Магнетизм - от фалеса до максвелла. Магнетизм для чайников: основные формулы, определение, примеры Магнетизм ученые

После того как Ампер высказал догадку, что никаких «магнитных зарядов» не существует и что намагничивание тел объясняется молекулярными круговыми токами (§§ 57 и 61), прошло почти сто лет, когда, наконец, это предположение было с полной убедительностью доказано прямыми экспериментами. Вопрос о природе магнетизма был решен опытами в области так называемых магнето-механических явлений. Методы осуществления и расчета этих опытов были разработаны на основе развитых Резерфордом в 1911 г. и Бором в 1913 г. представлений о строении атомов (впрочем, некоторые близкие по замыслу эксперименты проводились и раньше, в частности Максвеллом, но безуспешно).

При исследовании явлений радиоактивности Резерфордом было установлено, что электроны в атомах вращаются по замкнутым орбитам вокруг положительно заряженных ядер атомов; Бор показал при теоретическом анализе спектров, что только некоторые из этих орбит устойчивы; наконец, вслед за этим (в 1925 г., также на основе анализа спектров) было обнаружено вращение электронов вокруг своей оси, как бы аналогичное суточному вращению Земли; совокупность этих данных привела к ясному пониманию природы амперовых круговых токов. Стало очевидным, что основными элементами магнетизма в веществах является: или вращение электронов вокруг ядер, или вращение электронов вокруг своей оси, или же оба эти вращения одновременно.

При постановке в 1914-1915 гг. первых успешных магнетомеханических опытов, которые пояснены ниже, вначале предполагалось, что магнитные свойства веществ полностью определяются орбитальным движением электронов вокруг ядер. Однако количественные результаты упомянутых опытов показали, что свойства ферромагнитных и парамагнитных веществ определяются не движением электронов по орбитам, а вращением электронов вокруг своей оси.

Чтобы понять замысел магнетомеханических опытов и правильно оценить выводы, к которым привели эти опыты, нужно вычислить отношение магнитного момента кругового тока, создаваемого движением электрона, к механическому моменту количества движения электрона.

Величина любого тока, как известно, определяется количеством электричества, проходящего через поперечное сечение в единицу времени; очевидно, что величина тока, эквивалентного орбитальному вращению электрона, равна произведению заряда электрона на число оборотов в единицу времени где скорость движения электрона и радиус орбиты. Указанное произведение выражает величину эквивалентного тока в электростатических единицах. Чтобы получить величину тока в электромагнитных единицах, указанное произведение нужно разделить на скорость света (стр. 296); таким образом,

Круговой ток образует такое же магнитное поле, как магнитный листок с моментом, равным произведению тока на обтекаемую им площадь [формула (17)]:

Таким образом, мы видим, что движение электрона вокруг ядра сообщает атому магнитный момент, равный

Сопоставляя этот магнитный момент с механическим моментом количества движения электрона:

находим, что отношение магнитного момента к механическому импульсу не зависит ни от скорости движения электрона, ни от радиуса орбитьи

И действительно, более полная теория показывает, что уравнение (33) является справедливым не только для круговых орбит, но также и для эллиптических орбит электрона.

Вращение электрона вокруг своей оси сообщает самому электрону некоторый магнитный момент. Вращение электрона вокруг своей оси называют спином (от английского слова «спин», означающего вращение вокруг оси). Если предположить, что электрон имеет шарообразную форму и что заряд электрона распределен с равномерной плотностью по сферической поверхности, то вычисления показывают, что отношение спинового магнитного момента электрона к механическому импульсу вращения электрона вокруг своей оси в два раза больше, чем аналогичное отношение для орбитального движения:

Изложенные соображения о пропорциональности магнитного момента и импульса вращения указывают на то, что в известных условиях магнитные явления могут оказаться связанными с гироскопическими эффектами. Эту связь магнитных явлений с гироскопическими эффектами пытался экспериментально обнаружить еще Максвелл, но только Эйнштейну и де Гаазу (1915 г.), А. Ф. Иоффе и П. Л. Капице (1917 г.) и Барнету (1914 г. и 1922 г.) впервые удалось произвести удачные опыты. Эйнштейн и де Гааз установили, что железный стержень, подвешенный в соленоиде в качестве сердечника, при намагничивании током, пропускаемым через соленоид, приобретает импульс вращения (рис. 256). Чтобы получить заметный эффект, Эйнштейн и де Гааз воспользовались явлением резонанса, производя периодическое перемагничивание переменным током с частотой, совпадающей с частотой собственных крутильных колебаний стержня.

Рис. 256. Схема опыта Эйнштейна и де Гааза, а - зеркальце, О - источник света.

Эффект Эйнштейна и де Гааза объясняется следующим образом. При намагничивании оси элементарных магнитов - «электронных волчков» - ориентируются в направлении магнитного поля; геометрическая сумма импульсов вращения «электронных волчков» становится отличной от нуля, а так как в начале опыта импульс вращения железного стержня (рассматриваемого как механическая система атомов) был равен нулю, то по закону сохранения импульса вращения

(т. I, § 38) вследствие намагничивания стержень в целом должен приобрести импульс вращения, равный по величине, но противоположный по направлению геометрической сумме импульсов вращения «электронных волчков».

Барнет произвел опыт, обратный опыту Эйнштейна и де Гааза, а именно, Барнет вызвал намагничивание железного стержня, приведя его в быстрое вращение; намагничивание происходило в направлении, противоположном оси вращения. Подобно тому как вследствие суточного вращения Земли ось гирокомпаса принимает положение, параллельное земной оси (т. I, § 38), точно так же в опыте Барнета оси «электронных волчков» принимают положение-, параллельное оси вращения железного стержня (при этом вследствие того, что заряд электрона отрицателен, направление намагниченности будет противоположно оси вращения стержня).

В опытах А. Ф. Иоффе и П. Л. Капицы (1917 г.) железный намагниченный стержень, подвешенный на нити, подвергался быстрому нагреванию выше точки Кюри. При этом упорядоченное размещение «элементарных волчков», оси которых вследствие намагниченности были ориентированы по полю параллельно оси стержня, утрачивалось и заменялось хаотическим распределением направления осей, так что суммарный магнитный и механический моменты «элементарных волчков» оказывались близкими к нулю (рис. 257). В силу закона сохранения момента количества движения железный стержень при размагничивании приобретал импульс вращения.

Рис. 257. Схема, поясняющая идею опыта Иоффе - Капицы. а - железный стержень намагничен; б - стержень размагничен нагреванием выше точки Кюри.

