Механизмы органических реакций с примерами. Радикальные и ионные механизмы реакций. Реакции конденсации и поликонденсации

Классификация реакций По числу исходных и конечных веществ: 1. Присоединение 2. Отщепление (элиминирование) 3. Замещение

Классификация реакций По механизму разрыва связей: 1. Гомолитические (радикальные) радикалы 2. Гетеролитические (ионные) ионы

Механизм реакции Механизм – детальное описание химической реакции по стадиям с указанием промежуточных продуктов и частиц. Схема реакции: Механизм реакции:

Классификация реакций по типу реагентов 1. Радикальные Радикал –химически активная частица с неспаренным электроном. 2. Электрофильные Электрофил – электронодефицитная частица или молекула с электронодефицитным атомом. 3. Нуклеофильные Нуклеофил – анион или нейтральная молекула, имеющая атом с неподеленной электронной парой.

Виды химических связей в органических веществах Основной тип связи – ковалентная (реже встречается ионная) Сигма-связь (σ-): Пи-связь (-)

АЛКАНЫ- алифатические (жирные) углеводороды «Алифатос» -масло, жир (греч). Cn. H 2 n+2 Предельные, насыщенные углеводороды

Гомологический ряд: CH 4 - метан C 2 H 6 - этан C 3 H 8 - пропан C 4 H 10 - бутан C 5 H 12 - пентан т. д. С 6 Н 14 - гексан С 7 Н 16 - гептан С 8 Н 18 - октан С 9 Н 20 - нонан С 10 Н 22 – декан и С 390 Н 782 –ноноконтатриктан (1985 г)

Атомно-орбитальная модель молекулы метана В молекуле метана у атома углерода уже нет S- и Р-орбиталей! Его 4 гибридные, равноценные по энергии и по форме SP 3 -орбитали, образуют 4 -связи с Sорбиталями атома водорода. Н Н 4 -связи

Реакция нитрования Коновалов Дмитрий Петрович (1856 -1928) 1880 год. Первая удачная попытка оживить «химических мертвецов» , которыми считались алканы. Нашел условия нитрования алканов. Рис. Источник: http: //images. yandex. ru.

Химические свойства I. Реакции с разрывом С-Н-связей (реакции замещения): 1. галогенирование 2. нитрование 3. сульфохлорирование II. Реакции с разрывом С-С-связей: 1. горение 2. крекинг 3. изомеризация

Как найти химика? Если хочешь найти химика, спроси, что такое моль и неионизованный. И если тот начнет говорить о пушных зверях и организации труда, спокойно уходи. Писатель-фантаст, популяризатор науки Айзек Азимов (1920– 1992) Рис. Источник: http: //images. yandex. ru.

1. Реакция галогенирования Хлорирование: RH + Cl 2 hv RCl + HCl Бромирование: RH + Br 2 hv RBr + HBr Например, хлорирование метана: CH 4 + Cl 2 CH 3 Cl + HCl

Стадии свободно-радикального механизма Схема реакции: CH 4 + Cl 2 CH 3 Cl + HCl Механизм реакции: I. Инициирование цепи – стадия зарождения свободных радикалов. Cl Cl 2 Cl Радикал - активная частица, инициатор реакции. – – Стадия требует энергии в виде нагревания или освещения. Последующие стадии могут протекать в темноте, без нагревания.

Стадии свободно-радикального механизма II. Рост цепи – основная стадия. CH 4 + Cl HCl + CH 3 + Cl 2 CH 3 Cl + Cl Стадия может включать несколько подстадий, на каждой из которых образуется новый радикал, но не Н !!! На II, основной стадии, обязательно образуется основной продукт!

Стадии свободно-радикального механизма III. Обрыв цепи – рекомбинация радикалов. Cl + Cl Cl 2 Cl + CH 3 CH 3 Cl CH 3 + CH 3 CH 3 -CH 3 Два любых радикала соединяются.

Селективность замещения Селективность – избирательность. Региоселективность – избирательность в определенной области реакций. Например, селективность галогенирования: 45% 3% Вывод? 55% 97%

Селективность галогенирования зависит от следующих факторов: Условия реакции. При низких температурах идет более селективно. Природа галогена. Чем активнее галоген, тем менее избирательна реакция. F 2 реагирует очень энергично, с разрушением С-С-связей. I 2 не реагирует с алканами в указанных условиях. Строение алкана.

Влияние строения алкана на селективность замещения. Если атомы углерода в алкане неравноценны, то замещение при каждом из них идет с разной скоростью. Относительн. скорость реакции замещения Первич. атом Н Вторич. атом Н Трет. атом Н хлорирование 1 3, 9 5, 1 бромирование 1 82 1600 Вывод?

Для отрыва третичного атома водорода требуется меньше энергии, чем для отрыва вторичного и первичного! Формула алкана Результат гомолиза ЕД, к. Дж/моль СН 4 СН 3 + Н 435 СН 3 - СН 3 С 2 Н 5 + Н 410 СН 3 СН 2 СН 3 (СН 3)2 СН + Н 395 (СН 3)3 СН (СН 3)3 С + Н 377

Направление протекания реакций Любая реакция протекает преимущественно в направлении образования более устойчивой промежуточной частицы!

