Как расставлять и как определить степень окисления элементов. Низшая степень окисления Металл проявляющий степень окисления 1 соединениях

При определении степени окисления элемента, следует руководствоваться следующими положениями:

1. Степень окисления атомов элементарных металлов равна нулю (Na, Сa, Al и т.д.).

2. Степень окисления атомов неметаллов в молекулах простых веществ равна нулю (N 2 , Cl 2 , O 2 , H 2 и т.д.).

3. Во всех соединениях щелочные металлы имеют степень окис­ления (+1), щелочноземельные (+2).

4. Водород в соединениях с неметаллами имеет степень окисления (+1), а в солеобразных гидридах (NаН, СаН 2 и т.д.) (–1).

5. Фтор - наиболее электроотрицательный элемент, в соедине­ниях с другими элементами имеет степень окисления (–1).

6. Кислород в соединениях проявляет степень окисления (–2). Исключение составляют OF 2 , в котором степень окисления кислорода (+2), и пероксиды, например, H 2 O 2 , Na 2 O 2 , в которых степень окисления кислорода (–1).

7. Степень окисления может быть не только целым, но и дробным числом. Так, в KO 2 и KO 3 для кислорода она соответственно равна (–1/2) и (–1/3).

8. В нейтральных молекулах алгебраическая сумма всех степеней окисления равна нулю.

9. Алгебраическая сумма степеней окисления всех атомов, входящих в ион, равна заряду иона.

Пример 1 .

Найти степень окисления хрома в молекуле K 2 Cr 2 О 7 .

Составим для этой молекулы уравнение:

(+1)×2 + x ×2 + (–2)×7 = 0,

где (+1) - степень окисления калия; 2 - число атомов калия; x - степень окисления хрома; 2 - число атомов хрома; (–2) - степень окисления кислорода; 7 - число атомов кислорода.

Решая уравнение, получаем x = +6.

Пример 2 .

Определить степень окисления хлора в ионе СlО 4 – .

Составим для данного иона уравнение:

x ×1+ (–2)×4 = –1,

где x - степень окисления хлора; (–2) - степень окисления кислорода; 4 - число атомов кислорода; (–1) - заряд всего иона.

Решая уравнение, получаем x = +7.

1.4. Важнейшие восстановители иокислители

Величина степени окисления атома элемента в составе соединения дает информацию о том, в каком процессе этот атом может участвовать.

Атомы, имеющие в соединении низшую степень окисления, могут выступать только в роли восстановителя. Они способны только отдавать электроны и окисляться, проявляя восстановительные свойства, например:

N –3 , P –3 , Cl –1 , O –2 , S –2 , I –1 , F –1 и т.п.

Атомы в соединениях, имеющие высшую степень окисления, являются только окислителями. Они могут только принимать электроны и восстанавливаться, проявляя при этом окислительные свойства, например:

N +5 , Cr +6 , Zn +2 , Cl +7 , P +5 и т.п.

Атомы, проявляющие в соединениях промежуточную степень окисления, могут проявлять как окислительные, так и восстановительные свойства. Это зависит от того, реагируют ли они с более сильными окислителями или с более сильными восстановителями, например:


Mn +6 , Fe +2 , Sn +2 , S +4 , N +3 и т.п.

Например, четырехвалентная сера может быть как восстановителем:

S +4 – 2ē → S +6 (окисление),

так и окислителем:

S +4 + 4ē → S 0 (восстановление).

Такое свойство называется окислительно-восстановительной двойственностью .

Если говорить об окислительно-восстановительных свойствах эламентов в виде простых веществ , то они согласуются с величиной электроотрицательности данного элемента. Восстановителями обычно являются элементарные вещества, характеризующиеся наименьшими значениями энергии ионизации. К ним относятся металлы, водород. Окислителями обычно являются элементарные вещества, характеризующиеся наибольшим сродством к электрону: F 2, O 2 . Атомы элементарных веществ, характеризующиеся средними значениями электроотрицательности, обладают и окислительными, и восстановительными свойствами, например:

Вг 2 , Sе, С, Р, N 2, S и т.п.