Измерение магнитного момента и импульса вращения в опытах Эйнштейна и де Гааза, в опытах Барнета и в опытах Иоффе и Капицы, которые были неоднократно повторены многими учеными, показало, что отношение этих величин определяется формулой (34), а не формулой (33). Это указывает на то, что основным элементом магнетизма в железе (и вообще в ферромагнитных телах) является спин - осевое вращение электронов, а не орбитальное движение электронов вокруг положительных ядер атомов.

Однако и орбитальное движение электронов сказывается на магнитных свойствах веществ: магнитный момент атомов, ионов и молекул представляет собой геометрическую сумму спиновых и орбитальных магнитных моментов (впрочем, строение атомов таково, что определяющую роль в этой сумме опять-таки имеют спиновые моменты).

Когда суммарный магнитный момент частицы равен нулю, то вещество оказывается диамагнитным. Формально диамагнитные вещества характеризуются магнитной проницаемостью меньшей, чем единица следовательно, отрицательной магнитной восприимчивостью это означает, что диамагнитные вещества намагничиваются в направлении, противоположном напряженности намагничивающего поля.

Электронная теория объясняет диамагнетизм влиянием магнитного поля на орбитальное движение электронов вокруг ядер. Это движение электрона, как уже было пояснено, эквивалентно току. Когда на атом начинает действовать магнитное поле и напряженность его возрастает от нуля до некоторого значения «индуцируется добавочный ток», который согласно закону Ленца (§ 71) имеет такое направление, что созданный этим «добавочным током» магнитный момент всегда направлен противоположно возросшему от нуля до полю. Если намагничивающее поле перпендикулярно к плоскости орбиты, то оно просто изменяет скорость движения электрона по орбите, и это измененное значение скорости сохраняется все время, пока атом пребывает в магнитном поле; если же поле не перпендикулярно к плоскости орбиты, то возникает и устанавливается прецессионное движение оси орбиты вокруг направления поля (аналогично прецессии оси волчка вокруг вертикали, проходящей через точку опоры волчка) (т. I, § 38).

Вычисления приводят к нижеследующей формуле для магнитной восприимчивости диамагнитных веществ:

здесь заряд и масса электрона, число электронов в атоме, число атомов в единице объема вещества, средний радиус электронных орбит.

Таким образом, диамагнитный эффект является общим свойством всех веществ; однако этот эффект мал, и поэтому он может быть наблюдаем только в том случае, если нет противоположного ему сильного парамагнитного эффекта.

Теория парамагнетизма была разработана Ланжевеном в 1905 г. и развита на основе современных представлений Флеком, Стонером и др. (в 1927 и в последующие годы). В зависимости от строения атома магнитные моменты, создаваемые отдельными внутриатомными электронами, могут или взаимно компенсироваться, так что атом в целом оказывается немагнитным (подобные вещества проявляют диамагнитные свойства), или же результирующий магнитный момент атома оказывается отличным от нуля. В этом последнем случае, как показывает квантовая механика, магнитный момент атома (точнее, его электронной оболочки) закономерно выражается (т. III, §§ 59, 67-70) через своего рода «атом магнетизма» По квантовой

механике этим «атомом магнетизма» является магнитный момент создаваемый вращением электрона вокруг ядра, - магнетон Бора, равный

(здесь заряд электрона, постоянная Планка, с - скорость света, масса электрона).

Точно такой же магнитный момент имеет каждый электрон независимо от его движения вокруг ядра, но вследствие своего строения или, как условно говорят, вследствие своего вращения вокруг оси. Магнитный момент спина равен магнетону Бора, тогда как механический момент спина [в соответствии с формулами (33) и (34)] равен половине орбитального момента электрона.

Некоторые атомные ядра также имеют магнитные моменты, но в тысячи раз меньшие, чем магнитные моменты, присущие электронным оболочкам атомов § 115). Магнитные моменты ядер выражаются через ядерный магнетон, величина которого определяется такой же формулой, как величина магнетона Бора, если в этой формуле заменить массу электрона массой протона.

По теории Ланжевена, при намагничивании парамагнитного вещества молекулы ориентируются своими магнитными моментами по направлению силовых линий поля, но молекулярно-тепловое

движение в той или иной мере расстраивает эту ориентацию. Молекулярная картина намагничивания парамагнитного вещества аналогична поляризации диэлектрика (§ 22), если, конечно, представить себе, что жесткие электрические диполи заменены элементарными магнитиками, а электрическое поле - магнитным полем. О степени ориентации элементарных магнитиков в направлении намагничивающего поля можно судить по величине средней проекции магнитного момента на направление поля (рассчитанной на одну молекулу). При беспорядочном расположении осей элементарных магнитиков когда же все элементарные магнитики ориентированы в направлении поля,

Ланжевен показал, что при температуре и при напряженности внутреннего магнитного поля утр аналогично формуле для в § 22) отношение выражается следующей функцией:

При малых значениях как уже упоминалось в § 22, вышеуказанная функция Ланжевена (36) приобретает значение у, так что в этом случае

Очевидно, что намагниченность равна произведению величины на число молекул в единице объема:

Таким образом, при неизменной плотности вещества намагниченность обратно пропорциональна абсолютной температуре. Этот факт эмпирически установлен Кюри в 1895 г.

Для большинства парамагнитных веществ мало в сравнении с единицей, поэтому, подставив в формулу и заменив через можно пренебречь величиной в сравнении с единицей; тогда получаем:

где означает удельную магнитную восприимчивость (т. е. восприимчивость, отнесенную к единице массы). Эта формула носит название закона Кюри. Для многих парамагнетиков более точной является нижеследующая, более сложная форма закона Кюри [формула (31)]:

Величина для некоторых парамагнитных веществ положительна, для других отрицательна.

Парамагнитное вещество при намагничивании втягивается в пространство между полюсами магнита. Следовательно, при намагничивании парамагнитное вещество может производить работу, тогда как на размагничивание работа должна быть затрачена. В связи с этим, как было теоретически предсказано Дебаем, парамагнитные вещества при быстром адиабатном размагничивании должны испытывать некоторое охлаждение (в особенности в той области весьма низких температур, где магнитная восприимчивость парамагнетика сильно возрастает при понижении температуры). Опыты, проведенные с 1933 г. в ряде лабораторий, подтвердили выводы теории и послужили основой для разработки магнитного метода глубокого охлаждения тел. Парамагнитное вещество обычными методами охлаждают в магнитном поле до температуры жидкого гелия, после чего вещество быстро удаляют из магнитного поля, что и вызывает в этом веществе еще большее понижение температуры. Этим методом получают температуры, отличающиеся от абсолютного нуля на тысячные доли градуса.

