Как решить уравнение 4 ой степени. Схема Горнера. Примеры. Решение уравнений с параметром

2. Уравнение Если в равенство входит буква, то равенство называется уравнением.
Уравнение может быть верным при одних значениях этой буквы
и неверным при других ее значениях.

Например, уравнение x + 6 = 7
верно при x = 1
и неверно при x = 2 .

3. Равносильные уравненияЛинейное уравнение имеет вид ax + by + c = 0 .
Например: 5x – 4y + 6 = 0 .
Выразим y:
⇒ 4y = 5x + 6 ⇒ y =

5x+6
4

⇒ y = 1,25x + 1,5 .
Полученное уравнение, равносильное первому, имеет вид
y = kx + m ,
где: x - независимая переменная (аргумент);
y - зависимая переменная (функция);
k и m - коэффициенты (параметры).

4 Эквивалентные уравнения

Два уравнения и называются равносильными (эквивалентными ), если совпадают множества всех их решений или оба они не имеют решений и обозначают .

5/Уравнение первой степени.

Уравнение первой степени можно привести к виду:

ax + b = 0,

где x – переменная, a и b – некоторые числа, причем a ≠ 0.

Отсюда легко вывести значение x :

b
x = – -
a

Это значение x является корнем уравнения.

Уравнения первой степени имеют один корень.

Уравнение второй степени.

Уравнение второй степени можно привести к виду:

ax 2 + bx + c = 0,

где x – переменная, a, b, c – некоторые числа, причем a ≠ 0.

Число корней уравнения второй степени зависит от дискриминанта:

Если D > 0, то уравнение имеет два корня;

Если D = 0, то уравнение имеет один корень;

Если D < 0, то уравнение корней не имеет.

Уравнение второй степени может иметь не более двух корней.

(о том, что такое дискриминант и как находить корни уравнения, см.разделы «Формулы корней квадратного уравнения. Дискриминант» и «Другой способ решения квадратного уравнения»).

Уравнение третьей степени.

Уравнение третьей степени можно привести к виду:

ax 3 + bx 2 + cx + d = 0,

где x – переменная, a, b, c, d – некоторые числа, причем a ≠ 0.

Уравнение третьей степени может иметь не более трех корней.

Уравнение четвертой степени.

Уравнение четвертой степени можно привести к виду:

ax 4 + bx 3 + cx 2 + dx + e = 0,

где x – переменная, a, b, c, d, e – некоторые числа, причем a ≠ 0.

Уравнение третьей степени может иметь не более четырех корней.

Обобщение:

1) уравнение пятой, шестой и т.д. степеней можно легко вывести самостоятельно, следуя приведенной выше схеме;


2) уравнение n -й степени может иметь не более n корней.

6/Уравнением с одной переменной, называется равенство, содержащее только одну переменную. Корнем (или решением) уравнения называется такое значение переменной, при котором уравнение превращается в верное числовое равенство.

1. 8/-11/Системы линейных уравнений: основные понятия Система линейных уравнений.

Несовместная и неопределенная системы линейных уравнений. Совокупность линейных уравнений.Совместная и несовместная совокупность линейных уравнений.

Система линейных уравнений - это объединение из n линейных уравнений, каждое из которых содержит k переменных. Записывается это так:

Многие, впервые сталкиваясь с высшей алгеброй, ошибочно полагают, что число уравнений обязательно должно совпадать с числом переменных. В школьной алгебре так обычно и бывает, однако для высшей алгебры это, вообще говоря, неверно.

Решение системы уравнений - это последовательность чисел (k 1 , k 2 , ..., k n ), которая является решением каждого уравнения системы, т.е. при подстановке в это уравнение вместо переменных x 1 , x 2 , ..., x n дает верное числовое равенство.

Соответственно, решить систему уравнений - значит найти множество всех ее решений или доказать, что это множество пусто. Поскольку число уравнений и число неизвестных может не совпадать, возможны три случая:

1. Система несовместна, т.е. множество всех решений пусто. Достаточно редкий случай, который легко обнаруживается независимо от того, каким методом решать систему.