1.5. Изменение окислительно-восстановительных свойств
простых веществ по периодам и группам

Соотношение окислительных и восстановительных свойств простого (элементарного) вещества определяется числом электронов на последнем энергетическом уровне атома. В Периодической системе элементов в пределах периода с повышением порядкового номера элемента, т.е. при движении слева направо, восстановительные свойства простых веществ понижаются, а окислительные возрастают и становятся максимальными у галогенов. Так, например, в третьем периоде Na - самый активный в периоде восстановитель, а хлор - самый активный в периоде окислитель. Это обусловлено увеличением количества электронов на последнем уровне, сопровождающимся уменьшением радиуса атома и приближением строения последнего уровня к устойчивому восьмиэлектронному состоянию. Металлы имеют небольшое число электронов на последнем уровне, поэтому они никогда не принимают "чужие" электроны и могут только отдавать свои. Напротив, неметаллы (кроме фтора) могут не только принимать, но и отдавать электроны, проявляя как восстановительные, так и окислительные свойства. Фтор проявляет только окислительные свойства, так как обладает наибольшей относительной электроотрицательностью из всех элементов. Таким образом, лучшие восстановители - щелочные металлы, а лучшие окислители - элементы главных подгрупп седьмой (галогены) и шестой групп.

В пределах группы изменение окислительно-восстановительных свойств обусловлено увеличением радиуса атома, что приводит к меньшему удерживанию электронов последнего энергетического уровня. У элементов как главных, так и побочных подгрупп с повышением порядкового номера (т.е. при движении сверху вниз) усиливаются восстановительные свойства и ослабевают окислительные. Поэтому из щелочных металлов наиболее активные восстановители - Сs и Fr, а наиболее активный окислитель из галогенов - фтор.

Элементы побочных подгрупп (они размещаются в четных рядах больших периодов) являются d -элементами и имеют на внешнем энергетическом уровне атомов 1-2 электрона. Поэтому эти элементы являются металлами и в состоянии простого вещества могут быть только восстановителями.

При изучении ионной и ковалентной полярной химических связей вы знакомились со сложными веществами, состоящими из двух химических элементов. Такие вещества называют бинарными (от лат. би - два) или двухэлементными.

Вспомним типичные бинарные соединения, которые мы приводили в качестве примера для рассмотрения механизмов образования ионной и ковалентной полярной химической связи: NaCl - хлорид натрия и НСl - хлороводород.

В первом случае связь ионная: атом натрия передал свой внешний электрон атому хлора и превратился при этом в ион с зарядом +1, а атом хлора принял электрон и превратился в ион с зарядом -1. Схематически процесс превращения атомов в ионы можно изобразить так:

В молекуле же хлороводорода НС1 химическая связь образуется за счёт спаривания неспаренных внешних электронов и образования общей электронной пары атомов водорода и хлора:

Правильнее представлять образование ковалентной связи в молекуле хлороводорода как перекрывание одноэлектронного s-облака атома водорода с одноэлектронным р-облаком атома хлора:

При химическом взаимодействии общая электронная пара смещена в сторону более электроотрицательного атома хлора: , т. е. электрон не полностью перейдёт от атома водорода к атому хлора, а частично, обусловливая тем самым частичный заряд атомов 5 (см. § 12): . Если же представить, что и в молекуле хлороводорода НСl, как и в хлориде натрия NaCl, электрон полностью перешёл от атома водорода к атому хлора, то они получили бы заряды +1 и -1: . Такие условные заряды называют степенью окисления. При определении этого понятия условно предполагают, что в ковалентных полярных соединениях связующие электроны полностью перешли к более электроотрицательному атому, а потому соединения состоят только из положительно и отрицательно заряженных ионов.