Характерной особенностью ферромагнитных веществ является то, что в относительно слабых полях они намагничиваются почти до полного насыщения. Стало быть, в ферромагнетиках существуют какие-то силы, которые, преодолевая влияние теплового движения, содействуют упорядоченной ориентации элементарных магнитных моментов. Предположение о существовании внутреннего поля сил, содействующих намагничиванию ферромагнетиков, впервые было высказано русским ученым Б. Л. Розингом в 1892 г. и обосновано П. Вейсом в 1907 г.

В ферромагнитных веществах элементарными магнитами являются вращающиеся вокруг своей оси электроны - спины. В развитие идей Вейса предполагают, что спины, будучи расположены в узлах кристаллической решетки и взаимодействуя друг с другом, создают внутреннее поле, которое в отдельных мелких участках ферромагнитного кристалла (эти участки называют доменами) поворачивает все спины в одну сторону, так что каждый такой участок (домен) оказывается спонтанно (самопроизвольно) намагниченным до насыщения. Однако смежные участки кристалла в отсутствие внешнего магнитного поля имеют неодинаковое направление

намагниченности. Вычисления показывают, что, например, в кристаллах железа «самопроизвольное» намагничивание может происходить в направлении любого ребра кубической кристаллической ячейки.

Слабое внешнее магнитное поле заставляет все спины в домене повернуться в направлении того ребра кубической ячейки, которое составляет наименьший угол с направлением намагничивающего поля.

Рис. 258. Ориентация спинов в доменах при намагничивании ферромагнетика.

Более сильное поле вызывает новый поворот спинов ближе к направлению поля. Магнитное насыщение достигается тогда, когда магнитные моменты всех спонтанно намагниченных микрокристаллических участков окажутся ориентированными в направлении поля. При намагничивании поворачиваются не домены, но все спины в них; все спины в каком-либо микрокристаллике поворачиваются единовременно, как солдаты в строю; этот поворот спинов происходит сначала в одних доменах, потом в других. Таким образом, процесс намагничивания ферромагнитного вещества является ступенчатым (рис. 258).

Экспериментально ступенчатость намагничивания впервые была обнаружена Баркгаузеном (1919 г.). Простейший опыт, пригодный для демонстрации этого явления, заключается в следующем: железный стерженек, вложенный в катушку, соединенную с телефоном, постепенно намагничивают, медленно поворачивая подковообразный магнит, подвешенный над катушкой (рис. 259); при этом в телефоне слышится характерный шорох, который распадается на отдельные удары, если намагничивающее поле изменять достаточно медленно (на сотые доли эрстеда в 1 сек.).

Рис. 259. Опыт Баркгаузена.

Оказалось, что эффект Баркгаузена исключительно велик при намагничивании тонкой никелевой проволоки, которая предварительно была завита в локон протягиванием через блок, а затем вложена в капилляр, удерживающий ее принудительно в выпрямленном состоянии. Прерывистый характер намагничивания сказывается на диаграмме намагничивания в виде мельчайших ступенчатых уступов (рис. 260).

Области самопроизвольного намагничивания - домены - были экспериментально обнаружены и исследованы Н. С. Акуловым, который использовал для этого разработанный им порошковый метод магнитной дефектоскопии. Поскольку домены аналогичны маленьким магнитикам, на границе между ними поле не однородно.

Рис. 260. Ступенчатый характер кривых намагничивания. Участки, отмеченные окружностями, приведены в увеличенном масштабе.

Чтобы выявить очертания доменов, образец размагниченного ферромагнитного вещества помещают под микроскопом и покрывают поверхность образца жидкостью со взвешенной в ней тончайшей железной пылью. Железная пыль, собираясь около границ доменов, четко обозначает их контуры (рис. 261),

Рис. 261. Домены в чистом железе (а), в кремнистом железе (б) и в кобальте (в).

В поясненной выше картине происхождения ферромагнитных свойств некоторое время оставалась невыясненной одна важная часть, а именно природа сил, образующих то внутреннее поле, которое вызывает упорядоченную ориентацию спинов внутри доменов. В 1927 г. советский физик Я. Г. Дорфман осуществил опыт, показавший, что силы внутреннего поля в ферромагнетиках не

являются силами магнитного взаимодействия, а имеют иное происхождение. Выделив узкий пучок из потока быстро движущихся электронов («бета-лучей», выбрасываемых радиоактивными веществами), Дорфман заставил эти электроны проходить через тонкую ферромагнитную пленку никеля; за пленкой никеля была поставлена фотографическая пластинка, позволявшая после проявления определить место встречи с нею электронов, так что можно было с большой точностью измерить угол, на который электроны отклонялись, проходя через намагниченную пленку никеля (рис. 262). Расчет показывает, что если бы внутреннее поле в ферромагнетике имело природу обычных магнитных взаимодействий, то след электронного пучка сместился бы на фотопластинке в установке Дорфмана почти на 2 см; в действительности смещение оказалось ничтожно малым.

Рис. 262. Схема, поясняющая идею опыта Дорфмана.

Теоретические исследования проф. Френкеля (1928 г.) и позже Блоха, Стонера и Слейтера показали, что упорядоченная ориентация спинов в доменах вызывается особого рода силами, существование которых было вскрыто квантовой механикой и которые проявляются при химическом взаимодействии атомов (в ковалентной связи; т. I, § 130). Эти силы, согласно принятому в квантовой механике способу их вычисления и истолкования, называют обменными силами. Вычисления показали, что энергия обменного взаимодействия между атомами железа в монокристалле в сотни раз превышает энергию магнитного взаимодействия. Это согласуется с измерениями, которые были сделаны Я. Г. Дорфманом в упомянутых выше опытах.

Тем не менее практически наиболее важные свойства ферромагнетиков определяются не столько обменным взаимодействием, но преимущественно магнитным взаимодействием. Дело в том, что хотя существование областей «самопроизвольной» намагниченности (доменов) в ферромагнетиках вызывается обменными силами (упорядоченная ориентация спинов соответствует минимальной энергии обменного взаимодействия, т. е. является наиболее устойчивой), но преобладающие направления намагниченности доменов определяются симметрией кристаллической решетки и соответствуют минимуму энергии магнитного взаимодействия. А процесс технического намагничивания, как пояснено выше (рис. 258), заключается в опрокидывании всех спинов внутри отдельных доменов сначала в направлении той кристаллографической оси легкого намагничивания, которая составляет наименьший угол с направлением поля, а потом и в повороте спинов по направлению поля. Затраты энергии, необходимые для осуществления такого ступенчатого опрокидывания спинов поочередно во всех

доменах и поворота их по полю, а также ряд величин, которые зависят от указанных затрат энергии (величин, определяющих намагничивание, магнитострикцию и другие явления), наиболее успешно вычисляются методами, которые разработаны Н. С. Акуловым (с 1928 г.) и Е. Е. Кондорским (с 1937 г.).