2. Система совместна и определена, т.е. имеет ровно одно решение. Классический вариант, хорошо известный еще со школьной скамьи.

3. Система совместна и не определена, т.е. имеет бесконечно много решений. Это самый жесткий вариант. Недостаточно указать, что «система имеет бесконечное множество решений» - надо описать, как устроено это множество.

Переменная x i называется разрешенной , если она входит только в одно уравнение системы, причем с коэффициентом 1. Другими словами, в остальных уравнениях коэффициент при переменной x i должен быть равен нулю.

Если в каждом уравнении выбрать по одной разрешенной переменной, получим набор разрешенных переменных для всей системы уравнений. Сама система, записанная в таком виде, тоже будет называться разрешенной. Вообще говоря, одну и ту же исходную систему можно свести к разным разрешенным, однако сейчас нас это не волнует. Вот примеры разрешенных систем:

Обе системы являются разрешенными относительно переменных x 1 , x 3 и x 4 . Впрочем, с тем же успехом можно утверждать, что вторая система - разрешенная относительно x 1 , x 3 и x 5 . Достаточно переписать самое последнее уравнение в виде x 5 = x 4 .

Теперь рассмотрим более общий случай. Пусть всего у нас k переменных, из которых r являются разрешенными. Тогда возможны два случая:

1. Число разрешенных переменных r равно общему числу переменных k : r = k . Получаем систему из k уравнений, в которых r = k разрешенных переменных. Такая система является совместной и определенной, т.к. x 1 = b 1 , x 2 = b 2 , ..., x k = b k ;

2. Число разрешенных переменных r меньше общего числа переменных k : r < k . Остальные (k r ) переменных называются свободными - они могут принимать любые значения, из которых легко вычисляются разрешенные переменные.

Так, в приведенных выше системах переменные x 2 , x 5 , x 6 (для первой системы) и x 2 , x 5 (для второй) являются свободными. Случай, когда есть свободные переменные, лучше сформулировать в виде теоремы:

Обратите внимание: это очень важный момент! В зависимости от того, как вы запишете итоговую систему, одна и та же переменная может быть как разрешенной, так и свободной. Большинство репетиторов по высшей математике рекомендуют выписывать переменные в лексикографическом порядке, т.е. по возрастанию индекса. Однако вы совершенно не обязаны следовать этому совету.

Теорема. Если в системе из n уравнений переменные x 1 , x 2 , ..., x r - разрешенные, а x r + 1 , x r + 2 , ..., x k - свободные, то:

1. Если задать значения свободным переменным (x r + 1 = t r + 1 , x r + 2 = t r + 2 , ..., x k = t k ), а затем найти значения x 1 , x 2 , ..., x r , получим одно из решений.

2. Если в двух решениях значения свободных переменных совпадают, то значения разрешенных переменных тоже совпадают, т.е. решения равны.

В чем смысл этой теоремы? Чтобы получить все решения разрешенной системы уравнений, достаточно выделить свободные переменные. Затем, присваивая свободным переменным разные значения, будем получать готовые решения. Вот и все - таким образом можно получить все решения системы. Других решений не существует.

Вывод: разрешенная система уравнений всегда совместна. Если число уравнений в разрешенной системе равно числу переменных, система будет определенной, если меньше - неопределенной.

Несколько уравнений образуют Совокупность уравнений

2. 12,13/ Линейное неравенство./ Строгие и нестрогие неравенства Что такое неравенство? Берётся любое уравнение, знак "=" ("равно") заменяется на другой значок (> ;; < ; ; ) и получается неравенство.) Уравнение может быть каким угодно: линейным, квадратным,дробным, показательным, тригонометрическим, логарифмическим, и т.д. и т.п. Соответственно, и неравенства у нас получатся линейные, квадратные, и т.д.

Что нужно знать о значках неравенств? Неравенства со значком больше (> ), или меньше (< ) называются строгими. Со значками больше или равно (), меньше или равно () называются нестрогими. Значок не равно () стоит особняком, но решать примеры с таким значком тоже приходится постоянно. И мы порешаем.)

Сам значок не оказывает особого влияния на процесс решения. А вот в конце решения, при выборе окончательного ответа, смысл значка проявляется в полную силу! Что мы и увидим ниже, на примерах. Есть там свои приколы...