Степень окисления может иметь отрицательное, положительное или нулевое значения, которые обычно ставятся над символом элемента сверху, например:

Отрицательное значение степени окисления имеют те атомы, которые приняли электроны от других атомов или к которым смещены общие электронные пары, т. е. атомы более электроотрицательных элементов. Фтор всегда имеет степень окисления -1 во всех соединениях. Кислород, второй после фтора по значению электроотрицательности элемент, почти всегда имеет степень окисления -2, кроме соединений со фтором, например:

Положительное значение степени окисления имеют те атомы, которые отдают свои электроны другим атомам или от которых оттянуты общие электронные пары, т. е. атомы менее электроотрицательных элементов. Металлы в соединениях всегда имеют положительную степень окисления. У металлов главных подгрупп: I группы (IA группы) во всех соединениях степень окисления равна +1, II группы (IIA группы) равна +2, III группы (IIIA группы) - +3, например:

но в соединениях с металлами у водорода степень окисления -1:

Нулевое значение степени окисления имеют атомы в молекулах простых веществ и атомы в свободном состоянии, например:

К понятию «степень окисления» близко понятие «валентность», с которым вы знакомились, рассматривая ковалентную химическую связь. Однако это не одно и то же.

Понятие «валентность» применимо для веществ, имеющих молекулярное строение. Подавляющее большинство органических веществ, с которыми вы будете знакомиться в 10 классе, имеет именно такое строение. В курсе основной школы вы изучаете неорганическую химию, предметом которой являются вещества как молекулярного, так и немолекулярного, например ионного, строения. Поэтому предпочтительнее использовать понятие «степень окисления».

Чем же отличается валентность от степени окисления?

Часто валентность и степень окисления численно совпадают, но валентность не имеет знака заряда, а степень окисления - имеет. Например, одновалентный водород имеет следующие степени окисления в различных веществах:

Казалось бы, что одновалентный фтор - самый электроотрицательный элемент - должен иметь полное совпадение значений степени окисления и валентности. Ведь его атом способен образовывать лишь одну-единственную ковалентную связь, так как ему недостаёт до завершения внешнего электронного слоя одного электрона. Однако и здесь наблюдается различие:

Ещё более различаются между собой валентность и степень окисления, если они численно не совпадают. Например:

В соединениях суммарная степень окисления всегда равна нулю. Зная это и степень окисления одного из элементов, можно найти степень окисления другого элемента по формуле, например бинарного соединения. Так, найдём степень окисления хлора в соединении С1 2 O 7 .

Обозначим степень окисления кислорода: . Следовательно, семь атомов кислорода будут иметь общий отрицательный заряд (-2) × 7 = -14. Тогда общий заряд двух атомов хлора будет равен +14, а одного атома хлора: (+14) : 2 = +7. Следовательно, степень окисления хлора равна .

Аналогично, зная степени окисления элементов, можно составить формулу соединения, например карбида алюминия (соединения алюминия и углерода).

Нетрудно заметить, что аналогично вы работали с понятием «валентность», когда выводили формулу ковалентного соединения или определяли валентность элемента по формуле его соединения.

Названия бинарных соединений образуют из двух слов - названий входящих в их состав химических элементов. Первое слово обозначает электроотрицательную часть соединения - неметалл, его латинское название с суффиксом -ид стоит всегда в именительном падеже. Второе слово обозначает электроположительную часть - металл или менее электроотрицательный элемент, его название всегда стоит в родительном падеже:

Например: NaCl - хлорид натрия, MgS - сульфид магния, КН - гидрид калия, СаО - оксид кальция. Если же электроположительный элемент проявляет разные степени окисления, то это отражают в названии, обозначив степень окисления римской цифрой, которую ставят в конце названия, например: - оксид железа (II) (читают «оксид железа два»), - оксид железа (III) (читают «оксид железа три»).

Если соединение состоит из двух элементов-неметаллов, то к названию более электроотрицательного из них прибавляют суффикс -ид, второй компонент ставится после этого в родительном падеже. Например: - фторид кислорода (II), - оксид серы (IV) и - оксид серы (VI).