Рис. 263. Сопоставление теоретических кривых намагниченности с экспериментальными данными (они показаны кружочками) для монокристалла железа.

Из рис. 263, который мы приводим в качестве одного из примеров, можно видеть, что теоретические кривые, полученные по уравнениям Н. С. Акулова, хорошо согласуются с экспериментальными данными; диаграмма справа представляет намагничивание монокристалла железа в направлении пространственной диагонали кубической решетки, диаграмма слева - то же в направлении диагонали грани куба,

Элементарным магнитом является электрон; если говорить более точно, то - не сам электрон, а его вращение - вращение того самого колесика, в виде которого мы представляем себе электрон. Если в электричестве он выполняет функции носителя энергии, как атомы и молекулы воздуха в пневматике, то в магнетизме его роль иная: он является элементом, упорядочивающим взаимное расположение и вращение. Для уяснения сказанного позволим себе еще одно образное сравнение: если в электричестве электрон - как солдат в бою, то в магнетизме - как солдат в строю.

У электрона есть все атрибуты магнита: активные полюса и активная боковая сторона; благодаря им он выстраивается соответствующим образом по отношению к другим электронам. Полюса магнита (в данном случае - торцы электрона) получили географические названия: северный и южный. Произошло это не случайно, наблюдая за поведением магнитных стрелок, люди отмечали их ориентацию на Северный и Южный полюса Земли. Понимая, что Земля сама - магнит, и глядя мысленно из космоса на ее Северный полюс, мы отметим вращение против часовой стрелки (Солнце восходит на Востоке, а садится на Западе); отсюда - и северный полюс магнита. При взгляде на Южный полюс мы обнаружим направление вращения Земли, естественно, по часовой стрелке; по аналогии соответствующий торец магнита назван южным полюсом. К счастью, эти согласованные с названиями полюсов их направления вращения оказались такими, какими они должны быть в электромагнитных явлениях, и ниже мы это покажем.

А пока перед нашим взором - электрон; и он расположен так, что его ось вращения - вертикальна, а направление вращения, если по-смотреть на него сверху - против часовой стрелки; следовательно, его северный полюс будет сверху, а южный - снизу, - привычное географическое расположение. Ближайшая к нам боковая сторона элек-трона смещается вправо. Договоримся и впредь именно так представлять себе расположение электрона и любого магнита в пространстве.

Если рядом окажутся несколько электронов и если ничто не будет мешать, то они, как мы уже говорили, выстроятся соосно с одним направлением вращения, образуя вращающийся вокруг своей оси шнур; это - тоже магнит, только в нем магнитные полюса будут про-являться, разумеется, только на крайних электронах, и эти проявления сохранятся неизменными: каким бы длинным не был шнур, его полюса всегда будут воздействовать на окружение неизменно. Теперь мы можем сказать так, что известная из электрофизики магнитная силовая линия есть соосно расположенные и вращающиеся в одном направлении электроны; синонимами магнитной силовой линии являются магнитный шнур и электронный шнур.

Тело атома, представляющее собой вращающуюся торовую оболочку, является по определению также магнитным шнуром, только этот шнур замкнут и поэтому не имеет полюсов. Впрочем, разорванный атом становится обычным магнитным шнуром; обычным - в магнитных проявлениях, но необычным в силе этих проявлений: тело атома более плотно и более прочно.


Однонаправленность вращения шнуров в магнитном пучке - противоестественна и может удерживаться только при определенном внешнем воздействии; такое воздействие могут оказывать атомы и эфирный ветер.

Атомы некоторых химических веществ, например железа, никеля и кобальта, устроены таким образом, что выстраивают прилипшие к ним электроны в магнитные шнуры. Если в момент затвердевания этих веществ их атомы расположены так, что все их магнитные шнуры образуют один магнитный пучок, то полученное твердое тело окажется магнитом. В дальнейшем атомы такого естественного магнита будут удерживать образовавшийся магнитный пучок и противодействовать стремлению отдельных его магнитных шнуров сменить свое направление вращения на обратное. Действие магнитного пучка распространяется и на прилегающие к магниту пространства, то есть за его пределами: находящиеся там свободные электроны будут выстраиваться естественным образом в линии, как бы наращивая магнитные шнуры твердого тела; правда, располагаться плотно друг к другу шнуры в свободном пространстве уже не могут - будут мешать сталкивающиеся оболочки, - и выходящий из твердого тела магнитный пучок будет расходиться веером.

Другим фактором, удерживающим магнитный пучок, является разная скорость эфирного ветра; это явление имеет большое значение в электромагнетизме, и поэтому рассмотрим его более подробно. Представим себе определенный магнитный шнур, расположенный поперек эфирного потока. Если скорость эфира в сечении потока одинакова, то такой ветер может только прогибать или отклонять шнур, но повлиять на направление его вращения не сможет. Другое дело, если скорость эфира в сечении потока окажется разной: с одной стороны шнура больше, а с другой - меньше; такая разность скоростей обдувающего эфира будет либо содействовать вращению магнитного шнура, либо препятствовать ему. При содействии шнур будет чувствовать себя в безопасности, а при сопротивлении - рано или поздно вынужден будет поменять направление своего вращения.

Точно такое же воздействие оказывает эфирный ветер с разными скоростями на магнитный пучек. Если эфирный поток, пронизывающий его, имеет большую скорость с одной стороны, и она убывает по мере смещения к другой, то все магнитные шнуры пучка вынуждены будут вращаться в одном направлении, несмотря на их нежелание это делать. Более того, эфирный ветер с разными скоростями не только ориентирует магнитные шнуры, но и содействует их формированию: электроны, оказавшиеся в поле действия эфирного потока с такими скоростями, будут выстраиваться в соосность с одним направлением вращения, то есть будут объединяться в шнуры.


Благодаря различию свойств на уровне атомно-молекулярного строения все вещества по своим магнитным свойствам подразделяются на три класса — ферромагнетики, парамагнетики и диамагнетики.

Согласно закону Ампера , электрический ток производит магнитное поле. Электрон, вращающийся вокруг атома, можно рассматривать как циклический электрический ток очень малой силы и радиуса. Однако магнитное поле он, и это не удивительно, всё равно индуцирует. Фактически же, все электроны, вращаясь вокруг атомов, производят свое магнитное поле, и каждый атом, как следствие, обладает собственным магнитным полем, которое представляет собой суммарное поле, или суперпозицию магнитных полей отдельных электронов.