Неравенства, как и равенства, бывают верные и неверные. Здесь всё просто, без фокусов. Скажем, 5 > 2 - верное неравенство. 5 < 2 - неверное.

Линейные, квадратные, дробные, показательные, тригонометрические и прочие неравенства решаются по-разному. На каждый вид - свой способ, свой специальный приём. Но! Все эти специальные приёмы можно применять только к некоему стандартному виду неравенства. Т.е. неравенство любого вида нужно сначала подготовить к применению своего способа.

3. 14,16/Основные свойства неравенств/ . Действия с двумя неравенствами.

1) Если

2) Свойство транзитивности. Если

3) Если к обеим частям верного неравенства прибавить одно и то же число, то получится верное неравенство, т.е. если

4) Если из одной части верного неравенства перенести в другую какое-либо слагаемое, изменив его знак на противоположный, то получится верное неравенство, т.е. если

5) Если обе части верного неравенства умножить на одно и то же положительное число, то получится верное неравенство. Например, если

6) Если обе части верного неравенства умножить на одно и то же отрицательное число и изменить знак неравенства на противоположный, то получится верное неравенство. Например, если

7) Аналогично правилам 5) и 6) действуют правила для деления на одно и то же число. Если

Заадача№1

Решить уравнение третьей степени по формуле Кардано:

x 3 -3x 2 -3x-1=0.

Решение:Приведём уравнение к виду, не содержащему второй степени неизвестного. Для этого воспользуемся формулой

x = y – , где а коэффициент при x 2 .

Имеем: x=y+1.

(y+1) 3 -3(y+1) 2 -3(y+1)-1=0.

Раскрыв скобки и приведя подобные члены,получим:

Для корней кубического уравнения y 3 +py+q=0 имеется формула Кардано:

yi= (i=1,2,3,),где значение радикала

, = .

Пусть α1 –одно /любое/ значение радикала α. Тогда два других значения находятся следующим образом:

α 2 = α 1 ε 1 , α 3 = α 1 ε 2, где ε 1 = + i , ε 2 = – i - корень третьей степени из единицы.

Если положить β 1 = – , то получим β 2 = β 1 ε 2, β 3 = β 1 ε 1

Подставляя полученные значение в формулу yi = αi+βi,найдём корни уравнения

y 1 = α 1 +β 1 ,

y 2 = -1/2(α 1 +β 1) + i (α 1 -β 1),

y 3 = -1/2(α 1 +β 1) – i (α 1 -β 1),

В нашем случае p = -6, q= - 6.

α= =

Одно из значений этого радикала равно . Поэтому положим α 1 = . Тогда β 1 = – = – = ,

y 2 = ) – i ).

Наконец, находим значение x по формуле x = y+1.

x 2 = ) + i ) + 1,

x 3 = ) – i ) + 1.

Задача №2

Решить способом Феррари уравнение четвёртой степени:

x 4 -4x 3 +2x 2 -4x+1=0.

Решение: Перенесём три последних члена в правую часть и оставшиеся два члена дополним до полного квадрата.

x 4 -4x 3 =-2x 2 +4x-1,

x 4 -4x 3 +4x 2 =4x 2 -2x 2 +4x-1,

(x 2 -2x) 2 =2x 2 +4x-1.

Введём новое неизвестное следующим образом:

(x 2 -2x+ ) 2 =2x 2 +4x-1+(x 2 -2x)y+ ,

(x 2 -2x+ ) 2 =(2+y)x 2 +(4-2y)x+() /1/.

Подберём y так, чтобы и правая часть равенства была полным квадратом.Это будет тогда,когда B 2 -4AC=0, где A=2+y, B=4-2y, C= -1.

Имеем:B 2 -4AC=16-16y+4y 2 -y 3 -2y 2 +4y+8=0

Или y 3 -2y 2 +12y-24=0.

Мы получили кубическую резольвенту,одним из корней которой является y=2. Подставим полученное значение y=2 в /1/,

Получим (x 2 -2x+1) 2 =4x 2 .Откуда (x 2 -2x+1) 2 -(2x) 2 =0 или (x 2 -2x+1-2x) (x 2 -2x+1+2x)=0.

