Качественный анализ. Количественный анализ. Химические методы анализа. Аналитическая химия Спектральные методы анализа веществ

Согласно «Правилам ветеринарного осмотра животных и ветеринарно-санитарной экспертизы мяса и мясных продуктов», кроме патологоанатомического, органолептического и бактериологического анализа мясо вынужденного убоя, а также при подозрении, что животное перед убоем находилось в состоянии агонии или было павшим должно быть подвергнуто физико-химическом исследованиям.

Бактериоскопия . Бактериоскопическое исследование мазков отпечатков из глубоких слоев мышц, внутренних органов и лимфатических узлов имеет целью предварительного (до получения результатов бактериологического исследования) обнаружения возбудителей инфекционных заболеваний (сибирская язва, эмфизематозный карбункул и др.) и обсеменения мяса условно-патогенной микрофлорой (кишечная палочка, протей и др.).

Методика бактериоскопического исследования заключается в следующем. Кусочки мышц, внутренних органов или лимфоузлов прижигают шпателем или двукратно погружают в спирт и поджигают, затем при помощи стерильных пинцета, скальпеля или ножниц из середины вырезают кусочек ткани и делают мазки-отпечатки на предметном стекле. Сушат на воздухе, фламбируют над пламенем горелки и окрашивают по Граму. Препарат окрашивают через фильтровальную бумагу раствором карболового генцианвиолета – 2 мин., фильтровальную бумагу снимают, краску сливают и не промывая препарата обрабатывают его раствором Люголя – 2 мин., обесцвечивают 95% спиртом – 30 сек., промывают водой, докрашивают фуксином Пфейфера – 1 мин., вновь промывают водой, высушивают и микроскопируют под иммерсией. В мазках-отпечатках из глубоких слоев мяса, внутренних органов и лимфатических узлов здоровых животных микрофлора отсутствует.

При заболеваниях в мазках-отпечатках находят палочки или кокки. Полное определение обнаруженной микрофлоры может быть определено в ветеринарной лаборатории, для чего делают посев на питательные среды, получают чистую культуру и идентифицируют ее.

Определение рН . Величина рН мяса зависит от содержания в нем гликогена в момент убоя животного, а также от активности внутримышечного ферментативного процесса, который называют созреванием мяса.

Сразу после убоя реакция среды в мышцах слабощелочная или нейтральная – равная – 7. Уже через сутки рН мяса от здоровых животных в результате расщепления гликогена до молочной кислоты снижается до 5,6-5,8. В мясе больных или убитых в агональном состоянии животных такого резкого снижения величины рН не происходит, так как в мышцах таких животных содержится меньше гликогена, (расходуется при болезни как энергетическое вещество), а, следовательно, образуется меньше молочной кислоты и рН менее кислая, т.е. более высокая.

Мясо больных и переутомленных животных находится в пределах 6,3-6,5, а агонирующих или павших 6,6 и выше, она приближается к нейтральной – 7. При этом следует подчеркнуть, что мясо перед исследованием должно быть выдержано не менее 24 часов.

Указанные величины рН абсолютного значения не имеют, они носят ориентировочный, вспомогательный характер, так как величина рН зависит не только от количества гликогена в мышцах, но еще и температуры, при которой хранилось мясо и времени, прошедшего после убоя животного.

Определяют рН колометрическим или потенциометрическим методами.

Колометрический метод . Для определения рН используют аппарат Михаэлиса, который состоит из стандартного набора цветных жидкостей в запаянных пробирках, компаратора (штатива) с шестью гнездами для пробирок и набором индикаторов во флаконах.

Вначале готовят водную вытяжку (экстракт) из мышечной ткани в соотношении 1:4 – одна весовая часть мышц и 4 – дистиллированной воды. Для этого взвешивают 20 гр. мышечной ткани (без жира и соединительной ткани) мелко измельчают ее ножницами, растирают пестиком в фарфоровой ступке, в которую добавляют немного воды из общего количества 80 мл. Содержимое ступки переносят в плоскодонную колбу, ступку и пестик промывают оставшимся количеством воды, которую сливают в ту же колбу. Содержимое колбы встряхивают 3 мин., затем в течение 2 мин. отстаивают и вновь 2 мин. встряхивают. Вытяжку фильтруют через 3 слоя марли, а затем через бумажный фильтр.