Промежуточная частица в радикальных реакциях - свободный радикал. Наиболее легко образуется наиболее устойчивый радикал! Ряд устойчивости радикалов: R 3 C > R 2 CH > RCH 2 > CH 3 Алкильные группы проявляют электронодонорный эффект, за счет чего стабилизируют радикал

Реакция сульфохлорирования Схема реакции: RH + Cl 2 + SO 2 RSO 2 Cl + HCl Механизм реакции: 1. Cl Cl 2 Cl 2. RH + Cl R + HCl R + SO 2 RSO 2 + Cl 2 RSO 2 Cl + Cl и т. д. 3. 2 Cl Cl 2 и т. д.

Реакция Коновалова Д. П. Нитрование по Коновалову проводят действием разбавленной азотной кислоты при температуре 140 о. С. Схема реакции: RH + HNO 3 RNO 2 + H 2 O

Механизм реакции Коновалова HNO 3 N 2 O 4 1. N 2 O 4 2 NO 2 2. RH + NO 2 R + HNO 2 R + HNO 3 RNO 2 + OH RH + OH R + H 2 O и т. д. 3. Обрыв цепи.

Алкены – ненасыщенные углеводороды с одной С=С связью Cn. H 2 n С=С – функциональная группа алкенов

Химические свойства алкенов Общая характеристика Алкены – реакционноспособный класс соединений. Они вступают в многочисленные реакции, большинство из которых идут за счет разрыва менее прочной пи-связи. Е С-С (σ-) ~ 350 Кдж/моль Е С=С (-) ~ 260 Кдж/моль

Характерные реакции Присоединение – наиболее характерный тип реакций. Двойная связь – донор электронов, поэтому она склонна присоединять: Е – электрофилы, катионы или радикалы

Примеры реакций электрофильного присоединения 1. Присоединение галогенов – Присоединяются не все галогены, а только хлор и бром! – Поляризация нейтральной молекулы галогена может происходить под действием полярного растворителя или под действием двойной связи алкена. Красно-коричневый раствор брома становится бесцветным

Электрофильное присоединение Реакции протекают при комнатной температуре, не требуют освещения. Механизм ионный. Схема реакции: XY = Cl 2, Br 2, HCl, HBr, HI, H 2 O

Сигма – комплекс является карбокатионом – частицей с положительным зарядом на атоме углерода. Если в реакционной среде присутствуют другие анионы, то они тоже могут присоединяться к карбокатиону.

Например, присоединение брома, растворенного в воде. Эта качественная реакция на двойную С=С-связь протекает с обесцвечиванием раствора брома и образованием двух продуктов:

Присоединение к несимметричным алкенам Региоселективность присоединения! Правило Марковникова (1869): кислоты и вода присоединяются к несимметричным алкенам таким образом, что водород присоединяется к более гидрированному атому углерода.

Марковников Владимир Васильевич (1837 - 1904) Выпускник Казанского университета. С 1869 года – профессор кафедры химии. Основатель научной школы. Рис. Источник: http: //images. yandex. ru.

Объяснение правила Марковникова Реакция протекает через образование наиболее устойчивой промежуточной частицы – карбокатиона. первичный вторичный, более устойчивый

Ряд устойчивости карбокатионов: третичный вторичный первичный метильный Правило Марковникова в современной формулировке: присоединение протона к алкену происходит с образованием более стабильного карбокатиона.

Антимарковниковское присоединение CF 3 -CH=CH 2 + HBr CF 3 -CH 2 Br Формально реакция идет против правила Марковникова. CF 3 – электроноакцепторный заместитель Другие электроноакцепторы: NO 2, SO 3 H, COOH, галогены и т. п.

Антимарковниковское присоединение более устойчивый неустойчивый CF 3 – электроноакцептор, дестабилизирует карбокатион Реакция только формально идет против правила Марковникова. Фактически ему подчиняется, так как идет через более устойчивый карбокатион.

Перекисный эффект Хараша X CH 3 -CH=CH 2 + HBr CH 3 -CH 2 Br X = O 2, H 2 O 2, ROOR Механизм свободнорадикальный: 1. H 2 O 2 2 OH + HBr H 2 O + Br 2. CH 3 -CH=CH 2 + Br CH 3 -CH -CH 2 Br более устойчивый радикал CH 3 -CH -CH 2 Br + HBr CH 3 -CH 2 Br + Br и т. д. 3. Два любых радикала соединяются между собой.

Электрофильное присоединение 3. Гидратация – присоединение воды – Реакция протекает в присутствии кислотных катализаторов, чаще всего это – серная кислота. – Реакция подчиняется правилу Марковникова. Дешевый способ получения спиртов

На экзамене академик Иван Алексеевич Каблуков просит студента рассказать, как в лаборатории получают водород. «Из ртути» , - отвечает тот. «Как это "из ртути"? ! Обычно говорят "из цинка", а вот из ртути - это что-то оригинальное. Напишите-ка реакцию» . Студент пишет: Hg = Н + g И говорит: «Ртуть нагревают; она разлагается на Н и g. Н - водород, он легкий и поэтому улетает, а g - ускорение силы тяжести, тяжелое, остается» . «За такой ответ надо ставить "пятерку", - говорит Каблуков. - Давайте зачетку. Только "пятерку" я сначала тоже подогрею. "Три" улетает, а "два" остается» .