В некоторых случаях число атомов элементов обозначают при помощи названий числительных на греческом языке - моно, ди, три, тетра, пента, гекса и т. д. Например: - монооксид углерода, или оксид углерода (II), - диоксид углерода, или оксид углерода (IV), - тетрахлорид свинца, или хлорид свинца (IV).

Чтобы химики разных стран понимали друг друга, потребовалось создание единой терминологии и номенклатуры веществ. Принципы химической номенклатуры были впервые разработаны французскими химиками А. Лавуазье, А. Фуркруа, Л. Гитоном де Мерво и К. Бертолле в 1785 г. В настоящее время Международный союз теоретической и прикладной химии (ИЮПАК) координирует деятельность учёных разных стран и издаёт рекомендации по номенклатуре веществ и терминологии, используемой в химии.

Ключевые слова и словосочетания

  1. Бинарные, или двухэлементные, соединения.
  2. Степень окисления.
  3. Химическая номенклатура.
  4. Определение степеней окисления элементов по формуле.
  5. Составление формул бинарных соединений по степеням окисления элементов.

Работа с компьютером

  1. Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.
  2. Найдите в Интернете электронные адреса, которые могут служить дополнительными источниками, раскрывающими содержание ключевых слов и словосочетаний параграфа. Предложите учителю свою помощь в подготовке нового урока - сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.

Вопросы и задания

  1. Запишите формулы оксидов азота (II), (V), (I), (III), (IV).
  2. Дайте названия бинарных соединений, формулы которых: а) С1 2 0 7 , С1 2 O, С1O 2 ; б) FeCl 2 , FeCl 3 ; в) MnS, MnO 2 , MnF 4 , MnO, MnCl 4 ; r) Cu 2 O, Mg 2 Si, SiCl 4 , Na 3 N, FeS.
  3. Найдите по справочникам и словарям всевозможные названия веществ с формулами: а) СO 2 и СО; б) SO 2 и SO 3 . Объясните их этимологию. Дайте по два названия этих веществ по международной номенклатуре в соответствии с правилами, изложенными в параграфе.
  4. Какое ещё название можно дать аммиаку H 3 N?
  5. Найдите объём, который имеют при н. у. 17 г сероводорода.
  6. Сколько молекул его содержится в этом объёме?
  7. Вычислите массу 33,6 м3 метана СН 2 при н. у. и определите число его молекул, содержащееся в этом объёме.
  8. Определите степень окисления углерода и запишите структурные формулы следующих веществ, зная, что углерод в органических соединениях всегда четырёхвалентен: метана СН 4 , тетрахлорметана СС1 4 , этана С 2 Н 4 , ацетилена С 2 Н 2 .

Химического элемента в соединении, вычисленный из предположения, что все связи имеют ионный тип.

Степени окисления могут иметь положительное, отрицательное или нулевое значение, поэтому алгебраическая сумма степеней окисления элементов в молекуле с учётом числа их атомов равна 0, а в ионе - заряду иона .

1. Степени окисления металлов в соединениях всегда положительные.

2. Высшая степень окисления соответствует номеру группы периодической системы, где находится данный элемент (исключение составляют: Au +3 (I группа), Cu +2 (II), из VIII группы степень окисления +8 может быть только у осмия Os и рутения Ru .

3. Степени окисления неметаллов зависят от того, с каким атомом он соединён:

  • если с атомом металла, то степень окисления отрицательная;
  • если с атомом неметалла то степень окисления может быть и положительная, и отрицательная. Это зависит от электроотрицательности атомов элементов.

4. Высшую отрицательную степень окисления неметаллов можно определить вычитанием из 8 номера группы, в которой находится данный элемент, т.е. высшая положительная степень окисления равна числу электронов на внешнем слое, которое соответствует номеру группы.

5. Степени окисления простых веществ равны 0, независимо от того металл это или неметалл.

Элементы с неизменными степенями окисления.

Элемент

Характерная степень окисления

Исключения

Гидриды металлов: LIH -1

Степенью окисления называют условный заряд частицы в предположении, что связь полностью разорвана (имеет ионных характер).