Мы получим два квадратных уравнения:

x 2 -4x+1=0 и x 2 +1=0.

Решая их, находим корни первоначального уравнения:

x 1 =2- , x 2 =2+ , x 3 =-I, x 4 =i.

6.Рациональные корни многочлена

Задача№1

Найти рациональные корни многочлена

f(x)=8x 5 -14x 4 -77x 3 +128x2+45x-18.

Решение :Для того, чтобы найти рациональные корни многочлена,пользуемся следующими теоремами.

Теорема 1. Если несократимая дробь является корнем многочлена f(x) с целыми коэффициентами,то p есть делитель свободного члена, а q- делитель старшего коэффициента многочлена f(x).

Замечание: Теорема 1 даёт необходимое условие для того, чтобы рациональное число . Было корнем многочлена,но этого условия недостаточно, т.е. условие теоремы 1 может выполняться и для такой дроби , которая не является корнем многочлена.

Теорема 2: Если несократимая дробь является корнем многочлена f(x) с целыми коэффициентами, то при любом целом m ,отличном от , число f(m) делится на число p-qm, т.е целое число.

В частности полагая m=1, а затем m=-1, получим:

если корень многочлена, не равный ±1,то f(x) (p-q) и f(-x):.(p+q) , т.е. - целые числа.

Замечание: Теорема 2 даёт ещё одно необходимое условие для рациональных корней многочлена. Это условие удобно тем, что оно легко проверяется практически. Находим сначала f(1) и f(-1), а затем для каждой испытываемой дроби проверяем указанное условие. Если хотя бы одно из чисел дробное, то корнем многочлена f(x) не является.

Решение: По теореме 1 корни данного многочлена следует искать среди несократимых дробей, числители которых являются делителями 18, а знаменателями 8. Следовательно, если несократимая дробь есть корень f(x), то p равно одному из чисел: ±1, ±2, ±3, ±6, ±9, ±18; q равно одному из чисел

±1, ±2,±4, ±8.

Учитывая, что = , = , знаменатели дробей будем брать лишь положительными.

Итак, рациональными корнями данного многочлена могут быть следующие числа: ±1, ±2, ±3, ±6, ±9, ±18, ± , ± , ± , ± , ± , ± , ± , ± , ± .

Воспользуемся вторым необходимым.

Так как f(1)=72, f(-1)=120,отсюда в частности следует, что 1 и -1 не являются корнями f(x). Теперь для каждой возможной дроби будем проверять условия теоремы 2 при m=1 и m=-1, т. е. будем устанавливать, целыми или дробными являются числа: = и =

Результаты сведём в таблицу, где буквы”ц” и “д” означают соответственно, целым или дробным является число или

Из полученной таблицы видно, что и являются целыми лишь в тех случаях, когда равно одному из чисел: 2, -2, 3, -3, , , , .

По следствию из теоремы Безу число α- корень f(x) тогда и только тогда, когда f(x) (x-α). Следовательно, для проверки оставшихся девяти целых чисел можно применить схему Горнера деление многочлена на двучлен.

2 – корень.

Отсюда имеем: x=2 – простой корень f(x). Остальные корни данного многочлена совпадают с корнями многочлена.

F 1 (x) = 8x 4 +2x 3 -73x 2 -18x+9.

Аналогично проверим остальные числа.

2 – не корень, 3 – корень, -3 –корень, 9 – не корень, ½ - не корень, -1/2 –корень, 3/2 – не корень, ¼ - корень.

Итак, многочлен f(x)= 8x 5 -14x 4 -77x 3 +128x 2 +45x-18 имеет пять рациональных корней:{2, 3, -3, -1/2, ¼}.

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Решения данного рода уравнений можно выполнять по общей схеме решения уравнений высших степеней. Данного рода уравнения имеют решения в радикалах благодаря методу Феррари, позволяющему свести решения к кубическому уравнению. Однако в большинстве случаев с помощью разложения многочлена на множители удается быстро найти решение уравнения.