Теперь мы подходим к главному. В некоторых атомах равное число электронов вращается во всевозможных направлениях, и их магнитные поля взаимно гасятся. Однако в атомах некоторых элементов орбиты электронов могут быть ориентированы таким образом, что часть электронов производит магнитные поля, остающиеся некомпенсированными за счет полей электронов, обращающихся в противоположном направлении. И когда такие магнитные поля, связанные с вращением электронов по орбите, к тому же оказываются одинаково направленными у всех атомов кристаллической структуры вещества, он, в целом, создает вокруг себя стабильное и достаточно сильное магнитное поле. Любой фрагмент такого вещества представляет собой маленький магнит с четко выраженными северным и южным полюсами.

Именно совокупное поведение таких мини-магнитов атомов кристаллической решетки и определяет магнитные свойства вещества . По своим магнитным свойствам вещества делятся на три основных класса: ферромагнетики, парамагнетики и диамагнетики. Имеется также два обособленных подкласса материалов, выделенных из общего класса ферромагнетиков — антиферромагнетики и ферримагнетики. В обоих случаях эти вещества относятся к классу ферромагнетиков, но обладают особыми свойствами при низких температурах: магнитные поля соседних атомов выстраиваются строго параллельно, но в противоположных направлениях. Антиферромагнетики состоят из атомов одного элемента и, как следствие, их магнитное поле становится равным нулю. Ферримагнетики представляют собой сплав двух и более веществ, и результатом суперпозиции противоположно направленных полей становится макроскопическое магнитное поле, присущее материалу в целом.

Ферромагнетики

Некоторые вещества и сплавы (прежде всего, следует отметить железо, никель и кобальт) при температуре ниже точки Кюри приобретают свойство выстраивать свою кристаллическую решетку таким образом, что магнитные поля атомов оказываются однонаправленными и усиливают друг друга, благодаря чему возникает макроскопическое магнитное поле за пределами материла. Из таких материалов получаются постоянные магниты. На самом деле магнитное выравнивание атомов обычно не распространяется на неограниченный объем ферромагнитного материала: намагничивание ограничивается объемом, содержащим от нескольких тысяч до нескольких десятков тысяч атомов, и такой объем вещества принято называть доменом (от английского domain — «область»). При остывании железа ниже точки Кюри формируется множество доменов, в каждом из которых магнитное поле ориентировано по-своему. Поэтому в обычном состоянии твердое железо не намагничено, хотя внутри него образованы домены, каждый из которых представляет собой готовый мини-магнит. Однако под воздействием внешних условий (например, при застывании выплавленного железа в присутствии мощного магнитного поля) домены выстраиваются упорядоченно и их магнитные поля взаимно усиливаются. Тогда мы получаем настоящий магнит — тело, обладающее ярко выраженным внешним магнитным полем. Именно так устроены постоянные магниты.

Парамагнетики

В большинстве материалов внутренние силы выравнивания магнитной ориентации атомов отсутствуют, домены не образуются, и магнитные поля отдельных атомов направлены случайным образом. Из-за этого поля отдельных атомов-магнитов взаимно гасятся, и внешнего магнитного поля у таких материалов нет. Однако при помещении такого материала в сильное внешнее поле (например, между полюсами мощного магнита) магнитные поля атомов ориентируются в направлении, совпадающем с направлением внешнего магнитного поля, и мы наблюдаем эффект усиления магнитного поля в присутствии такого материла. Материалы, обладающие подобными свойствами, называются парамагнетиками. Стоит, однако убрать внешнее магнитное поле, как парамагнетик тут же размагничивается , поскольку атомы снова выстраиваются хаотично. То есть, парамагнетики характеризуются способностью к временному намагничиванию.

Диамагнетики

В веществах, атомы которых не обладают собственным магнитным моментом (то есть в таких, где магнитные поля гасятся еще в зародыше — на уровне электронов), может возникнуть магнетизм иной природы. Согласно второму закону электромагнитной индукции Фарадея , при увеличении потока магнитного поля, проходящего через токопроводящий контур, изменение электрического тока в контуре противодействует увеличению магнитного потока. Вследствие этого, если вещество, не обладающее собственными магнитными свойствами, ввести в сильное магнитное поле, электроны на атомных орбитах, представляющие собой микроскопические контуры с током, изменят характер своего движения таким образом, чтобы воспрепятствовать увеличению магнитного потока, то есть, создадут собственное магнитное поле, направленное в противоположную по сравнению с внешним полем сторону. Такие материалы принято называть диамагнетиками.

В отношении магнитных свойств вещества важно усвоить, что они зависят от конфигурации электронных орбит атомов. Даже после разбиения на отдельные атомы железо, например, сохранит свои ферромагнитные свойства. А вот при дальнейшем дроблении вы получите лишь элементарные частицы, которые собственными магнитными свойствами не обладают, и описать природу магнетизма будет уже нельзя. Итак, магнитные свойства вещества зависят исключительно от конфигурации элементарных частиц в составе атома и организации кристаллических доменов, но никак ни от свойства заряженных частиц атомной структуры.

Заряженные тела способны создавать кроме электрического еще один вид поля. Если заряды движутся, то в пространстве вокруг них создается особый вид материи, называемый магнитным полем . Следовательно, электрический ток, представляющий собой упорядоченное движение зарядов, тоже создает магнитное поле. Как и электрическое поле, магнитное поле не ограничено в пространстве, распространяется очень быстро, но все же с конечной скоростью. Его можно обнаружить только по действию на движущиеся заряженные тела (и, как следствие, токи).

Для описания магнитного поля необходимо ввести силовую характеристику поля, аналогичную вектору напряженности E электрического поля. Такой характеристикой является вектор B магнитной индукции. В системе единиц СИ за единицу магнитной индукции принят 1 Тесла (Тл). Если в магнитное поле с индукцией B поместить проводник длиной l с током I , то на него будет действовать сила, называемая силой Ампера , которая вычисляется по формуле:

где: В – индукция магнитного поля, I – сила тока в проводнике, l – его длина. Сила Ампера направлена перпендикулярно вектору магнитной индукции и направлению тока, текущего по проводнику.

Для определения направления силы Ампера обычно используют правило «Левой руки» : если расположить левую руку так, чтобы линии индукции входили в ладонь, а вытянутые пальцы были направлены вдоль тока, то отведенный большой палец укажет направление силы Ампера, действующей на проводник (см. рисунок).

Если угол α между направлениями вектора магнитной индукции и тока в проводнике отличен от 90°, то для определения направления силы Ампера надо взять составляющую магнитного поля, которая перпендикулярна направлению тока. Решать задачи этой темы нужно так же как и в динамике или статике, т.е. расписав силы по осям координат или складывая силы по правилам сложения векторов.