Вначале ориентировочно определяют рН для выбора нужного индикатора. Для этого в фарфоровую чашечку наливают 1-2 мл, вытяжки и добавляют 1-2 капли универсального индикатора. Цвет жидкости, полученный при добавлении индикатора сравнивают с цветной шкалой имеющейся в наборе. При кислой реакции среды для дальнейшего исследования берут индикатор паранитрофенол, при нейтральной или щелочной - метанитрофенол. В гнезда компаратора вставляют пробирки одинакового диаметра из бесцветного стекла и заполняют их следующим образом: в первую, вторую и третью пробирки первого ряда наливают по 5 мл, в первую и в третью добавляют по 5 мл, дистиллированной воды, во вторую – 4 мл, воды и 1 мл, индикатора, в 5 пробирку (среднюю второго ряда) наливают 7 мл, воды, в четвертое и шестое гнездо вставляют стандартные запаянные пробирки с цветной жидкостью, подбирая их таким образом, чтобы цвет содержимого в одной из них был одинаков с цветом средней пробирки среднего ряда. РН исследуемого экстракта соответствует цифре, указанной на стандартной пробирке. Если оттенок цвета жидкости в пробирке с исследуемым экстрактом занимает промежуточное положение между двумя стандартами, то берут среднее значение между показателями этих двух стандартных пробирок. При пользовании аппаратом микро - Михаэлиса количество компонентов реакции уменьшают в 10 раз.

Потенциометрический метод . Этот метод более точен, но сложен по выполнению тем, что требует постоянной настройки потенциометра по стандартным буферным растворам. Подробное описание определения рН этим способом имеется в инструкции прилагаемой к приборам различной конструкции, при чем величину рН при помощи потенциометров можно определять как в экстрактах, так и непосредственно в мышцах.

Реакция на пероксидазу . Сущность реакции заключается в том, что находящийся в мясе фермент пероксидаза разлагает перекись водорода с образованием атомарного кислорода, который и окисляет бензидин. При этом образуется парахинондиимид, который с неокисленным бензидином дает соединение сине-зеленого цвета, переходящего в бурый. В ходе этой реакции важное значение имеет активность пероксидазы. В мясе здоровых животных она весьма активна, в мясе больных и убитых в агональном состоянии активность ее значительно снижается.

Активность пероксидазы, как и всякого фермента зависит от рН среды, хотя полного соответствия между бензидиновой реакции и рН не наблюдается.

Ход реакции: в пробирку наливают 2 мл вытяжки из мяса (в концентрации 1:4), приливают 5 капель 0,2% спиртового раствора бензидина и добавляют две капли 1% раствора перекиси водорода.

Вытяжка из мяса здоровых животных приобретает сине-зеленый цвет, переходящий через несколько минут в буро-коричневый (положительная реакция). В вытяжке из мяса больного или убитого в агональном состоянии животного сине-зеленый цвет не появляется, и вытяжка приобретает сразу буро-коричневый цвет (отрицательная реакция).

Формольная проба (проба с формалином ). При тяжело протекающих заболеваниях еще при жизни животного в мышцах в значительном количестве накапливаются промежуточные и конечные продукты белкового обмена – полипептиды, пептиды, аминокислоты и др.

Суть данной реакции заключается в осаждении этих продуктов формальдегидом. Для постановки пробы необходима водная вытяжка из мяса в соотношении 1:1.

Для приготовления вытяжки (1:1) пробу мяса освобождают от жира и соединительной ткани и взвешивают 10 гр. Затем навеску помещают с ступку, тщательно измельчают изогнутыми ножницами, приливают 10 мл. физиологического раствора и 10 капель 0,1 н. раствора гидроксида натрия. Мясо растирают пестиком. Полученную кашицу переносят с помощью ножниц или стеклянной палочки в колбу и нагревают до кипения для осаждения белков. Колбу охлаждают под струей холодной воды, после чего ее содержимое нейтрализуют добавлением 5 капель 5% раствора щавелевой кислоты и фильтруют через фильтровальную бумагу. Если вытяжка после фильтрования остается мутной, ее фильтруют вторично или центрифугируют. Если нужно получить большее количество вытяжки берут в 2-3 раза больше мяса и соответственно в 2-3 раза больше и других компонентов.

Выпускаемый промышленностью формалин имеет кислую среду, поэтому его предварительно нейтрализуют 0,1 н. раствором гидроксида натрия по индикатору, состоящему из равной смеси 0,2% водных растворов нейтральрота и метиленового голубого до перехода цвета из фиолетового в зеленый.

Ход реакции: в пробирку наливают 2 мл, вытяжки и добавляют 1 мл, нейтрализованного формалина. Вытяжка, полученная из мяса животного убитого в агонии, тяжело больного или павшего превращается в плотный желеобразный сгусток. В вытяжке из мяса больного животного выпадают хлопья. Вытяжка из мяса здорового животного остается жидкой и прозрачной или слабо мутнеет.

Подавляющее большинство сведений о веществах, их свойствах и химических превращениях получено с помощью химических или физико-химических экспериментов. Поэтому основным методом, применяемым химиками, следует считать химический эксперимент.

Традиции экспериментальной химии складывались веками. Еще тогда, когда химия не была точной наукой, в древние времена и в эпоху средневековья, ученые и ремесленники иногда случайно, а иногда и целенаправленно открывали способы получения и очистки многих веществ, находивших применение в хозяйственной деятельности: металлов, кислот, щелочей, красителей и т. д. Накоплению таких сведений немало способствовали алхимики (см. Алхимия).