Допустим, дано двучленное уравнение четвертой степени:

Выполним разложение \ на множители многочлена:

Определяем корни первого квадратного трехчлена:

Определяем корни второго трехчлена:

В результате, исходное уравнение имеет четыре комплексных корня:

Где можно решить уравнения 4 степени онлайн?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте.А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Цели:

  1. Систематизировать и обобщить знания и умения по теме: Решения уравнений третьей и четвертой степени.
  2. Углубить знания, выполнив ряд заданий, часть из которых не знакома или по своему типу, или способу решения.
  3. Формирование интереса к математике через изучение новых глав математики, воспитание графической культуры через построение графиков уравнений.

Тип урока : комбинированный.

Оборудование: графопроектор.

Наглядность: таблица «Теорема Виета».

Ход урока

1. Устный счет

а) Чему равен остаток от деления многочлена р n (х) = а n х n + а n-1 х n-1 + ... + а 1 х 1 + a 0 на двучлен х-а?

б) Сколько корней может иметь кубическое уравнение?

в) С помощью чего мы решаем уравнение третьей и четвертой степени?

г) Если b четное число в квадратном уравнение, то чему равен Д и х 1 ;х 2

2. Самостоятельная работа (в группах)

Составить уравнение, если известны корни (ответы к заданиям закодированы) Используется «Теорема Виета»

1 группа

Корни: х 1 = 1; х 2 = -2; х 3 = -3; х 4 = 6

Составить уравнение:

B=1 -2-3+6=2; b=-2

с=-2-3+6+6-12-18= -23; с= -23

d=6-12+36-18=12; d= -12

е=1(-2)(-3)6=36

х 4 - 2 х 3 - 23х 2 - 12 х + 36 = 0 (это уравнение решает потом 2 группа на доске)

Решение . Целые корни ищем среди делителей числа 36.

р = ±1;±2;±3;±4;±6…

р 4 (1)=1-2-23-12+36=0 Число 1 удовлетворяет уравнению, следовательно, =1 корень уравнения. По схеме Горнера

р 3 (x) = х 3 -х 2 -24x -36

р 3 (-2) = -8 -4 +48 -36=0, х 2 =-2

р 2 (x) = х 2 -3х -18=0

х 3 =-3, х 4 =6

Ответ: 1;-2;-3;6 сумма корней 2 (П)

2 группа

Корни: х 1 = -1; х 2 = х 3 =2; х 4 =5

Составить уравнение:

B=-1+2+2+5-8; b= -8

с=2(-1)+4+10-2-5+10=15; с=15

D=-4-10+20-10= -4; d=4

е=2(-1)2*5=-20;е=-20

8+15+4х-20=0 (это уравнение решает на доске 3 группа)

р = ±1;±2;±4;±5;±10;±20.

р 4 (1)=1-8+15+4-20=-8

р 4 (-1)=1+8+15-4-20=0

р 3 (x) = х 3 -9х 2 +24x -20

р 3 (2) = 8 -36+48 -20=0

р 2 (x) = х 2 -7х +10=0 х 1 =2; х 2 =5

Ответ: -1;2;2;5 сумма корней 8(Р)

3 группа

Корни: х 1 = -1; х 2 =1; х 3 =-2; х 4 =3

Составить уравнение:

В=-1+1-2+3=1;в=-1

с=-1+2-3-2+3-6=-7;с=-7

D=2+6-3-6=-1; d=1

е=-1*1*(-2)*3=6

х 4 - х 3 - 7х 2 + х + 6 = 0 (это уравнение решает потом на доске 4 группа)

Решение. Целые корни ищем среди делителей числа 6.