Момент сил, действующих на рамку с током

Пусть рамка с током находится в магнитном поле, причём плоскость рамки перпендикулярна полю. Силы Ампера будут сжимать рамку, а их равнодействующая будет равна нулю. Если поменять направление тока, то силы Ампера поменяют своё направление, и рамка будет не сжиматься, а растягиваться. Если линии магнитной индукции лежат в плоскости рамки, то возникает вращательный момент сил Ампера. Вращательный момент сил Ампера равен:

где: S - площадь рамки, α - угол между нормалью к рамке и вектором магнитной индукции (нормаль - вектор, перпендикулярный плоскости рамки), N – количество витков, B – индукция магнитного поля, I – сила тока в рамке.

Сила Лоренца

Сила Ампера, действующая на отрезок проводника длиной Δl с силой тока I , находящийся в магнитном поле B может быть выражена через силы, действующие на отдельные носители заряда. Эти силы называют силами Лоренца . Сила Лоренца, действующая на частицу с зарядом q в магнитном поле B , двигающуюся со скоростью v , вычисляется по следующей формуле:

Угол α в этом выражении равен углу между скоростью и вектором магнитной индукции. Направление силы Лоренца, действующей на положительно заряженную частицу, так же, как и направление силы Ампера, может быть найдено по правилу левой руки или по правилу буравчика (как и сила Ампера). Вектор магнитной индукции нужно мысленно воткнуть в ладонь левой руки, четыре сомкнутых пальца направить по скорости движения заряженной частицы, а отогнутый большой палец покажет направление силы Лоренца. Если частица имеет отрицательный заряд, то направление силы Лоренца, найденное по правилу левой руки, надо будет заменить на противоположное.

Сила Лоренца направлена перпендикулярно векторам скорости и индукции магнитного поля. При движении заряженной частицы в магнитном поле сила Лоренца работы не совершает . Поэтому модуль вектора скорости при движении частицы не изменяется. Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость лежит в плоскости, перпендикулярной вектору индукции магнитного поля, то частица будет двигаться по окружности, радиус которой можно вычислить по следующей формуле:

Сила Лоренца в этом случае играет роль центростремительной силы. Период обращения частицы в однородном магнитном поле равен:

Последнее выражение показывает, что для заряженных частиц заданной массы m период обращения (а значит и частота, и угловая скорость) не зависит от скорости (следовательно, и от кинетической энергии) и радиуса траектории R .

Теория о магнитном поле

Если по двум параллельным проводам идёт ток в одном направлении, то они притягиваются; если в противоположных направлениях, то отталкиваются. Закономерности этого явления были экспериментально установлены Ампером. Взаимодействие токов вызывается их магнитными полями: магнитное поле одного тока действует силой Ампера на другой ток и наоборот. Опыты показали, что модуль силы, действующей на отрезок длиной Δl каждого из проводников, прямо пропорционален силам тока I 1 и I 2 в проводниках, длине отрезка Δl и обратно пропорционален расстоянию R между ними:

где: μ 0 – постоянная величина, которую называют магнитной постоянной . Введение магнитной постоянной в СИ упрощает запись ряда формул. Ее численное значение равно:

μ 0 = 4π ·10 –7 H/A 2 ≈ 1,26·10 –6 H/A 2 .

Сравнивая приведенное только что выражение для силы взаимодействия двух проводников с током и выражение для силы Ампера нетрудно получить выражение для индукции магнитного поля создаваемого каждым из прямолинейных проводников с током на расстоянии R от него:

где: μ – магнитная проницаемость вещества (об этом чуть ниже). Если ток протекает по круговому витку, то в центре витка индукция магнитного поля определяется по формуле:

Силовыми линиями магнитного поля называют линии, по касательным к которым располагаются магнитные стрелки. Магнитной стрелкой называют длинный и тонкий магнит, его полюса точечны. Подвешенная на нити магнитная стрелка всегда поворачивается в одну сторону. При этом один её конец направлен в сторону севера, второй - на юг. Отсюда название полюсов: северный (N ) и южный (S ). Магниты всегда имеют два полюса: северный (обозначается синим цветом или буквой N ) и южный (красным цветом или буквой S ). Магниты взаимодействуют так же, как и заряды: одноименные полюса отталкиваются, а разноименные – притягиваются. Невозможно получить магнит с одним полюсом. Даже если магнит разломать, то у каждой части будет по два разных полюса.

Вектор магнитной индукции

Вектор магнитной индукции - векторная физическая величина, являющаяся характеристикой магнитного поля, численно равная силе, действующей на элемент тока в 1 А и длиной 1 м, если направление силовой линии перпендикулярно проводнику. Обозначается В , единица измерения - 1 Тесла. 1 Тл - очень большая величина, поэтому в реальных магнитных полях магнитную индукцию измеряют в мТл.

Вектор магнитной индукции направлен по касательной к силовым линиям, т.е. совпадает с направлением северного полюса магнитной стрелки, помещённой в данное магнитное поле. Направление вектора магнитной индукции не совпадает с направлением силы, действующей на проводник, поэтому силовые линии магнитного поля, строго говоря, силовыми не являются.

Силовая линия магнитного поля постоянных магнитов направлена по отношению к самим магнитам так, как показано на рисунке:

В случае магнитного поля электрического тока для определения направления силовых линий используют правило «Правой руки» : если взять проводник в правую руку так, чтобы большой палец был направлен по току, то четыре пальца, обхватывающие проводник, показывают направление силовых линий вокруг проводника:

В случае прямого тока линии магнитной индукции - окружности, плоскости которых перпендикулярны току. Вектора магнитной индукции направлены по касательной к окружности.

Соленоид - намотанный на цилиндрическую поверхность проводник, по которому течёт электрический ток I подобно полю прямого постоянного магнита. Внутри соленоида длиной l и количеством витков N создается однородное магнитное поле с индукцией (его направление также определяется правилом правой руки):

Линии магнитного поля имеют вид замкнутых линий - это общее свойство всех магнитных линий. Такое поле называют вихревым. В случае постоянных магнитов линии не оканчиваются на поверхности, а проникают внутрь магнита и замыкаются внутри. Это различие электрического и магнитного полей объясняется тем, что, в отличие от электрических, магнитных зарядов не существует.