Двое химиков в лаборатории: - Вась, опусти руку в этот стакан. - Опустил. - Что-нибудь чувствуешь? - Нет. - Значит серная кислота в другом стакане.

Ароматические углеводороды Ароматический – душистый? ? Ароматические соединения – это бензол и вещества, напоминающие его по химическому поведению!

При протекании химических реакций происходит разрыв одних и возникновение других связей. Химические реакции условно делят на органические и неорганические. Органическими реакциям принято считать реакции, в которых, по крайней мере, одно из реагирующих веществ является органическим соединением, изменяющим свою молекулярную структуру в процессе реакции. Отличием органических реакций от неорганических является то, что, как правило, в них участвуют молекулы. Скорость таких реакции низка, а выход продукта обычно составляет всего лишь 50-80 %. Для повышения скорости реакции применяют катализаторы, повышают температуру или давление. Далее рассмотрим типы химических реакций в органической химии.

Классификация по характеру химических превращений

  • Реакции замещения
  • Реакции присоединения
  • Реакция изомеризации и перегруппировка
  • Реакции окисления
  • Реакции разложения

Реакции замещения

В ходе реакций замещения один атом или группа атомов в начальной молекуле замещается на иные атомы или группы атомов, образуя новую молекулу. Как правило, такие реакции характерны для насыщенных и ароматических углеводородов, например:

Реакции присоединения

При протекании реакций присоединения из двух или более молекул веществ образуется одна молекула нового соединения. Такие реакции характерны для ненасыщенных соединений. Различают реакции гидрирования (восстановления), галогенирования, гидрогалогенирования, гидратации, полимеризации и т.п:

  1. Гидрирование – присоединение молекулы водорода:

Реакция элиминирования (отщепления)

В результате реакций отщепления органические молекулы теряют атомы или группы атомов, и образуется новое вещество, содержащее одну или несколько кратных связей. К реакциям элиминирования относятся реакции дегидрирования , дегидратации , дегидрогалогенирования и т.п.:

Реакции изомеризации и перегруппировка

В ходе таких реакций происходит внутримолекулярная перестройка, т.е. переход атомов или групп атомов с одного участка молекулы в другое без изменения молекулярной формулы вещества, участвующего в реакции, например:

Реакции окисления

В результате воздействия окисляющего реагента происходит повышение степени окисления углерода в органическом атоме, молекуле или ионе процесс за счет отдачи электронов, вследствие чего образуется новое соединение:

Реакции конденсации и поликонденсации

Заключаются во взаимодействии нескольких (двух и более) органических соединений с образованием новых С-С связей и низкомолекулярного соединения:

Поликонденсация – образование молекулы полимера из мономеров, содержащих функциональные группы с выделением низкомолекулярного соединения. В отличие от реакции полимеризации, в результате которых образуется полимер, имеющий состав, аналогичный мономеру, в результате реакций поликонденсации состав образованного полимера отличается от его мономера:

Реакции разложения

Это процесс расщепления сложного органического соединения на менее сложные или простые вещества:

С 18 H 38 → С 9 H 18 + С 9 H 20

Классификация химических реакций по механизмам

Протекание реакций с разрывом ковалентных связей в органических соединениях возможно по двум механизмам (т.е. пути, приводящему к разрыву старой связи и образованию новой) – гетеролитическому (ионному) и гомолитическому (радикальному).

Гетеролитический (ионный) механизм

В реакциях, протекающих по гетеролитическому механизму образуются промежуточные частицы ионного типа с заряженным атомом углерода. Частицы, несущие положительный заряд называются карбкатионы, отрицательный – карбанионы. При этом происходит не разрыв общей электронной пары, а ее переход к одному из атомов, с образованием иона:

Склонность к гетеролитическому разрыву проявляют сильно полярные, например Н–O, С–О и легко поляризуемые, например С–Вr, С–I связи.

Реакции, протекающие по гетеролитическому механизму делят на нуклеофильные и электрофильные реакции. Реагент, располагающий электронной парой для образования связи называют нуклеофильным или электронодонорным. Например, HO — ,RO — , Cl — , RCOO — , CN — , R — , NH 2 , H 2 O, NH 3 , C 2 H 5 OH, алкены, арены.

Реагент, имеющий незаполненную электронную оболочку и способные присоединить пару электронов в процессе образования новой связи.называют электрофильным реагентам относятся следующие катионы: Н + , R 3 C + , AlCl 3 , ZnCl 2 , SO 3 , BF 3 , R-Cl, R 2 C=O

Реакции нуклеофильного замещения

Характерны для алкил- и арилгалогенидов:

Реакции нуклеофильного присоединения

Реакции электрофильного замещения


Реакции электрофильного присоединения

Гомолитический (радикальный механизм)

В реакциях, протекающих по гомолитическому (радикальному) механизму на первой стадии происходит разрыв ковалентной связи с образованием радикалов. Далее образовавшийся свободный радикал выступает в качестве атакующего реагента. Разрыв связи по радикальному механизму свойственен для неполярных или малополярных ковалентных связей (С–С, N–N, С–Н).