Благодаря этому уже к началу XIX в. химики хорошо владели основами экспериментального искусства, в особенности методами очистки всевозможных жидкостей и твердых веществ, что позволило им совершить немало важнейших открытий. И все же наукой в современном смысле этого слова, точной наукой химия начала становиться только в XIX в., когда был открыт закон кратных отношений и разрабатывалось атомно-молекулярное учение. С этого времени химический эксперимент стал включать в себя не только изучение превращений веществ и способов их выделения, но и измерения различных количественных характеристик.

Современный химический эксперимент включает множество разнообразных измерений. Изменились и оборудование для постановки опытов, и химическая посуда. В современной лаборатории не встретишь самодельных реторт - на смену им пришло стандартное стеклянное оборудование, производимое промышленностью и приспособленное специально для выполнения той или иной химической процедуры. Стали стандартными и приемы работы, которые в наше время уже не приходится каждому химику изобретать заново. Описание наилучших из них, проверенных многолетним опытом, можно найти в учебниках и руководствах.

Методы изучения вещества сделались не только более универсальными, но и гораздо более разнообразными. Все большую роль в работе химика играют физические и физико-химические методы исследования, предназначенные для выделения и очистки соединений, а также для установления их состава и строения.

Классическая техника очистки веществ отличалась чрезвычайной трудоемкостью. Известны случаи, когда химики тратили на выделение индивидуального соединения из смеси годы труда. Так, соли редкоземельных элементов удавалось выделить в чистом виде лишь после тысяч дробных кристаллизаций. Но и после этого чистоту вещества далеко не всегда можно было гарантировать.

Современные методы хроматографии позволяют быстро отделить вещество от примесей (препаративная хроматография) и проверить его химическую индивидуальность (аналитическая хроматография). Кроме того, для очистки веществ широко применяются классические, но сильно усовершенствованные приемы перегонки, экстракции и кристаллизации, а также такие эффективные современные методы, как электрофорез, зонная плавка и т. д.

Задача, встающая перед химиком-синтетиком после выделения чистого вещества, - установить состав и строение его молекул - относится в значительной мере к аналитической химии. При традиционной технике работы она также была весьма трудоемкой. Практически в качестве единственного метода измерения применялся до этого элементный анализ, который позволяет установить простейшую формулу соединения.

Для определения истинной молекулярной, а также структурной формулы нередко приходилось изучать реакции вещества с различными реагентами; выделять в индивидуальном виде продукты этих реакций, в свою очередь устанавливая их строение. И так далее - пока на основании этих превращений строение неизвестного вещества не становилось очевидным. Поэтому установление структурной формулы сложного органического соединения нередко отнимало очень много времени, причем полноценной считалась такая работа, которая завершалась встречным синтезом - получением нового вещества в соответствии с установленной для него формулой.

Этот классический метод был чрезвычайно полезен для развития химии в целом. В наше время он применяется редко. Как правило, выделенное неизвестное вещество после элементного анализа подвергается исследованию с помощью масс-спектрометрии, спектрального анализа в видимом, ультрафиолетовом и инфракрасном диапазонах, а также ядерного магнитного резонанса. Для обоснованного вывода структурной формулы требуется применение целого комплекса методов, причем их данные обычно дополняют друг друга. Но в ряде случаев однозначного результата обычные методы не дают, и приходится прибегать к прямым методам установления структуры, например к рентгеноструктурному анализу.

Физико-химические методы находят применение не только в синтетической химии. Не меньшее значение они имеют и при изучении кинетики химических реакций, а также их механизмов. Основная задача любого опыта по изучению скорости реакции - точное измерение изменяющейся во времени, и притом обычно очень небольшой, концентрации реагирующего вещества. Для решения этой задачи в зависимости от природы вещества можно использовать и хроматографические методы, и различные виды спектрального анализа, и методы электрохимии (см. Аналитическая химия).

Совершенство техники достигло такого высокого уровня, что стало возможным точное определение скорости даже «мгновенных», как полагали раньше, реакций, например образования молекул воды из катионов водорода и анионов . При начальной концентрации обоих ионов, равной 1 моль/л, время этой реакции составляет несколько стомиллиардных долей секунды.

Физико-химические методы исследования специально приспосабливают и для обнаружения короткожи-вущих промежуточных частиц, образующихся в ходе химических реакций. Для этого приборы снабжают либо быстродействующими регистрирующими устройствами, либо приставками, обеспечивающими работу при очень низких температурах. Такими способами успешно фиксируют спектры частиц, продолжительность жизни которых при обычных условиях измеряется тысячными долями секунды, например свободных радикалов.

Кроме экспериментальных методов в современной химии широко применяются расчеты. Так, термодинамический расчет реагирующей смеси веществ позволяет точно предсказать ее равновесный состав (см. Равновесие химическое).