Магнитные свойства вещества

Все вещества обладают магнитными свойствами. Магнитные свойства вещества характеризуются относительной магнитной проницаемостью μ , для которой верно следующее:

Данная формула выражает соответствие вектора магнитной индукции поля в вакууме и в данной среде. В отличие от электрического, при магнитном взаимодействии в среде можно наблюдать и усиление, и ослабление взаимодействия по сравнению с вакуумом, у которого магнитная проницаемость μ = 1. У диамагнетиков магнитная проницаемость μ немного меньше единицы. Примеры: вода, азот, серебро, медь, золото. Эти вещества несколько ослабляют магнитное поле. Парамагнетики - кислород, платина, магний - несколько усиливают поле, имея μ немного больше единицы. У ферромагнетиков - железо, никель, кобальт - μ >> 1. Например, у железа μ ≈ 25000.

Магнитный поток. Электромагнитная индукция

Явление электромагнитной индукции было открыто выдающимся английским физиком М.Фарадеем в 1831 году. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур. Магнитным потоком Φ через площадь S контура называют величину:

где: B – модуль вектора магнитной индукции, α – угол между вектором магнитной индукции B и нормалью (перпендикуляром) к плоскости контура, S – площадь контура, N – количество витком в контуре. Единица магнитного потока в системе СИ называется Вебером (Вб).

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции ε инд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум возможным причинам.

  1. Магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле. Возникновение ЭДС индукции объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.
  2. Вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре.

При решении задач важно сразу определить за счет чего меняется магнитный поток. Возможно три варианта:

  1. Меняется магнитное поле.
  2. Меняется площадь контура.
  3. Меняется ориентация рамки относительно поля.

При этом при решении задач обычно считают ЭДС по модулю. Обратим внимание также внимание на один частный случай, в котором происходит явление электромагнитной индукции. Итак, максимальное значение ЭДС индукции в контуре состоящем из N витков, площадью S , вращающемся с угловой скоростью ω в магнитном поле с индукцией В :

Движение проводника в магнитном поле

При движении проводника длиной l в магнитном поле B со скоростью v на его концах возникает разность потенциалов, вызванная действием силы Лоренца на свободные электроны в проводнике. Эту разность потенциалов (строго говоря, ЭДС) находят по формуле:

где: α - угол, который измеряется между направлением скорости и вектора магнитной индукции. В неподвижных частях контура ЭДС не возникает.

Если стержень длиной L вращается в магнитном поле В вокруг одного из своих концов с угловой скоростью ω , то на его концах возникнет разность потенциалов (ЭДС), которую можно рассчитать по формуле:

Индуктивность. Самоиндукция. Энергия магнитного поля

Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая согласно правилу Ленца препятствует изменению тока в контуре. Собственный магнитный поток Φ , пронизывающий контур или катушку с током, пропорционален силе тока I :

Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукции или индуктивностью катушки. Единица индуктивности в СИ называется Генри (Гн).

Запомните: индуктивность контура не зависит ни от магнитного потока, ни от силы тока в нем, а определяется только формой и размерами контура, а также свойствами окружающей среды. Поэтому при изменении силы тока в контуре индуктивность остается неизменной. Индуктивность катушки можно рассчитать по формуле:

где: n - концентрация витков на единицу длины катушки:

ЭДС самоиндукции , возникающая в катушке с постоянным значением индуктивности, согласно формуле Фарадея равна:

Итак ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в ней.

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии. Энергия W м магнитного поля катушки с индуктивностью L , создаваемого током I , может быть рассчитана по одной из формул (они следуют друг из друга с учётом формулы Φ = LI ):

Соотнеся формулу для энергии магнитного поля катушки с её геометрическими размерами можно получить формулу для объемной плотности энергии магнитного поля (или энергии единицы объёма):

Правило Ленца

Инерция – явление, происходящее и в механике (при разгоне автомобиля мы отклоняемся назад, противодействуя увеличению скорости, а при торможении отклоняемся вперёд, противодействуя уменьшению скорости), и в молекулярной физике (при нагревании жидкости увеличивается скорость испарения, самые быстрые молекулы покидают жидкость, уменьшая скорость нагревания) и так далее. В электромагнетизме инерция проявляется в противодействии изменению магнитного потока, пронизывающего контур. Если магнитный поток нарастает, то возникающий в контуре индукционный ток направлен так, чтобы препятствовать нарастанию магнитного потока, а если магнитный поток убывает, то возникающий в контуре индукционный ток направлен так, чтобы препятствовать убыванию магнитного потока.

На этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.

  • Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  • Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
  • Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

    Электронный учебник по физике

    КГТУ-КХТИ. Кафедра физики. Старостина И.А., Кондратьева О.И., Бурдова Е.В.

    Для перемещения по тексту электронного учебника можно использовать:

    1- нажатие клавиш PgDn, PgUp,,  для перемещения по страницам и строкам;

    2- нажатие левой клавиши «мыши» по выделенному тексту для перехода в требуемый раздел;

    3- нажатие левой клавиши «мыши» по выделенному значку @ для перехода в оглавление.

    МАГНЕТИЗМ

    МАГНЕТИЗМ

    1. ОСНОВЫ МАГНИТОСТАТИКИ. МАГНИТНОЕ ПОЛЕ В ВАКУУМЕ

    1.1. Магнитное поле и его характеристики.@

    1.2. Закон Ампера.@

    1.3. Закон Био – Савара – Лапласа и его применение к расчету магнитного поля. @

    1.4. Взаимодействие двух параллельных проводников с током. @

    1.5. Действие магнитного поля на движущуюся заряженную частицу. @

    1.6. Закон полного тока для магнитного поля в вакууме(теорема о циркуляции вектора В). @

    1.7. Поток вектора магнитной индукции. Теорема Гаусса для магнитного поля. @

    1. 8. Рамка с током в однородном магнитном поле. @

    2. МАГНИТНОЕ ПОЛЕ В ВЕЩЕСТВЕ. @

    2.1. Магнитные моменты атомов. @

    2.2. Атом в магнитном поле. @

    2.3. Намагниченность вещества. @

    2.4. Виды магнетиков. @

    2.5. Диамагнетизм. Диамагнетики. @

    2.6. Парамагнетизм. Парамагнетики. @

    2.7. Ферромагнетизм. Ферромагнетики. @

    2.8. Доменная структура ферромагнетиков. @

    2.9. Антиферромагнетики и ферриты. @

    3. ЯВЛЕНИЕ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ. @

    3.1. Основной закон электромагнитной индукции. @

    3.2. Явление самоиндукции. @

    3.3. Явление взаимной индукции. @

    3.4. Энергия магнитного поля. @

    4. УРАВНЕНИЯ МАКСВЕЛЛА. @

    4.1. Теория Максвелла для электромагнитного поля. @

    4.2. Первое уравнение Максвелла. @

    4.3. Ток смещения. @

    4.4. Второе уравнение Максвелла. @

    4.5. Система уравнений Максвелла в интегральной форме. @

    4.6. Электромагнитное поле. Электромагнитные волны. @

    МАГНЕТИЗМ

    Магнетизм - раздел физики, изучающий взаимодействие между электричес­ки­ми токами, между токами и магнитами (телами с магнитным моментом) и между магнитами.