р = ±1;±2;±3;±6

р 4 (1)=1-1-7+1+6=0

р 3 (x) = х 3 - 7x -6

р 3 (-1) = -1+7-6=0

р 2 (x) = х 2 -х -6=0; х 1 =-2; х 2 =3

Ответ:-1;1;-2;3 Сумма корней 1(О)

4 группа

Корни: х 1 = -2; х 2 =-2; х 3 =-3; х 4 =-3

Составить уравнение:

B=-2-2-3+3=-4; b=4

с=4+6-6+6-6-9=-5; с=-5

D=-12+12+18+18=36; d=-36

е=-2*(-2)*(-3)*3=-36;е=-36

х 4 + 4х 3 – 5х 2 – 36х -36 = 0 (это уравнение решает потом 5 группа на доске)

Решение. Целые корни ищем среди делителей числа -36

р = ±1;±2;±3…

р(1)= 1 + 4-5-36-36 = -72

р 4 (-2) = 16 -32 -20 + 72 -36 = 0

р 3 (х) = х 3 +2х 2 -9х-18 = 0

р 3 (-2)= -8 + 8 + 18-18 = 0

р 2 (х) = х 2 -9 = 0; x=±3

Ответ: -2; -2; -3; 3 Сумма корней-4 (Ф)

5 группа

Корни: х 1 = -1; х 2 =-2; х 3 =-3; х 4 =-4

Составить уравнение

х 4 + 10х 3 + 35х 2 + 50х + 24 = 0 (это уравнение решает потом 6группа на доске)

Решение . Целые корни ищем среди делителей числа 24.

р = ±1;±2;±3

р 4 (-1) = 1 -10 + 35 -50 + 24 = 0

р 3 (х) = x- 3 + 9х 2 + 26x+ 24 = 0

p 3 (-2) = -8 + 36-52 + 24 = О

р 2 (х) = x 2 + 7x+ 12 = 0

Ответ:-1;-2;-3;-4 сумма-10 (И)

6 группа

Корни: х 1 = 1; х 2 = 1; х 3 = -3; х 4 = 8

Составить уравнение

B=1+1-3+8=7;b=-7

с=1 -3+8-3+8-24= -13

D=-3-24+8-24= -43; d=43

х 4 - 7х 3 - 13х 2 + 43 x - 24 = 0 (это уравнение решает потом 1 группа на доске)

Решение . Целые корни ищем среди делителей числа -24.

р 4 (1)=1-7-13+43-24=0

р 3 (1)=1-6-19+24=0

р 2 (x)= х 2 -5x - 24 = 0

х 3 =-3, х 4 =8

Ответ: 1;1;-3;8 сумма 7 (Л)

3. Решение уравнений с параметром

1. Решить уравнение х 3 + 3х 2 + mх - 15 = 0; если один из корней равен (-1)

Ответ записать в порядке возрастания

R=Р 3 (-1)=-1+3-m-15=0

х 3 + 3х 2 -13х - 15 = 0; -1+3+13-15=0

По условию х 1 = - 1; Д=1+15=16

Р 2 (х) = х 2 +2х-15 = 0

х 2 =-1-4 = -5;

х 3 =-1 + 4 = 3;

Ответ:- 1;-5; 3

В порядке возрастания: -5;-1;3. (Ь Н Ы)

2. Найти все корни многочлена х 3 - 3х 2 + ах - 2а + 6, если остатки от его деления на двучлены х-1 и х +2 равны.

Решение: R=Р 3 (1) = Р 3 (-2)

Р 3 (1) = 1-3 + а- 2а + 6 = 4-а

Р 3 (-2) = -8-12-2а-2а + 6 = -14-4а

x 3 -Зх 2 -6х + 12 + 6 = х 3 -Зх 2 -6х + 18

x 2 (x-3)-6(x-3) = 0

(х-3)(х 2 -6) = 0

3) а=0, х 2 -0*х 2 +0 = 0; х 2 =0; х 4 =0

а=0; х=0; х=1

а>0; х=1; х=а ± √а

2. Составить уравнение

1 группа . Корни: -4; -2; 1; 7;

2 группа . Корни: -3; -2; 1; 2;

3 группа . Корни: -1; 2; 6; 10;

4 группа . Корни: -3; 2; 2; 5;

5 группа . Корни: -5; -2; 2; 4;

6 группа . Корни: -8; -2; 6; 7.