Расчеты молекул на основе квантовой механики и квантовой химии стали общепризнанными и во многих случаях незаменимыми. Эти методы опираются на весьма сложный математический аппарат и требуют применения самых совершенных электронных вычислительных машин - ЭВМ. Они позволяют создавать модели электронного строения молекул, которые объясняют наблюдаемые, измеримые свойства малоустойчивых молекул или промежуточных частиц, образующихся в ходе реакций.

Методы исследования веществ, разработанные химиками и физико-химиками, приносят пользу не только в химии, но и в смежных науках: физике, биологии, геологии. Без них уже не могут обойтись ни промышленность, ни сельское хозяйство, ни медицина, ни криминалистика. Физико-химические приборы занимают почетное место на космических аппаратах, с помощью которых исследуются околоземное пространство и соседние планеты.

Поэтому знание основ химии необходимо каждому человеку независимо от его профессии, а дальнейшее развитие ее методов - одно из важнейших направлений научно-технической революции.


Физико-химические исследования как направление аналитической химии нашли широкое применение в каждой сфере жизнедеятельности человека. Они позволяют изучить свойства интересующего вещества, определяя количественную составляющую компонентов в составе образца.

Исследование веществ

Научное исследование является познанием объекта или явления с целью получения системы понятий и знаний. По принципу действия используемые методы классифицируют на:

  • эмпирические;
  • организационные;
  • интерпретационные;
  • методы качественного и количественного анализа.

Эмпирические методы исследования отражают изучаемый объект со стороны внешних проявлений и включают в себя наблюдение, измерение, эксперимент, сравнение. Эмпирическое изучение основано на достоверных фактах и не предполагает создание искусственных ситуаций для анализа.

Организационные методы - сравнительный, лонгитюдный, комплексный. Первый подразумевает под собой сравнение состояний объекта, полученных в разное время и при отличных друг от друга условиях. Лонгитюдный - наблюдение за объектом исследования на протяжении длительного промежутка времени. Комплексный представляет собой совокупность лонгитюдного и сравнительного методов.

Интерпретационные методы - генетический и структурный. Генетический вариант предполагает изучение развития объекта с момента его возникновения. Структурный метод изучает и описывает устройство объекта.

Методами качественного и количественного анализа занимается аналитическая химия. Химические исследования направлены на определение состава объекта исследования.

Методы количественного анализа

При помощи количественного анализа в аналитической химии определяется состав химических соединений. Почти все применяемые методы построены на исследовании зависимости химических и физических свойств вещества от его состава.

Количественный анализ бывает общим, полным и частичным. Общий определяет количество всех известных веществ в изучаемом объекте, независимо от того, присутствуют они в составе или нет. Полный анализ отличается нахождением количественного состава веществ, содержащихся в образце. Частичный вариант определяет содержание только компонентов, представляющих интерес в данном исследовании химических веществ.

В зависимости от способа анализа выделяют три группы методов: химические, физические и физико-химические. Все они основаны на изменении физических или химических свойств вещества.

Химические исследования

Данный метод направлен на определение веществ в различных количественно происходящих химических реакциях. Последние обладают внешними проявлениями (изменение цвета, выделение газа, тепла, осадка). Данный метод широко используется во многих отраслях жизнедеятельности современного общества. Лаборатория химических исследований обязательно присутствует в фармацевтической, нефтехимической, строительной промышленности и во многих других.

Можно выделить три вида химических исследований. Гравиметрия, или весовой анализ, основана на изменении количественных характеристик исследуемого вещества в образце. Этот вариант прост и дает точные результаты, но является трудоемким. При таком типе химических методов исследования требуемое вещество выделяется из общего состава в виде осадка или газа. Затем его приводят в твердую нерастворимую фазу, фильтруют, промывают, сушат. После проведения этих процедур компонент взвешивают.

Титриметрия является объемным анализом. Исследование химических веществ происходит путем измерения объема реагента, вступающего в реакцию с исследуемым веществом. Его концентрация известна заранее. Объем реагента измеряется при достижении точки эквивалентности. При газовом анализе определяют объем выделенного или поглощенного газа.

Кроме того, часто используется исследование химических моделей. То есть создается аналог изучаемого объекта, более удобный в изучении.

Физические исследования

В отличие от химического исследования, основанного на проведении соответствующих реакций, физические методы анализа базируются на одноименных свойствах веществ. Для их проведения требуются специальные приборы. Суть метода заключается в измерении изменений характеристик вещества, вызванных действием излучения. Основными способами проведения физического исследования являются рефрактометрия, поляриметрия, флуориметрия.

Рефрактометрия проводится с помощью рефрактометра. Суть метода сводится к изучению преломления света, проходящего из одной среды в другую. Изменение угла при этом зависит от свойств компонентов среды. Поэтому становится возможной идентификация состава среды и ее структуры.

Поляриметрия является который использует способность некоторых веществ вращать плоскость колебания линейно поляризованного света.