H - Cl = H + + Cl - ,

Связь в соляной кислоте ковалентная полярная. Электронная пара в большей степени смещена в сторону атома Cl - , т.к. он более электроотрицацельный элемент.

Как определить степень окисления?

Электроотрицательность - это способность атомов притягивать к себе электроны других элементов.

Степень окисления указывается над элементом: Br 2 0 , Na 0 , O +2 F 2 -1 , K + Cl - и т.д.

Она может быть отрицательной и положительной.

Степень окисления простого вещества (несвязанное, свободное состояние) равна нулю.

Степень окисления кислорода у большинстве соединений равна -2 (исключение составляют пероксиды Н 2 О 2 , где она равна -1 и соединения с фтором - O +2 F 2 -1 , O 2 +1 F 2 -1 ).

- Степень окисления простого одноатомного иона равна его заряду: Na + , Ca +2 .

Водород в своих соединениях имеет степень окисления равную +1 (исключения составляют гидриды - Na + H - и соединения типа C +4 H 4 -1 ).

В связях «металл-неметалл» отрицательную степень окисления имеет тот атом, который обладает большей электрооприцательностью (данные об элеткроотрицательности приведены в шкале Полинга): H + F - , Cu + Br - , Ca +2 (NO 3 ) - и т.д.

Правила определения степени окисления в химических соединениях.

Возьмем соединение KMnO 4 , необходимо определить степень окисления у атома марганца.

Рассуждения:

  1. Калий - щелочной металл, стоящий в I группе периодической таблицы , в связи с чем, имеет только положительную степень окисления +1.
  2. Кислород , как известно, в большинстве своих соединений имеет степень окисления -2. Данное вещество не является пероксидом, а значит, - не исключение.
  3. Составляет уравнение:

К + Mn X O 4 -2

Пусть Х - неизвестная нам степень окисления марганца.

Количество атомов калия - 1, марганца - 1, кислорода - 4.

Доказано, что молекула в целом электронейтральна, поэтому ее общий заряд должен быть равен нулю.

1*(+1) + 1*(X ) + 4(-2) = 0,

Х = +7,

Значит, степень окисления марганца в перманганате калия = +7.

Возьмем другой пример оксида Fe 2 O 3 .

Необходимо определить степень окисления атома железа.

Рассуждение:

  1. Железо - металл, кислород - неметалл, значит, именно кислород будет окислителем и иметь отрицательный заряд. Мы знаем, что кислород имеет степень окисления -2.
  2. Считаем количества атомов: железа - 2 атома, кислорода - 3.
  3. Составляем уравнение, где Х - степень окисления атома железа:

2*(Х) + 3*(-2) = 0,

Вывод: степень окисления железа в данном оксиде равна +3.

Примеры. Определить степени окисления всех атомов в молекуле.

1. K 2 Cr 2 O 7 .

Степень окисления К +1 , кислорода О -2 .

Учитывая индексы: О=(-2)×7=(-14), К=(+1)×2=(+2).

Т.к. алгебраическая сумма степеней окисления элементов в молекуле с учётом числа их атомов равна 0, то число положительных степеней окисления равно числу отрицательных. Степени окисления К+О=(-14)+(+2)=(-12).

Из этого следует, что у атома хрома число положительных степеней равно 12, но атомов в молекуле 2, значит на один атом приходится (+12):2=(+6). Ответ: К 2 + Cr 2 +6 O 7 -2 .

2. (AsO 4) 3- .

В данном случае сумма степеней окисления будет равна уже не нулю, а заряду иона, т. е. - 3. Составим уравнение: х+4×(- 2)= - 3 .

Ответ: (As +5 O 4 -2) 3- .

Степень окисления - это условный заряд атомов химического элемента в соединении, вычисленный из предположения, что все связи имеют ионный тип. Степени окисления могут иметь положительное, отрицательное или нулевое значение, поэтому алгебраическая сумма степеней окисления элементов в молекуле с учётом числа их атомов равна 0, а в ионе - заряду иона.