Различают реакции радикального замещения и радикального присоединения

Реакции радикального замещения

Характерны для алканов

Реакции радикального присоединения

Характерны для алкенов и алкинов

Таким образом, мы рассмотрели основные типы химических реакций в органической химии

Категории ,

Приложение 1
МЕХАНИЗМЫ РЕАКЦИЙ В ОРГАНИЧЕСКОЙ ХИМИИ
Н.В.Свириденкова, НИТУ «МИСиС», Москва
ЗАЧЕМ ИЗУЧАТЬ МЕХАНИЗМЫ ХИМИЧЕСКИХ РЕАКЦИЙ?
Что такое механизм химической реакции? Для ответа на этот вопрос рассмотрим уравнение реакции сжигания бутена:

C 4 H 8 + 6O 2 = 4CO 2 + 4H 2 O.

Если бы реакция в действительности протекала так, как это описано в уравнении, то одна молекула бутена должна была бы столкнуться одновременно сразу с шестью молекулами кислорода. Однако вряд ли это происходит: известно, что одновременное столкновение более чем трех частиц практически невероятно. Напрашивается вывод о том, что данная реакция, как и абсолютное большинство химических реакций, протекает в несколько последовательных стадий. Уравнение реакции показывает лишь исходные вещества и конечный результат всех превращений, и никак не объясняет, как образуются продукты из исходных веществ. Для того чтобы узнать, как именно протекает реакция, какие стадии она включает, какие промежуточные продукты образуются, необходимо рассмотреть механизм реакции.

Итак, механизм реакции – это детальное описание хода реакции по стадиям, которое показывает, в каком порядке и как разрываются химические связи в реагирующих молекулах и образуются новые связи и молекулы.

Рассмотрение механизма дает возможность объяснить, почему некоторые реакции сопровождаются образованием нескольких продуктов, а в других реакциях образуется только одно вещество. Знание механизма позволяет химикам предсказывать продукты химических реакций до того, как их провели на практике. Наконец, зная механизм реакции, можно управлять ходом реакции: создавать условия для увеличения ее скорости и повышения выхода нужного продукта.
ОСНОВНЫЕ ПОНЯТИЯ: ЭЛЕКТРОФИЛ, НУКЛЕОФИЛ, КАРБОКАТИОН
В органической химии реагенты традиционно делят на три типа: нуклеофильные , электрофильные и радикальные . С радикалами вы уже встречались ранее при изучении реакций галогенирования алканов. Рассмотрим более подробно другие типы реагентов.

Нуклеофильные реагенты или просто нуклеофилы (в переводе с греческого «любители ядер») – это частицы, обладающие избытком электронной плотности, чаще всего отрицательно заряженные или имеющие неподеленную электронную пару. Нуклеофилы атакуют молекулы с низкой электронной плотностью или положительно заряженные реагенты. Примерами нуклеофилов являются ионы ОН - , Br - , молекулы NH 3 .

Электрофильные реагенты или электрофилы (в переводе с греческого «любители электронов») – это частицы с недостатком электронной плотности. Часто электрофилы несут положительный заряд. Электрофилы атакуют молекулы с высокой электронной плотностью или отрицательно заряженные реагенты. Примеры электрофилов – Н + , NО 2 + .

В качестве электрофила может выступать также несущий частичный положительный заряд атом полярной молекулы. Примером может служить атом водорода в молекуле HBr, на котором возникает частичный положительный заряд из-за смещения общей электронной пары связи к атому брома, имеющему большее значение электроотрицательности H δ + → Br δ - .

Реакции, протекающие по ионному механизму, часто сопровождаются образованием карбокатионов. Карбокатионом называют заряженную частицу, имеющую свободную р -орбиталь на атоме углерода. Один из атомов углерода в карбокатионе несет на себе положительный заряд. Примерами карбокатионов могут служить частицы СН 3 -СН 2 + , CH 3 -CH + -CH 3 . Карбокатионы образуются на одной из стадий в реакциях присоединения к алкенам галогенов и галогеноводородов к алкенам, а также в реакциях замещения с участием ароматических углеводородов.
МЕХАНИЗМ ПРИСОЕДИНЕНИЯ К НЕПРЕДЕЛЬНЫМ УГЛЕВОДОРОДАМ

Присоединение галогенов, галогеноводородов, воды к непредельным углеводородам (алкенам, алкинам, диеновым углеводородам) протекает по ионному механизму , называемому электрофильным присоединением.

Рассмотрим этот механизм на примере реакции присоединения бромоводорода к молекуле этилена.

Несмотря на то, что реакция гидробромирования описывается очень простым равнением, ее механизм включает несколько стадий.

Стадия 1. На первой стадии молекула галогеноводорода образует с π -электронным облаком двойной связи неустойчивую систему – «π -комплекс» за счет частичной передачи π -электронной плотности на атом водорода, несущий частичный положительный заряд.


Стадия 2. Связь водород-галоген разрывается с образованием электрофильной частицы Н + , и нуклеофильной частицы Br - . Освободившийся электрофил Н + присоединяется к алкену за счет электронной пары двойной связи, образуя σ -комплекс – карбокатион.