Для флуориметрии используют лазеры и ртутные лампы, которые создают монохроматическое излучение. Некоторые вещества способны флуорисцентировать (поглощать и отдавать поглощенное излучение). На основе интенсивности флуоресценции делается вывод о количественном определении вещества.

Физико-химические исследования

Физико-химические методы исследования регистрируют изменение физических свойств вещества под действием различных химических реакций. Они основаны на прямой зависимости физических характеристик исследуемого объекта от его химического состава. Данные методы требуют применения некоторых измерительных приборов. Как правило, наблюдение ведется за теплопроводностью, электропроводностью, светопоглощением, температурой кипения и плавления.

Физико-химические исследования вещества получили широкое распространение благодаря высокой точности и скорости получения результатов. В современном мире в связи с развитием методы стали сложно применимы. Физико-химические методы используют в пищевой промышленности, сельском хозяйстве, криминалистике.

Одним из основных отличий физико-химических методов от химических является то, что окончание реакции (точку эквивалентности) находят с помощью измерительных приборов, а не визуально.

Основными методами физико-химического исследования принято считать спектральные, электрохимические, термические и хроматографические методы.

Спектральные методы анализа веществ

В основе спектральных методов анализа лежит взаимодействие объекта с электромагнитным излучением. Исследуется поглощение, отражение, рассеивание последнего. Другое название метода - оптический. Он представляет собой совокупность качественного и количественного исследования. Спектральный анализ позволяет оценить химический состав, структуру компонентов, магнитное поле и другие характеристики вещества.

Суть метода заключается в определении резонансных частот, на которых вещество реагирует на свет. Они строго индивидуальны для каждого компонента. С помощью спектроскопа можно увидеть линии на спектре и определить составляющие вещества. Интенсивность спектральных линий дает представление о количественной характеристике. В основе классификации спектральных методов лежат тип спектра и цели исследования.

Эмиссионный метод позволяет изучить спектры испускания и дает информацию о составе вещества. Для получения данных его подвергают разряду электрической дуги. Разновидностью этого метода является фотометрия пламени. Спектры поглощения исследуются абсорбционным способом. Вышеперечисленные варианты относятся к качественному анализу вещества.

Количественный спектральный анализ сравнивает интенсивность спектральной линии исследуемого объекта и вещества известной концентрации. К таким методам следует отнести атомно-абсорбционный, атомно-флуоресцентный и люминесцентный анализы, турбидиметрию, нефелометрию.

Основы электрохимического анализа веществ

Электрохимический анализ использует электролиз для исследования вещества. Реакции проводятся в водном растворе на электродах. Измерению подлежит одна из имеющихся характеристик. Исследование проводится в электрохимической ячейке. Это сосуд, в который помещены электролиты (вещества с ионной проводимостью), электроды (вещества с электронной проводимостью). Электроды и электролиты взаимодействуют между собой. При этом ток подается извне.

Классификация электрохимических методов

Классифицируют электрохимические методы исходя из явлений, на которых основаны физико-химические исследования. Это методы с наложением постороннего потенциала и без него.

Кондуктометрия является аналитическим методом и измеряет электрическую проводимость G. При кондуктометрическом анализе, как правило, используется переменный ток. Кондуктометрическое титрирование - более распространенный метод исследования. На этом методе основано изготовление портативных кондуктометров, применяемых для химических исследований воды.

При проведении потенциометрии измеряют ЭДС обратимого гальванического элемента. Метод кулонометрии определяет количество электричества, израсходованного во время электролиза. Вольтамперометрия исследует зависимость величины тока от проложенного потенциала.

Термические методы анализа веществ

Термический анализ направлен на определение изменения физических свойств вещества под действием температуры. Данные методы исследования выполняются в течение небольшого промежутка времени и с небольшим количеством изучаемого образца.

Термогравиметрия - один из методов термического анализа, на который приходится регистрация изменения массы объекта под влиянием температуры. Данный способ считается одним из самых точных.

Кроме того, к термическим методам исследования относятся калориметрия, определяющая теплоемкость вещества, энтальпиметрия, основанная на исследовании теплоемкости. Также к их числу следует отнести дилатометрию, которая фиксирует изменение объема образца под действием температуры.

Хроматографические методы анализа веществ

Метод хроматографии является способом разделения веществ. Существует множество основные из них: газовый, распределительный, окислительно-восстановительный, осадочный, ионообменный.

Компоненты в исследуемом образце разделяются между подвижной и неподвижной фазами. В первом случае речь идет о жидкостях или газах. Неподвижная фаза является сорбентом - твердым веществом. Компоненты образца перемещаются в подвижной фазе вдоль неподвижной. По скорости и времени прохождения компонентов через последнюю фазу судят об их физических свойствах.