2x 4 + 5x 3 - 11x 2 - 20x + 12 = 0

Для начала нужно методом подбора найти один корень. Обычно он является делителем свободного члена. В данном случае делителями числа 12 являются ±1, ±2, ±3, ±4, ±6, ±12. Начнем их подставлять по-очереди:

1: 2 + 5 - 11 - 20 + 12 = -12 ⇒ число 1

-1: 2 - 5 - 11 + 20 + 12 = 18 ⇒ число -1 не является корнем многочлена

2: 2 ∙ 16 + 5 ∙ 8 - 11 ∙ 4 - 20 ∙ 2 + 12 = 0 ⇒ число 2 является корнем многочлена

Мы нашли 1 из корней многочлена. Корнем многочлена является 2, а значит исходный многочлен должен делиться на x - 2 . Для того, чтобы выполнить деление многочленов, воспользуемся схемой Горнера:

2 5 -11 -20 12
2

В верхней строке выставляются коэффициенты исходного многочлена. В первой ячейке второй строки ставится найденный нами корень 2. Во второй строке пишутся коэффициенты многочлена, который получится в результате деления. Они считаются так:

2 5 -11 -20 12
2 2
Во вторую ячейку второй строки запишем число 2, просто перенеся его из соответствующей ячейки первой строки.
2 5 -11 -20 12
2 2 9
2 ∙ 2 + 5 = 9
2 5 -11 -20 12
2 2 9 7
2 ∙ 9 - 11 = 7
2 5 -11 -20 12
2 2 9 7 -6
2 ∙ 7 - 20 = -6
2 5 -11 -20 12
2 2 9 7 -6 0
2 ∙ (-6) + 12 = 0

Последнее число - это остаток от деления. Если он равен 0, значит мы все верно посчитали.

2x 4 + 5x 3 - 11x 2 - 20x + 12 = (x - 2)(2x 3 + 9x 2 + 7x - 6)

Но это еще не конец. Можно попробовать разложить таким же способом многочлен 2x 3 + 9x 2 + 7x - 6.

Опять ищем корень среди делителей свободного члена. Делителями числа -6 являются ±1, ±2, ±3, ±6.

1: 2 + 9 + 7 - 6 = 12 ⇒ число 1 не является корнем многочлена

-1: -2 + 9 - 7 - 6 = -6 ⇒ число -1 не является корнем многочлена

2: 2 ∙ 8 + 9 ∙ 4 + 7 ∙ 2 - 6 = 60 ⇒ число 2 не является корнем многочлена

-2: 2 ∙ (-8) + 9 ∙ 4 + 7 ∙ (-2) - 6 = 0 ⇒ число -2 является корнем многочлена

Напишем найденный корень в нашу схему Горнера и начнем заполнять пустые ячейки:

2 5 -11 -20 12
2 2 9 7 -6 0
-2 2
Во вторую ячейку третьей строки запишем число 2, просто перенеся его из соответствующей ячейки второй строки.
2 5 -11 -20 12
2 2 9 7 -6 0
-2 2 5
-2 ∙ 2 + 9 = 5
2 5 -11 -20 12
2 2 9 7 -6 0
-2 2 5 -3
-2 ∙ 5 + 7 = -3
2 5 -11 -20 12
2 2 9 7 -6 0
-2 2 5 -3 0
-2 ∙ (-3) - 6 = 0

Таким образом мы исходный многочлен разложили на множители:

2x 4 + 5x 3 - 11x 2 - 20x + 12 = (x - 2)(x + 2)(2x 2 + 5x - 3)

Многочлен 2x 2 + 5x - 3 тоже можно разложить на множители. Для этого можно решить квадратное уравнение через дискриминант , а можно поискать корень среди делителей числа -3. Так или иначе, мы придем к выводу, что корнем этого многочлена является число -3

2 5 -11 -20 12
2 2 9 7 -6 0
-2 2 5 -3 0
-3 2
Во вторую ячейку четвертой строки запишем число 2, просто перенеся его из соответствующей ячейки третьей строки.
2 5 -11 -20 12
2 2 9 7 -6 0
-2 2 5 -3 0
-3 2 -1
-3 ∙ 2 + 5 = -1
2 5 -11 -20 12
2 2 9 7 -6 0
-2 2 5 -3 0
-3 2 -1 0
-3 ∙ (-1) - 3 = 0

Таким образом мы исходный многочлен разложили на линейные множители.

Поделиться