Стадия 3. На этой стадии к положительно заряженному карбокатиону присоединяется отрицательно заряженный нуклеофил с образованием конечного продукта реакции.


ПОЧЕМУ ВЫПОЛНЯЕТСЯ ПРАВИЛО МАРКОВНИКОВА?
Предложенный механизм хорошо объясняет образование преимущественно одного из продуктов в случае присоединения галогеноводородов к несимметричным алкенам. Напомним, что присоединение галогеноводородов подчиняется правилу Марковникова, согласно которому водород присоединяется по месту двойной связи к наиболее гидрогенизированному атому углерода (т.е. связанному с наибольшим числом атомов водорода), а галоген к наименее гидрогенизированному. Например, при присоединении бромоводорода к пропену преимущественно образуется 2-бромпропан:

В реакциях электрофильного присоединения к несимметричным алкенам на второй стадии реакции может образоваться два карбокатиона. Далее реагировать с нуклеофилом, а значит, и определять продукт реакции будет более устойчивый из них.

Рассмотрим, какие карбокатионы образуются в случае пропена, и сравним их устойчивость. Присоединение протона Н + по месту двойной связи может приводить к образованию двух карбокатионов вторичного и первичного:

Образующиеся частицы очень нестабильны, поскольку положительно заряженный атом углерода в составе карбокатиона имеет неустойчивую электронную конфигурацию. Такие частицы стабилизируются при распределении (делокализации) заряда по возможно большему числу атомов. Электронодонорные алкильные группы, подающие электронную плотность на электронодефицитный атом углерода, способствуют и стабилизируют карбокатионы. Рассмотрим, как это происходит.

Из-за различия электроотрицательностей атомов углерода и водорода на атоме углерода группы -СН 3 появляется некоторый избыток электронной плотности, а на атоме водорода – некоторый ее дефицит С δ- Н 3 δ+ . Наличие такой группы рядом с атомом углерода, несущим положительный заряд, неизбежно вызывает смещение электронной плотности в сторону положительного заряда. Таким образом, метильная группа выступает как донор, отдавая часть своей электронной плотности. Про такую группу говорят, что она обладает положительным индуктивным эффектом (+ I -эффектом) . Чем большим количеством таких электронодонорных (+ I ) - заместителей окружен углерод, несущий положительный заряд, тем более устойчив соответствующий карбокатион. Таким образом, стабильность карбокатионов возрастает в ряду:

В случае пропена наиболее устойчивым является вторичный карбокатион, так как в нем положительно заряженный атом углерода карбокатиона стабилизирован двумя + I - эффектами соседних метильных групп. Преимущественно образуется и реагирует дальше именно он. Неустойчивый первичный карбокатион, по-видимому, существует очень короткое время, так что за время своей «жизни» не успевает присоединить нуклеофил и образовать продукт реакции.



При присоединении на последней стадии бромид-иона к вторичному карбокатиону и образуется 2-бромпропан:

ВСЕГДА ЛИ ВЫПОЛНЯЕТСЯ ПРАВИЛО МАРКОВНИКОВА?

Рассмотрение механизма реакции гидробромирования пропилена позволяет сформулировать общее правило электрофильного присоединения: «при взаимодействии несимметричных алкенов с электрофильными реагентами реакция протекает через образование наиболее стабильного карбокатиона». Это же правило позволяет объяснить образование в некоторых случаях продуктов присоединения вопреки правилу Марковникова. Так, присоединение галогеноводородов к трифторпропилену формально протекает против правила Марковникова:

Как может получиться такой продукт, ведь он образовался в результате присоединения Br - к первичному, а не ко вторичному карбокатиону? Противоречие легко устраняется при рассмотрении механизма реакции и сравнении стабильности промежуточно образующихся частиц:

Группа -СF 3 содержит три электроноакцепторных атома фтора, стягивающих электронную плотность от атома углерода. Поэтому на атоме углерода появляется существенный недостаток электронной плотности. Для компенсации возникающего частичного положительного заряда атом углерода стягивает на себя электронную плотность соседних углеродных атомов. Таким образом, группа -СF 3 является электроноакцепторной и проявляет отрицательный индуктивный эффект (- I ) . Более устойчивым в этом случае оказывается первичный карбокатион, так как дестабилизирующее влияние группы -CF 3 через две σ-связи ослабевает. А вторичный карбокатион, дестабилизированный соседней электроноакцепторной группой CF 3 , практически не образуется.

