротенка. При поступлении в аэротенк содержащиеся в сточных водах вещества сорбируются поверхностью так называемого активного ила, т.е. хлопьевидными скоплениями бактерий, простейших и других организмов. Частично эти вещества усваиваются организмами активного ила, частично - сорбируются, и активный ил оседает на дно аэротенка. При непрерывном поступлении сточных вод содержащиеся в них вещества накапливаются в аэротенке, а концентрация активного ила в аэротенке снижается, и его прирост недостаточен для поддержания концентрации, необходимой для сорбирования вредных веществ. В конечном итоге равновесное состояние такой экосистемы нарушается, качество очистки снижается, возникают нежелательные процессы, например,«вспухание» ила, связанное с массовым размножением грибов и нитчатых водорослей, подавляющих бактерии. В результате система перестает работать.[ ...]

Современные интенсивные технологии производства витаминной муки состоят в быстром (за несколько минут) высушивании зеленой фитомассы в потоке горячего теплоносителя и последующем измельчении ее частиц до размеров 1,5...2 мм. Питательные вещества и витамины лучше сохраняются при интенсивной искусственной сушке, чем при естественном вентилировании. Однако нарушение технологии скоростной сушки приводит к ухудшению состава питательных компонентов древесной зелени и снижает их усвояемость. Необходимо точное регулирование температуры теплоносителя и скорости прохождения сырья в зависимости от влажности зеленой фитомассы, температуры окружающего воздуха и других параметров.[ ...]

У летка и вблизи улья создается своеобразный гул кружащихся роевых пчел. Пчелы, поднявшись в воздух, кружатся некоторое время на недалеком расстоянии от улья. Затем они начинают собираться на ветке или стволе (в случае отсутствия устраивают искусственные места - «привои»), к ним присоединяется матка. Сбор роя в одно место ускоряется тем, что пчелы той группы, где находится матка, поднимают брюшко и открывают железы, выделяющие вещество с сильным запахом и усиленно взмахивают крылышками, распространяя запах в пространстве.[ ...]

Наряду с этим необходимо обратить внимание на проблему, связанную с экологической нишей животных, т. е. функцией, которую они выполняют в биогеоценозе. Благодаря этой функции, характеризующейся потреблением и преобразованием травоядными органического вещества растений, поддерживается нормальное состояние природных биогеоценозов. Однако в условиях животноводческих комплексов как искусственных экосистем это нарушается, что приводит к неблагоприятным изменениям в природе.[ ...]

Специальные мероприятия по защите подземных вод от загрязнения направлены на перехват загрязненных вод с помощью дренажа, а также на изоляцию источников загрязнения от остальной части водоносного горизонта. Весьма перспективным в этом отношении является создание искусственных геохимических барьеров, основанных на переводе загрязняющих веществ в малоподвижные формы. Для ликвидации локальных очагов загрязнения ведут длительные откачки загрязненных подземных вод из специальных скважин.[ ...]

Классическим примером использования направленных помех является защита дубовых лесов в США от непарного шелкопряда. В одном из вариантов защиты лесов использовали то обстоятельство, что небольшой подвижный самец находит более крупную малоподвижную самку по запаху выделяемого ею привлекающего вещества, причем на довольно значительном расстоянии (десятки и сотни метров). Путем специальных исследований ученым удалось идентифицировать химический состав этого вещества (аттрактанта) и создать его искусственный аналог. Этим аналогом пропитывали (или покрывали) мелкие кусочки специальной бумаги, которые рассеивали над лесами с самолетов, создавая тем самым запаховый фон и препятствуя ориентированию самцов в поисках самок.[ ...]

Глубокая очистка сточных вод может исключить попадание N и Р в водоемы, поскольку при механической очистке содержание этих элементов снижается на 8-10%, при биологической - на 35-50 % и при глубокой очистке - на 98-99 %. Кроме того, разработан ряд мероприятий, позволяющих бороться с процессом эвтрофикации непосредственно в водоемах, например искусственное увеличение содержания кислорода с помощью аэрационных установок. Такие установки работают в настоящее время в СССР, ПНР, Швеции и других странах. Для снижения роста водорослей в водоемах используют различные гербициды. Однако установлено, что для условий Великобритании стоимость глубокой очистки сточных вод от биогенных веществ будет ниже, чем стоимость гербицидов, затраченных на снижение роста водорослей в водоемах. Существенным для последних является.снижение концентрации нитратов, представляющих опасность для здоровья человека. Всемирной организацией здравоохранения предельно допустимая концентрация нитратов в питьевой воде принята равной 45 мг/л или в пересчете на азот 10 мг/л, такая же величина принята по санитарным нормам для воды водоемов. Количество и характер соединений азота и фосфора влияют на общую продуктивность водоемов, вследствие чего они включены в число главных показателей при оценке степени загрязнения водоисточников.[ ...]

Высоконагружаемые биофильтры или аэрофильтры отличаются от капельных высокой окислительной мощностью, которая достигается особенностью их устройства. В этом сооружении крупность зерен загрузки больше, чем в капельных фильтрах, она колеблется от 40 до 05 мм. Это способствует повышению нагрузки по сточной жидкости. Особая конструкция днища и дренажа обеспечивает искусственную продувку сооружения воздухом. Сравнительно большая скорость движения сточной жидкости в теле биофильтра обеспечивает постоянный вынос из него задержанных трудноокнеляемых нерастворимых веществ и отмершую биологическую пленку.[ ...]

В отличие от химического (ингредиентного) загрязнения, подобные формы представляют собой физическое (или параметрическое) загрязнение, связанное с отклонением от нормы физических параметров окружающей среды. Наряду с тепловым (термальным), опасными видами загрязнения являются световое - нарушение естественного режима освещенности в том или ином месте в результате воздействия искусственных источников света, приводящее к аномалиям в жизни животных и растений; шумовое - в результате увеличения интенсивности и повторяемости шума сверх природного уровня; вибрационное; электромагнитное, возникающее в результате изменения электромагнитных свойств среды из-за наличия линий электропередач, мощных электроустановок, разного рода излучателей и приводящее к местным и глобальным геофизическим аномалиям и изменениям в тонких биологических структурах; радиоактивное - превышение естественного уровня содержания радиоактивных веществ в окружающей среде.[ ...]

Закон об уголовной ответственности за нанесение ущерба ОС вступил в силу с 1 января 1991 г. также в Германии. По новому Закону уголовную ответственность влечет за собой не только химическое, но и физическое воздействие на ОС (сотрясения, шумы, излучения, выбросы тепла и пара и т.д.). Уголовные санкции применяются как при аварийных загрязнениях, так и в случае постепенного нарастания экологической деградации. Процедура доказательства вины существенно облегчена: потерпевшему достаточно в своих показаниях убедить следственные органы, что предприятие способно причинить возникший ущерб. Устанавливается предельная величина штрафа (независимо от количества пострадавших) в размере 160 млн марок. В Законе заранее оговорены 96 типов производственных объектов, подпадающих под уголовную ответственность. Они относятся к следующим отраслям и видам деятельности: теплоснабжение, горное дело, энергетика, производство стекла и керамики, черная металлургия, сталелитейное производство, химия, фармацевтика, нефтяная промышленность, производство искусственных веществ, деревообработка, целлюлозно-бумажная и пищевая промышленность, утилизация и переработка отходов, хранение опасных веществ .

Поделиться