Применение физико-химических методов исследования

Важнейшим направлением физико-химических методов является санитарно-химическое и судебно-химическое исследование. Они обладают некоторыми различиями. В первом случае для оценки проведенного анализа используются принятые гигиенические нормативы. Они устанавливаются министерствами. Санитарно-химическое исследование проводится в порядке, установленном эпидемиологической службой. В процессе используются модели сред, которые имитируют свойства пищевых продуктов. Также они воспроизводят условия эксплуатации образца.

Судебно-химическое исследование направлено на количественное выявление наркотических, сильнодействующих веществ и ядов в организме человека, пищевых продуктах, медикаментозных препаратах. Экспертиза проводится по судебному постановлению.

1. Отбор проб:

Лабораторная проба состоит 10–50 г. материала, который отбирается так, чтобы его средний состав соответствовал среднему составу всей партии анализируемого вещества.

2. Разложение пробы и переведение ее в раствор;

3. Проведение химической реакции:

X – определяемый компонент;

P – продукт реакции;

R – реагент.

4. Измерение какого-либо физического параметра продукта реакции, реагента или определяемого вещества.

Классификация химических методов анализа

I По компонентам реакции

1. Измеряют количество, образовавшегося продукта реакции Р (гравиметрический способ). Создают условия при которых определяемое вещество полностью превращается в продукт реакции; далее нужно чтобы реагент Rне давал второстепенных продуктов реакции с посторонними веществами, физические свойства которых были бы сходны с физическими свойствами продукта.

2. Основан на измерении количества реагента, израсходованного на реакцию с определяемым веществом Х:

– воздействие между X и R должно проходить стехиометрически;

– реакция должна протекать быстро;

– реагент не должен вступать в реакцию с посторонним веществами;

– необходим способ установления точки эквивалентности, т.е. момент титрования когда реагент прибавлен в эквивалентном количестве (индикатор, изменение окраски, о-в потенциала, электропроводности).

3. Фиксирует изменения, происходящие с самим определяемым веществом Х, в процессе взаимодействия с реагентом R (газовый анализ).

II Типы химических реакций

1. Кислотно-основные.

2. Образование комплексных соединений.

Кислотно-основные реакции: используют в основном для прямого количественного определения сильных и слабых кислот и оснований, и их солей.

Реакции образования комплексных соединений: определяемые вещества действием реагентов переводят в комплексные ионы и соединения.

На реакциях комплексообразования основаны следующие методы разделения и определения:

1) Разделение по средствам осаждения;

2) Метод экстракции (нерастворимые в воде комплексные соединения не редко хорошо растворяются в органических растворителях – бензол, хлороформ – процесс перевода комплексных соединений из водных фаз в дисперсную называется экстракцией);

3) Фотометрический (Со с нитрозной солью) – измеряют оптимальную плотность растворов комплексных соединений;

4) Титриметрический метод анализа

5) Гравиметрический метод анализа.

1) метод цементации – восстановление Ме ионов металлов в растворе;

2) электролиз с ртутным катодом – при электролизе раствора с ртутным катодом ионы многих элементов восстанавливаются электрическим током до Ме, которые растворяются в ртути, образуя амальгаму. Ионы других Ме остаются при этом в растворе;

3) метод идентификации;

4) титриметрические методы;

5) электрогравиметрический – через исследуемый раствор пропускают эл. ток определенного напряжения, при этом ионы Ме восстанавливаются до Ме состояния, выделившийся взвешивают;

6) кулонометрический метод – количество вещества определяют по количеству электричества, которое необходимо затратить для электрохимического превращения анализируемого вещества. Реагенты анализа находят по закону Фарадея:

М – количество определяемого элемента;

F– число Фарадея (98500 Кл);

А – атомная масса элемента;

n– количество электронов, принимающих участие в электрохимическом превращении данного элемента;

Q– количество электричества (Q = I ∙ τ).

7) каталитический метод анализа;

8) полярографический;

III Классификация методов разделения, основанных на использовании различных типов фазовых превращений:

Известны такие типы равновесий между фазами:

Равновесие Ж-Г или Т-Г используется в анализе при выделении веществ в газовую фазу (СО 2 , Н 2 О и т.д.).

Равновесие Ж 1 – Ж 2 наблюдается в методе экстракции и при электролизе с ртутным катодом.

Ж-Т характерно для процессов осаждения и процессов выделения на поверхности твердой фазы.

К методам анализа относят:

1. гравиметрический;

2. титриметрический;

3 оптический;

4. электрохимический;

5. каталитический.

К методам разделения относят:

1. осаждение;

2. экстракция;

3. хроматография;

4. ионный обмен.

К методам концентрирования относят:

1. осаждение;

2. экстракция;

3. цементация;

4. отгонка.

Физические методы анализа

Характерная особенность в том, что в них непосредственно измеряют какие-либо физические параметры системы, связанные с количеством определяемого элемента без предварительного проведения химической реакции.

Физические методы включают три главные группы методов:

I Методы, основанные на взаимодействии излучения с веществом или на измерении излучения вещества.