Аналогичное влияние на присоединение оказывает присутствие при двойной связи электроноакцепторных групп –NO 2 , -COOH, -COH и т.д. В этом случае также образуется продукт присоединения формально против правила Марковникова. Например, при присоединении хлороводорода к пропеновой (акриловой) кислоте образуется преимущественно 3-хлорпропановая кислота:

Таким образом, направление присоединения к непредельным углеводородам легко установить, анализируя строение углеводорода. Кратко это можно отразить следующей схемой:


Следует отметить, что правило Марковникова выполняется только в том случае, если реакция идет по ионному механизму. При проведении радикальных реакций правило Марковникова не выполняется. Так, присоединение бромоводорода HBr в присутствии пероксидов (H 2 O 2 или органических пероксидов) протекает против правила Марковникова:


Добавление пероксидов меняют механизм реакции, он становится радикальным. На этом примере видно, как важно знать механизм реакции и условия, в которых он реализуется. Тогда, выбрав соответствующие условия проведения реакции, можно направить ее по нужному в данном конкретном случае механизму, и получить именно те продукты, которые нужны.
МЕХАНИЗМ ЗАМЕЩЕНИЯ АТОМОВ ВОДОРОДА В АРОМАТИЧЕСКИХ УГЛЕВОДОРОДАХ
Наличие в молекуле бензола устойчивой сопряженной π -электронной системы делает реакции присоединения практически невозможными. Для бензола и его производных наиболее характерны реакции замещения атомов водорода, протекающие с сохранением ароматичности. При этом бензольное ядро, содержащее π- электроны, взаимодействует с электрофильными частицами. Такие реакции называют реакциями электрофильного замещения в ароматическом ряду . К ним относятся, например, галогенирование, нитрование и алкилирование бензола и его производных.

Все реакции электрофильного замещения в ароматических углеводородах протекают по одному и тому же ионному механизму независимо от характера реагента. Механизм реакций замещения включает несколько стадий: образование электрофильного агента Е + , образование π -комплекса, затем σ- комплекса и, наконец, распад σ- комплекса с образованием продукта замещения.

Электрофильная частица Е + образуется при взаимодействии реагента с катализатором, например, при действии на молекулу галогена хлоридом алюминия. Образующаяся частица Е + взаимодействует с ароматическим ядром, образуя сначала π -, а затем σ- комплекс:

При образовании σ- комплекса электрофильная частица Е + присоединяется к одному из атомов углерода бензольного кольца посредством σ- связи. В образовавшемся карбокатионе положительный заряд равномерно распределен (делокализован) между оставшимися пятью атомами углерода.

Реакция заканчивается отщеплением протона от σ- комплекса. При этом два электрона σ -связи С-Н возвращаются в цикл, и устойчивая шестиэлектронная ароматическая π -система регенирируется.

В молекуле бензола все шесть атомов углерода равноценны. Замещение атома водорода может происходить с равной вероятностью при любом из них. А как будет происходить замещение в случае гомологов бензола? Рассмотрим в качестве примера метилбензол (толуол).

Из экспериментальных данных известно, что электрофильное замещение в случае толуола всегда протекает с образованием двух продуктов. Так, нитрование толуола протекает с образованием п -нитротолуола и о -нитротолуола:

Аналогично протекают и другие реакции электрофильного замещения (бромирование, алкилирование). Также было установлено, что в случае толуола реакции замещения протекают быстрее и в более мягких условиях, чем в случае бензола.

Объяснить эти факты очень просто. Метильная группа является электронодонорной и вследствие этого дополнительно увеличивает электронную плотность бензольного кольца. Особенно сильное увеличение электронной плотности происходит в о- и п- положениях по отношению к группе -СН 3 , что облегчает присоединение именно в эти места положительно заряженной электрофильной частицы. Поэтому скорость реакции замещения в целом увеличивается, а заместитель направляется преимущественно в орто - и пара -положения.

Классификация реакций

Существуют четыре основные типа реакций, в которых участвуют органические соединения: замещение (вытеснение), присоединение, элиминирование (отщепления), перегруппировки.

3.1 Реакции замещения

В реакциях первого типа замещение обычно происходит у атома углерода, но замещенный атом может быть атомом водорода или каким-либо другим атомом или группой атомов. При электрофильном замещении чаще всего замещается атом водорода; примером служит классическое ароматическое замещение:

При нуклеофильном замещении чаще замещается не атом водорода, а другие атомы, например:

NC - + R−Br → NC−R +BR -

3.2 Реакции присоединения

Реакции присоединения также могут быть электрофильными, нуклеофильными или радикальными в зависимости от типа частиц, инициирующих процесс. Присоединение к обычным двойным углерод-углеродным связям индуцируется, как правило, электрофилом или радикалом. Например, присоединение HBr

может начинаться с атаки двойной связи протоном Н + или радикалом Br·.

3.3 Реакции элиминирования

Реакции элиминирования по существу обратны реакциям присоединения; наиболее обычный тип такой реакции – отщепление атома водорода и другого атома или группы от соседних атомов углерода с образованием алкенов:

3.4 Реакции перегруппировки

Перегруппировки также могут протекать через промежуточные соединения, представляющие собой катионы, анионы или радикалы; чаще всего эти реакции идут с образованием карбокатионов или других электронодефицитных частиц. Перегруппировки могут включать существенную перестройку углеродного скелета. За стадией собственно перегруппировки в таких реакциях часто следуют стадии замещения, присоединения или отщепления, приводящие к образованию стабильного конечного продукта.

Детальное описание химической реакции по стадиям называется механизмом. С электронной точки зрения под механизмом химической реакции понимают способ разрыва ковалентных связей в молекулах и последовательность состояний, через которые проходят реагирующие вещества до превращения в продукты реакций.