Данный список степеней окисления показывает все известные степени окисления химических элементов периодической таблицы Менделеева. Список основан на таблице Гринвуда со всеми дополнениями. В строках, которые выделены цветом, вписаны инертные газы степень окисления которых равна нулю.

1 −1 H +1
2 He
3 Li +1
4 -3 Be +1 +2
5 −1 B +1 +2 +3
6 −4 −3 −2 −1 C +1 +2 +3 +4
7 −3 −2 −1 N +1 +2 +3 +4 +5
8 −2 −1 O +1 +2
9 −1 F +1
10 Ne
11 −1 Na +1
12 Mg +1 +2
13 Al +3
14 −4 −3 −2 −1 Si +1 +2 +3 +4
15 −3 −2 −1 P +1 +2 +3 +4 +5
16 −2 −1 S +1 +2 +3 +4 +5 +6
17 −1 Cl +1 +2 +3 +4 +5 +6 +7
18 Ar
19 K +1
20 Ca +2
21 Sc +1 +2 +3
22 −1 Ti +2 +3 +4
23 −1 V +1 +2 +3 +4 +5
24 −2 −1 Cr +1 +2 +3 +4 +5 +6
25 −3 −2 −1 Mn +1 +2 +3 +4 +5 +6 +7
26 −2 −1 Fe +1 +2 +3 +4 +5 +6
27 −1 Co +1 +2 +3 +4 +5
28 −1 Ni +1 +2 +3 +4
29 Cu +1 +2 +3 +4
30 Zn +2
31 Ga +1 +2 +3
32 −4 Ge +1 +2 +3 +4
33 −3 As +2 +3 +5
34 −2 Se +2 +4 +6
35 −1 Br +1 +3 +4 +5 +7
36 Kr +2
37 Rb +1
38 Sr +2
39 Y +1 +2 +3
40 Zr +1 +2 +3 +4
41 −1 Nb +2 +3 +4 +5
42 −2 −1 Mo +1 +2 +3 +4 +5 +6
43 −3 −1 Tc +1 +2 +3 +4 +5 +6 +7
44 −2 Ru +1 +2 +3 +4 +5 +6 +7 +8
45 −1 Rh +1 +2 +3 +4 +5 +6
46 Pd +2 +4
47 Ag +1 +2 +3
48 Cd +2
49 In +1 +2 +3
50 −4 Sn +2 +4
51 −3 Sb +3 +5
52 −2 Te +2 +4 +5 +6
53 −1 I +1 +3 +5 +7
54 Xe +2 +4 +6 +8
55 Cs +1
56 Ba +2
57 La +2 +3
58 Ce +2 +3 +4
59 Pr +2 +3 +4
60 Nd +2 +3
61 Pm +3
62 Sm +2 +3
63 Eu +2 +3
64 Gd +1 +2 +3
65 Tb +1 +3 +4
66 Dy +2 +3
67 Ho +3
68 Er +3
69 Tm +2 +3
70 Yb +2 +3
71 Lu +3
72 Hf +2 +3 +4
73 −1 Ta +2 +3 +4 +5
74 −2 −1 W +1 +2 +3 +4 +5 +6
75 −3 −1 Re +1 +2 +3 +4 +5 +6 +7
76 −2 −1 Os +1 +2 +3 +4 +5 +6 +7 +8
77 −3 −1 Ir +1 +2 +3 +4 +5 +6
78 Pt +2 +4 +5 +6
79 −1 Au +1 +2 +3 +5
80 Hg +1 +2 +4
81 Tl +1 +3
82 −4 Pb +2 +4
83 −3 Bi +3 +5
84 −2 Po +2 +4 +6
85 −1 At +1 +3 +5
86 Rn +2 +4 +6
87 Fr +1
88 Ra +2
89 Ac +3
90 Th +2 +3 +4
91 Pa +3 +4 +5
92 U +3 +4 +5 +6
93 Np +3 +4 +5 +6 +7
94 Pu +3 +4 +5 +6 +7
95 Am +2 +3 +4 +5 +6
96 Cm +3 +4
97 Bk +3 +4
98 Cf +2 +3 +4
99 Es +2 +3
100 Fm +2 +3
101 Md +2 +3
102 No +2 +3
103 Lr +3
104 Rf +4
105 Db +5
106 Sg +6
107 Bh +7
108 Hs +8