II Методы, основанные на измерении параметров эл. или магнитныхсвойств вещества.

IIIМетоды, основанные на измерении плотности или других параметров механических или молекулярных свойств веществ.

Методы, основанные на энергетическом переходе внешних валентных электронов атомов: включают атомно-эмиссионные и атомно-абсорбционные методы анализа.

Атомно-эмиссионный анализ:

1) Фотометрия пламени – анализируемый раствор распыляют в пламени газовой горелки. Под влиянием высокой температуры, атомы переходят в возбужденное состояние. Внешние валентные электроны переходят на более высокие энергетические уровни. Обратный переход электронов на основной энергетический уровень сопровождается излучением, длинна волны которого зависит от того, атомы какого элемента находились в пламени. Интенсивность излучения при определенных условиях пропорционально количеству атомов элемента в пламени, а длинна волны излучения характеризуют качественный состав пробы.

2) Эмиссионный метод анализа – спектральный. Пробу вводят в пламя дуги или конденсированной искры, под высокой температурой атомы переходят в возбужденное состояние, при этом электроны переходят не только на ближайшие к основному, но и на более отдаленные энергетические уровни.

Излучение представляет сложную смесь световых колебаний разных длин волн. Эмиссионный спектр разлагают на основные части спец. приборами, спектрометрами, и фотографируют. Сравнение положения интенсивности отдельных линий спектра с линиями соответствующего эталона, позволяет определить качественный и количественный анализ пробы.

Атомно-абсорбционные методы анализа:

Метод основан на измерении поглощении света определенной длины волны невозбужденными атомами определяемого элемента. Специальный источник излучения дает резонансное излучение, т.е. излучение соответствующее переходу электронной на найнизшую орбиталь с наименьшей энергией, с ближайшей к ней орбитали с более высоким уровнем энергии. Уменьшение интенсивности света при прохождении его через пламя за счет перевода электронов атомов определяемого элемента в возбужденное состояние пропорционально количеству невозбужденных атомов в нем. В атомной абсорбции применяют горючие смеси с температурой до 3100 о С, что увеличивает количество определяемых элементов, в сравнении с фотометрии пламени.

Рентгено-флуорисцентный и рентгено-эмиссионный

Рентгено-флуорисцентный: пробу подвергают действию рентгеновского излучения. Верхние электроны. Находящиеся на ближайшей к ядру атома орбитали выбиваются из атомов. Их место занимают электроны с более отдаленных орбиталей. Переход этих электронов сопровождается возникновением вторичного рентгеновского излучения, длинна волны которого связана функциональной зависимостью с атомным номером элемента. Длинна волны – качественный состав пробы; интенсивность – количественный состав пробы.

Методы, основанные на ядерных реакциях – радиоактивационные. Материал подвергают действию нейтронного излучения, происходят ядерные реакции и образуются радиоактивные изотопы элементов. Далее пробу пробу переводят в раствор и разделяют элементы химическими методами. После чего измеряют интенсивность радиоактивного излучения каждого элемента пробы, параллельно анализируют эталонную пробу. Сравнивают интенсивность радиоактивного излучения отдельных фракций эталонной пробы и анализируемого материала и делают выводы о количественном содержании элементов. Предел обнаружения 10 -8 – 10 -10 %.

1. Кондуктометрический – основан на измерении электропроводности растворов или газов.

2. Потенциометрический – бывает метод прямой и потенциометрического титрования.

3. Термоэлектрический – основан на возникновении термоэлектродвижущей силы, возникший при нагревании места соприкосновения стали и др. Ме.

4. Массспектральный – применяется при помощи сильных элементов и магнитных полей, происходит разделение газовых смесей на компоненты в соответствии с атомами или молекулярными массами компонентов. Применяется при исследовании смеси изотопов. инертных газов, смесей органических веществ.

Денситометрия – основана на измерении плотности (определение концентрации веществ в растворах). Для определения состава измеряют вязкость, поверхностное натяжение, скорость звука, электропроводность и т.д.

Для установления чистоты веществ измеряют температуру кипения или температуру плавления.

Прогнозирование и расчет физико-химических свойств

Теоретические основы прогнозирования физико-химических свойств веществ

Приближенный расчет прогнозирования

Прогнозирование подразумевает оценку физико-химических свойств на основании минимального числа легкодоступных исходных данных, а может и полагать полное отсутствие экспериментальной информации о свойствах исследуемого вещества (» абсолютное» прогнозирование опирается только на сведенья о стехиометрической формуле соединения).

Методом анализа называют принципы, положенные в основу анализа вещества, то есть вид и природу энергии, вызывающей возмущение химических частиц вещества.

В основе анализа лежит зависимость между фиксируемым аналитическим сигналом от наличия или концентрации определяемого вещества.

Аналитический сигнал – это фиксируемое и измеряемое свойство объекта.