4.1 Свободно-радикальные реакции

Свободно-радикальные реакции – это химические процессы, в которых принимают участие молекулы, имеющие неспаренные электроны. Определенные аспекты реакций свободных радикалов являются уникальными в сравнении с другими типами реакций. Основное различие состоит в том, что многие свободно-радикальные реакции являются цепными. Это означает существование механизма, благодаря которому множество молекул превращается в продукт с помощью повторяющегося процесса, инициируемого созданием одной реакционноспособной частицы. Типичный пример иллюстрируется с помощью следующего гипотетического механизма:


Стадию, на которой генерируется реакционный интермедиат, в данном случае А·, называется инициированием. Эта стадия протекает при высокой температуре, под действием УФ или пероксидов, в неполярных растворителях. В следующих четырех уравнениях данного примера повторяется последовательность двух реакций; они представляют фазу развития цепи. Цепные реакции характеризуются длиной цепи, которая соответствует числу стадий развития, приходящихся на одну стадию инициирования. Вторая стадия протекает одновременным синтезом соединения и образования нового радикала, который продолжает цепь превращений. Последней стадией является стадией обрыва цепи, которая включает любую реакцию, в которой разрушается один из реакционных интермедиатов, необходимых для развития цепи. Чем больше стадий обрыва цепи, тем меньшей становится длина цепи.

Свободно-радикальные реакции протекают: 1)на свету, при высокой температуре или в присутствии радикалов, которые образуются при разложении других веществ; 2)тормозятся веществами, легко реагирующими со свободными радикалами; 3)протекают в неполярных растворителях или в паровой фазе; 4)часто имеют автокаталитический и индукционный период перед началом реакции; 5)в кинетическом отношении являются цепными.

Реакции радикального замещения характерны для алканов, а радикального присоединения – для алкенов и алкинов.

СН 4 + Сl 2 → CH 3 Cl + HCl

CH 3 -CH=CH 2 + HBr → CH 3 -CH 2 -CH 2 Br

CH 3 -C≡CH + HCl → CH 3 -CH=CHCl

Соединение свободных радикалов между собой и обрыв цепи происходит в основном на стенках реактора.

4.2 Ионные реакции

Реакции, в которых происходит гетеролитический разрыв связей и образуются промежуточные частицы ионного типа, называются ионными реакциями.

Ионные реакции протекают: 1)в присутствии катализаторов (кислот или оснований и не подвержены влиянию света или свободных радикалов, в частности, возникающих при разложении пероксидов); 2)не подвергаются влиянию акцепторов свободных радикалов; 3)на ход реакции оказывает влияние природа растворителя; 4)редко протекают в паровой фазе; 5)кинетически являются, в основном, реакциями первого или второго порядка.

По характеру реагента, действующего на молекулу, ионные реакции делятся на электрофильные и нуклеофильные . Реакции нуклеофильного замещения характерны для алкил- и арилгалогенидов,

CH 3 Cl + H 2 O → CH 3 OH + HCl

C 6 H 5 -Cl + H 2 O → C 6 H 5 -OH + HCl

C 2 H 5 OH + HCl → C 2 H 5 Cl + H 2 O

C 2 H 5 NH 2 + CH 3 Cl → CH 3 -NH-C 2 H 5 + HCl

электрофильного замещения – для алканов в присутствии катализаторов

CH 3 -CH 2 -CH 2 -CH 2 -CH 3 → CH 3 -CH(CH 3)-CH 2 -CH 3

и аренов.

C 6 H 6 + HNO 3 + H 2 SO 4 → C 6 H 5 -NO 2 + H 2 O

Реакции электрофильного присоединения характерны для алкенов

CH 3 -CH=CH 2 + Br 2 → CH 3 -CHBr-CH 2 Br

и алкинов,

CH≡CH + Cl 2 → CHCl=CHCl

нуклеофильного присоединения – для алкинов.

CH 3 -C≡CH + C 2 H 5 OH + NaOH → CH 3 -C(OC 2 H 5)=CH 2

Типы химических реакций в неорганической и органической химии.

1. Химическая реакция – это процесс, при котором из одних веществ образуются другие вещества. В зависимости от характера процесса выделяют типы химических реакций.

1)По конечному результату

2) По признаку выделения или поглащения теплоты

3)По признаку обратимости реакции

4) По признаку изменения степени окисления атомов, входящих в состав реагирующих веществ

По конечному результату реакции бывают следующих типов:

А) Замещение: RH+Cl 2 →RCl+HCl

Б) Присоединение: СН 2 =СН 2 +Cl 2 →CH 2 Cl-CH 2 Cl

В) Отщепление: СН 3 -СН 2 ОН→ СН 2 =СН 2 +Н 2 О

Г) Разложение: СН 4 →С+2Н 2

Д) Изомеризация

Е) Обмена

Ж) Соединения

Реакцией разложения называют процесс, при котором из одного вещества образуются два или несколько других.

Реакциейобмена называют процесс, при котором реагирующие вещества обменивабтся составными частями.

Реакциии замещения протекают с участием простого и сложного вещества, в результате образуются новые простое и сложное вещества.

В результате реакций соединения из двух или нескольких веществ образуется одно новое.