Высшая степень окисления элемента соответствует номеру группы периодической системы, где находится данный элемент (исключение составляют: Au+3 (I группа), Cu+2 (II), из VIII группы степень окисления +8 может быть только у осмия Os и рутения Ru.

Степени окисления металлов в соединениях

Степени окисления металлов в соединениях всегда положительные, если же говорить о неметаллах, то их степень окисления зависит от того, с каким атомом он соединён элемент:

  • если с атомом неметалла то степень окисления может быть и положительная, и отрицательная. Это зависит от электроотрицательности атомов элементов;
  • если с атомом металла, то степень окисления отрицательная.

Отрицательная степень окисления неметаллов

Высшую отрицательную степень окисления неметаллов можно определить вычитанием из 8 номера группы, в которой находится данный химический элемент, т.е. высшая положительная степень окисления равна числу электронов на внешнем слое, которое соответствует номеру группы.

Обратите внимание, что степени окисления простых веществ равны 0, независимо от того металл это или неметалл.

Источники:

  • Greenwood, Norman N.; Earnshaw, A. Chemistry of the Elements - 2-е изд. - Oxford: Butterworth-Heinemann, 1997
  • Green Stable Magnesium(I) Compounds with Mg-Mg Bonds / Jones C.; Stasch A.. - Журнал Science, 2007. - Декабрь (вып. 318 (№ 5857)
  • Журнал Science, 1970. - Вып. 3929. - № 168. - С. 362.
  • Журнал Journal of the Chemical Society, Chemical Communications, 1975. - С. 760b-761.
  • Irving Langmuir The arrangement of electrons in atoms and molecules. - Журнал J. Am. Chem. Soc., 1919. - Вып. 41.

Для характеристики состояния элементов в соединениях введено понятие степени окисления.

ОПРЕДЕЛЕНИЕ

Число электронов, смещенных от атома данного элемента или к атому данного элемента в соединении называют степенью окисления .

Положительная степень окисления обозначает число электронов, которые смещаются от данного атома, а отрицательная - число электронов, которые смещаются к данному атому.

Из этого определения следует, что в соединениях с неполярными связями степень окисления элементов равна нулю. Примерами таких соединений могут служить молекулы, состоящие из одинаковых атомов (N 2 , H 2 , Cl 2).

Степень окисления металлов в элементарном состоянии равна нулю, так как распределение электронной плотности в них равномерно.

В простых ионных соединениях степень окисления входящих в них элементов равна электрическому заряду, поскольку при образовании этих соединений происходит практически полный переход электронов от одного атома к другому: Na +1 I -1 , Mg +2 Cl -1 2 , Al +3 F -1 3 , Zr +4 Br -1 4 .

При определении степени окисления элементов в соединениях с полярными ковалентными связями сравнивают значениях их электроотрицательностей. Поскольку при образовании химической связи электроны смещаются к атомам более электроотрицательных элементов, то последние имеют в соединениях отрицательную степень окисления.

Низшая степень окисления

Для элементов, проявляющих в своих соединениях различные степени окисления, существуют понятия высшей (максимальной положительной) и низшей (минимальной отрицательной) степеней окисления. Низшая степень окисления химического элемента обычно численно равна разности между номером группы в Периодической системе Д. И. Менделеева, в которой расположен химический элемент, и числом 8. Например, азот находится в VA группе, значит его низшая степень окисления равна (-3): V-VIII = -3; сера находится в VIA группе, значит её низшая степень окисления равна (-2): VI-VIII = -2 и т.д.

Примеры решения задач

ПРИМЕР 1

Поделиться