    Долгое время магнетизм считался совершенно независимой от электричества наукой. Однако ряд важнейших открытий 19-20 веков А.Ампера, М.Фарадея и др. доказали связь электрических и магнитных явлений, что позволило считать учение о магнетизме составной частью учения об электричестве.

    1. ОСНОВЫ МАГНИТОСТАТИКИ. МАГНИТНОЕ ПОЛЕ В ВАКУУМЕ

    1.1. Магнитное поле и его характеристики.@

    Впервые магнитные явления были последовательно рассмотрены английским врачом и физиком Уильямом Гильбертом в его работе - «О магните, магнитных телах и о большом магните – Земле». Тогда казалось, что электричество и магнетизм не имеютничего общего. Лишь в началеXIXвека датский ученый Г.Х.Эрстед выдвинул идею о том, что магнетизм может оказаться одной из скрытых форм электричества, что и подтвердил в 1820 г. на опыте. Этот опыт повлек за собой лавину новых открытий, имевших огромное значение.

    Многочисленные опыты начала XIXвека показали, что каждый проводник с током и постоянный магнит способны оказывать силовое воздействие через пространство на другие проводники с током или магниты. Это происходит из-за того, что вокруг проводников с током и магнитов возникает поле, которое было названомагнитным .

    Для исследования магнитного поля применяют небольшую магнитную стрелку, подвешенную на нити или уравновешенную на острие (Рис.1.1). В каждой точке магнитного поля стрелка, расположенная произвольно, будет п

    Рис.1.1. Направление магнитного поля

    оворачиваться в определенном направлении. Это происходит из-за того, что в каждой точке магнитного поля на стрелку действует вращающий момент, который стремится расположить ее ось вдоль магнитного поля. Осью стрелки называется отрезок, соединяющий ее концы.

    Рассмотрим ряд опытов, которые позволили установить основные свойства магнитного поля:

    На основании данных опытов был сделан вывод о том, что магнитное поле создается только движущимися зарядами или движущимися заряженными телами, а также постоянными магнитами. Этим магнитное поле отличается от электрического поля, которое создается как движущимися, так и неподвижными зарядами и действует как на одни, так и на другие.

    Основной характеристикой магнитного поля является вектор магнитной индукции . За направление магнитной индукции в данной точке поля принимают направление, по которому в данной точке располагается ось магнитной стрелки отS к N (рис.1.1). Графически магнитные поля изображаются силовыми линиями магнитной индукции, то есть кривыми, касательные к которым в каждой точке совпадают с направлением вектора В.

    Эти силовые линии можно увидеть с помощью железных опилок: например, если рассыпать опилки вокруг длинного прямолинейного проводника и пропустить через него ток, то опилки поведут себя подобно маленьким магнитикам, располагаясь вдоль силовых линий магнитного поля (рис. 1.2).

    Как определить направление вектора около проводника с током? Это можно сделать с помощью правила правой руки, которое иллюстрируется рис. 1.2. Большой палец правой руки ориентируют в направлении тока, тогда остальные пальцы в согнутом положении указывают направление силовых линий магнитного поля. В случае, изображенном на рис.1.2, линиипредставляют собой концентрические окружности. Линии вектора магнитной индукции всегдазамкнуты и охватывают проводник с током. Этим они отличаются от линий напряженности электрического поля, которые начинаются на положительных и кончаются на отрицательных зарядах, т.еразомкнуты . Линии магнитной индукции постоянного магнита выходят из одного полюса, называемого северным (N) и входят в другой - южный (S) (рис. 1.3а). Вначале кажется, что здесь наблюдается полная аналогия с линиями напряженности электрического поля Е, причем полюса магнитов играют роль магнитных зарядов. Однако если разрезать магнит, картина сохраняется, получаются более мелкие магниты со своими северными и южными полюсами, т.е. полюса разделить невозможно, потому что свободных магнитных зарядов, в отличие от электрических зарядов, в природе не существует. Было установлено, что внутри магнитов имеется магнитное поле и линии магнитной индукции этого поля являются продолжением линий магнитной индукции вне магнита, т.е. замыкают их. Подобно постоянному магниту магнитное поле соленоида – катушки из тонкой изолированной проволоки с длиной намного больше диаметра, по которой течет ток (рис.1.3б). Конец соленоида, из которого ток в витке виден идущим против часовой стрелки, совпадает с северным полюсом магнита, другой – с южным. Магнитная индукцияв системе СИ измеряется в Н/(А∙м), этой величине присвоено специальное наименование – тесла .

    Согласно предположению французского физика А.Ампера,намагниченное железо (в частности, стрелки компаса) содержит непрерывно движущиеся заряды, т.е. электрические токи в атомном масштабе. Такие микроскопические токи, обусловленные движением электронов в атомах и молекулах, существуют в любом теле. Эти микротоки создают свое магнитное поле и могут сами поворачиваться во внешних полях, создаваемых проводниками с током.Например, если вблизи какого-либо тела поместить проводник с током, то под действием его магнитного поля микротоки во всех атомах определенным образом ориентируются, создавая в теле дополнительное магнитное поле. О природе и характере этих микротоков Ампер в то время ничего не мог сказать, так как учение о строении вещества находилось еще в самой начальной стадии. Гипотеза Ампера была блестяще подтверждена лишь спустя 100 лет, после открытия электрона и выяснения строения атомов и молекул.

    Магнитные поля, существующие в природе, разнообразны по масштабам и по вызываемым эффектам. Магнитное поле Земли, образующее земную магнитосферу, простирается на расстоянии 70 – 80 тысяч км в направлении к Солнцу и на многие миллионы километров в обратном направлении. В околоземном пространстве магнитное поле образует магнитную ловушку для заряженных частиц высоких энергий. Происхождение магнитного поля Земли связывают с движениями проводящего жидкого вещества в земном ядре. Из других планет Солнечной системы лишь Юпитер и Сатурн обладают заметными магнитными полями. Магнитное поле Солнца играет важнейшую роль во всех происходящих на Солнце процессах – вспышках, появлении пятен и протуберанцев, рождении солнечных космических лучей.

    Магнитное поле широко применяется в различных отраслях промышленности, в частности при очистке муки на хлебозаводах от металлических примесей. Специальные просеиватели муки снабжены магнитами, которые притягивают к себе мелкие кусочки железа и его соединений, которые могут содержаться в муке.

    Поделиться