В аналитической химии методы анализа классифицируют по характеру определяемого свойства и по способу регистрации аналитического сигнала:

1.химические

2.физические

3.физико-химические

Физико-химические методы называют инструментальными или измерительными, так как они требуют применения приборов, измерительных инструментов.

Рассмотрим полную классификацию химических методов анализа.

Химические методы анализа - основаны на измерении энергии химической реакции.

В ходе реакции изменяются параметры, связанные с расходом исходных веществ или образованием продуктов реакции. Эти изменения можно либо наблюдать непосредственно (осадок, газ, цвет), либо измерять такие величины, как расход реагента, массу образующегося продукта, время реакции и т.д.

По цели проведения методы химического анализа подразделяют на две группы:

I.Качественный анализ – заключается в обнаружении отдельных элементов (или ионов), из которых состоит анализируемое вещество.

Методы качественного анализа классифицируются:

1. анализ катионов

2. анализ анионов

3. анализ сложных смесей.

II.Количественный анализ – заключается в определении количественного содержания отдельных составных частей сложного вещества.

Количественные химические методы классифицируют:

1. Гравиметрический (весовой) метод анализа основан на выделении определяемого вещества в чистом виде и его взвешивании.

Гравиметрические методы по способу получения продукта реакции делят:



а) химиогравиметрические методы основаны на измерении массы продукта химической реакции;

б) электрогравиметрические методы основаны на измерении массы продукта электрохимической реакции;

в) термогравиметрические методы основаны на измерении массы вещества, образующегося при термическом воздействии.

2. Волюмометрические методы анализа основаны на измерении объема реагента, израсходованного на взаимодействие с веществом.

Волюмометрические методы в зависимости от агрегатного состояния реагента делят на:

а) газоволюметрические методы, которые основаны на избирательном поглощении определяемого компонента газовой смеси и измерением объема смеси до и после поглощения;

б) ликвидоволюметрические (титриметрические или объёмные) методы основаны на измерении объема жидкого реагента, израсходованного на взаимодействие с определяемым веществом.

В зависимости от типа химической реакции выделяют методы объемного анализа:

· протолитометрия – метод, основанный на протекании реакции нейтрализации;

· редоксометрия – метод, основанный на протекании окислительно-восстановительных реакциях;

· комплексонометрия – метод, основанный на протекании реакции комплексообразования;

· методы осаждения – методы, основанные на протекании реакций образования осадков.

3. Кинетические методы анализа основаны на определении зависимости скорости химической реакции от концентрации реагирующих веществ.

Лекция № 2. Стадии аналитического процесса

Решение аналитической задачи осуществляется путем выполнения анализа вещества. По терминологии ИЮПАК анализом[‡] называют процедуру получения опытным путем данных о химическом составе вещества.

Независимо от выбранного метода проведение каждого анализа складывается из следующих стадий:

1) отбор пробы (пробоотбор);

2) подготовка пробы (пробоподготовка);

3) измерение (определение);

4) обработка и оценка результатов измерений.

Рис1. Схематическое изображение аналитического процесса.

Отбор проб

Проведение химического анализа начинают с отбора и подготовки пробы к анализу. Следует отметить, что все стадии анализа связаны между собой. Так, тщательно измеренный аналитический сигнал не дает правильной информации осодержании определяемого компонента, если неправильно проведен отбор или подготовка пробы к анализу. Погрешность при отборе пробы часто опреде­ляет общую точность определения компонента и делает бессмысленным ис­пользование высокоточных методов. В свою очередь отбор и подготовка пробы зависят не только от природы анализируемого объекта, но и от способа изме­рения аналитического сигнала. Приемы и порядок отбора пробы и ее подготов­ки настолько важны при проведении химического анализа, что обычно предпи­сываются Государственным стандартом (ГОСТ).

Рассмотрим основные правила отбора проб:

· Результат может быть правильным только в том случае, если проба достаточно представительна , то есть точно отражает состав материала, из которого она была отобрана. Чем больше материала отобрано для пробы, тем она представительней. Однако с очень большой пробой трудно работать, это увеличивает время анализа и расходы на него. Таким образом, отбирать пробу нужно так, чтобы она была представительной и не очень большой.

· Оптимальная масса пробы обусловлена неоднородностью анализируемого объекта, размером частиц, с которых начинается неоднородность, и требованиями к точности анализа.

· Для обеспечения представительности пробы необходимо обеспечить однородность партии. Если сформировать однородную партию не удается, то следует использовать расслоение партии на однородные части.

· При отборе проб учитывают агрегатное состояние объекта.

· Должно выполняться условие по единообразию способов отбора проб: случайный отбор, периодический, шахматный, многоступенчатый отбор, отбор «вслепую», систематический отбор.

· Один из факторов, который нужно учитывать при выборе способа отбора пробы – возможность изменения состава объекта и содержания определяемого компонента во времени. Например, переменный состав воды в реке, изменение концентрации компонентов в пищевых продуктах и т.д.

Поделиться