По признаку выделения или поглащения теплоты реакции бывают следующих типов:

А) Экзотермические

Б) Эндотермические

Экзотермические – это реакции, протекающие с выделение теплоты.

Эндотермические – это реакции, протекающие с поглощением теплоты из окружающей среды.

По признаку обратимости реакции бывают следующих типов:

А) Обратимые

Б) Необратимые

Реакции, которые протекают только в одном направлении и завершаются полным превращением исходных реагирующих веществ в конечные вещества, называются необратимыми.

Обратимыми называются такие реакции, которые одновременно протекают в двух взаимнопротивоположных направлениях.

По признаку изменения степени окисления атомов, входящих в состав реагирующих веществ реакции бывают следующих типов:

А) Окислительно-восстановительные

Реакции, протекающие с изменением степени окисления атомов (при которых происходит переход электронов от одних атомов, молекул или ионов к другим) называются окислительно-восстановительными.

2. По механизму протекания реакции делятся на ионные и радикальные.

Ионные реакции – взаимодействие между ионами в следствие гетеролитического разрыва химической связи (пара электронов целиком переходит к одному из «осколков»).

Ионные реакции бывают двух типов (по типу реагента):

А) электрофильные – в ходе реакции с электрофилом.



Электрофил – группировка, имеющая у некоторых атомов свободные орбитали, или центры с пониженной электронной плотностью (например: Н + , Cl - или AlCl 3)

Б) Нуклеофильные – в ходе взаимодействия с нуклеофилом

Нуклеофил – отрицательно заряженный ион или молекула с неподеленной электронной парой (не участвующей в настоящий момент в образовании химической связи).

(Примеры: F - , Cl - , RO - , I -).

Реальные химические процессы, лишь в редких случаях могут быть описаны простыми механизмами. Детально рассматривать хим процессы с молекулярной кинетической точки зрения показывает что большинство из них протекает по радикально-цепному мех-му, особенность цепных р-ций заключается в образовании на промежуточных этапах свободных радикалов (нестабильн фрагменты молекул или атомов с малым временем жизни, все имеют свободные связи.

По цепному механизму протекают процессы горения, взрыва, окисления, фотохимических реакцции, биохим р-ции в жив организмах.

Цепные р-ции имеют несколько стадий:

1) зарождение цепи - стадия цепных р-ции, в результ котор возникают свободн радикалы из валентнонасыщенных молекул.

2) продолжение цепи - стадия цеп р-ции, протекающ с сохраненением общего числа свободн стадий.

3) обрыв цепи - элементарн стадия цеп р-ции приводящ к исчезновению свободн связей.

Различают разветвленные и неразветвленные цепные реакции.

Одним из важнейших понятий цепи явл длина цепи - среднее кол-во элементарных стадий продолжения цепи после возникновения свободного радикала до момента его исчезновения.

Пример: синтез хлороводорода

1)м-ла CL 2 поглощает квант энергии и образ 2 радикала: CL 2 +hv=CL * +CL *

2) активн частица соединяется с м-олекулой Н 2 образуя хлороводор и активную частица Н 2: CL 1 +Н 2 =HCL+H *

3)CL 1 +H 2 =HCL+CL * и т.д.

6)H * +CL * =HCL- обрыв цепи.

Разветвленный механизм:

F * +H 2 =HF+H * и т.д.

F * +H 2 =HF+H * и т.д.

У воды – сложнее – образуются радикалы ОН*, О* и радикал Н*.

Реакции, протекающие под действием ионизирующего излучения: рентгеновские лучи, катодные лучи и так далее – называются радиохимическими.

В результате взаимодействия молекул с излучением, наблюдается распад молекул с образованием наиболее реакционноспособных частиц.

Такие реакции способствуют рекомбинации частиц, и образованию веществ с различным их сочетанием.

Пример – гидразин N 2 H 4 – компонент ракетного топлива. В последнее время делаются попытки получить гидразин из аммиака в результате воздействия на него γ-лучами:

NH 3 → NH 2 * + Н*

2NH 2 *→ N 2 H 4

Радиохимические реакции, например радиолиз воды имеют важное значение для жизнедеятельности организмов.

Литература:

1. Ахметов, Н.С. Общая и неорганическая химия / Н.С.Ахметов. – 3-е изд. – М.: Высшая школа, 2000. – 743с.

  1. Коровин Н.В. Общая химия / Н.В.Коровин. – М.: Высшая школа, 2006. – 557 с.
  2. Кузьменко Н.Е. Краткий курс химии / Н.Е. Кузьменко, В.В Еремин, В.А. Попков. – М.: Высшая школа, 2002. – 415 с.
  3. Зайцев, О.С. Общая химия. Строение веществ и химические реакции / О.С.Зайцев. – М.: Химия, 1990.
  4. Карапетьянц, М.Х. Строение вещества / М.Х. Карапетьянц, С.И.Дракин. – М.: Высшая школа, 1981.
  5. Коттон Ф. Основы неорганической химии / Ф.Коттон, Дж.Уилкинсон. – М.: Мир, 1981.
  6. Угай, Я.А. Общая и неорганическая химия / Я.А.Угай. – М.: Высшая школа, 1997.
Поделиться