Микроскопия. Что в световой микроскоп можно увидеть? С помощью световой микроскопии

Световая микроскопия - это самый древний и в тоже время один из распространенных методов исследования и изучения растительной и животной клетки. Предполагается, что начало изучения клетки было именно с изобретением светового оптического микроскопа. Главная характеристика светового микроскопа - это разрешение светового микроскопа, определяемое длиной световой волны. Предел разрешения светового микроскопа определяется длиной световой волны, оптический микроскоп используется для изучения структур, которые имеют минимальные размеры равные длине волны светового излучения. Многие составляющие клетки близки по своей оптической плотности и требуют предварительной обработки перед микрокопированием, в противном же случае они практически не видны в обычный световой микроскоп. Для того, чтобы сделать их видимыми, используют различные красители, обладающие определенной избирательностью. Используя избирательные красители, появляется возможность более подробно исследовать внутреннее строение клетки.

Например:

краситель гематоксилин окрашивает некоторые компоненты ядра в синий или фиолетовый цвет;

после обработки последовательно флороглюцином и затем соляной кислотой одревесневшие оболочки клеток становятся вишнево - красными;

краситель судан III окрашивает опробковевшие клеточные оболочки в розовый цвет;

слабый раствор йода в йодистом калии окрашивает крахмальные зерна в синий цвет».

При проведении микроскопических исследований большую часть тканей перед началом окраски фиксируют.

После фиксации клетки становятся проницаемыми для красителей, а структура клетки стабилизируется. Одним из наиболее распространенных фиксаторов в ботанике является этиловый спирт.

В ходе приготовления препарата для микрокопирования выполняют тонкие срезы на микротоме (приложение 1, рис.1). В этом приборе использован принцип хлеборезки. Для растительных тканей изготавливают чуть более толстые срезы, чем для животных, поскольку клетки растений относительно крупней. Толщина срезов растительных тканей для - 10 мкм - 20 мкм. Некоторые ткани слишком мягкие, чтобы из них сразу же можно было получить срезы. Поэтому после фиксации их заливают в расплавленный парафин или специальную смолу, которые пропитывают всю ткань. После охлаждения образуется твердый блок, который потом режется на микротоме. Это объясняется тем, что растительные клетки имеют прочные клеточные стенки, составляющие каркас ткани. Особенно прочны одревесневшие оболочки.

Пользуясь заливкой при приготовлении, срез возникает опасность нарушения структуры клетки, для предотвращения этого пользуются методом быстрого замораживания. При использовании этого метода обходятся обойтись без фиксации и заливки. Замороженную ткань режут на специальном микротоме - криотоме (приложение 1, рис. 2).

Замороженные срезы лучше сохраняют особенности естественной структуры. Однако их труднее готовить, а присутствие кристаллов льда нарушает некоторые детали.

фазово-контрастный (прилож. 1, рис. 3) и интерференционный микроскопы (прилож.1, рис.4) позволяют исследовать под микроскопом живые клетки с четким проявлением детали их строения. В этих микроскопах используют 2 пучка световых волн, которые взаимодействуют (налагаются) друг на друга, усиливая или уменьшая амплитуду волн, поступающих в глаз от разных компонентов клетки.

Световая микроскопия имеет несколько разновидностей.

Свойства объёмного стекла увеличивать изображение были знакомы людям очень давно. Самая древняя линза, найденная археологами в Ираке близ города Нимруд, датируется VIII веком до нашей эры. Изобретатели этого полезного приспособления так и остались неизвестными. Неясно также, кто впервые применил его для создания микроскопа. Есть достоверные сведения, что комбинации из двух линз для своих приборов использовали знаменитые учёные XVI-XVII веков - Галилео Галилей, Джироламо Фракасторо, Кристиан Гюйгенс. История умалчивает, были эти приспособления изобретены до них, или нет. Но именно в ту эпоху оптика стала впервые применяться для изучения микромира.

Исследователи быстро поняли, что при использовании сразу нескольких линз их кратности увеличения предметов не складываются, а перемножаются друг на друга. И это даёт значительный эффект, позволяющий рассмотреть объекты микромира. Проблема состояла в том, что первые линзы были несовершенны и достаточно грубо обработаны. Поэтому изображение получалось с дефектами, которые увеличивались вместе с объектом исследований. Для решения этой проблемы разрабатывались микроскопы с единственной мощной линзой, один из которых позволил Антони Ван Левенгуку разглядеть растительную клетку. Лишь через полтора столетия многосоставные микроскопы, обладающие несколькими линзами, завоевали широкую популярность среди учёных. А с появлением электричества стала использоваться подсветка, значительно облегчившая процесс наблюдения. Именно так появился прибор, схожий по принципу работы с современным световым микроскопом.

Принцип работы

Световой микроскоп использует одно из неотъемлемых свойств луча света - преломление. Лучи подсветки отражаются в зеркальце, расходятся от объекта и параллельным пучком идут внутри тубуса, в котором размещены линзы. При помощи линз лучи преломляются, т.е. изменяют угол своего падения таким образом, что происходит их концентрация на сетчатке глаза. Таким способом объект наблюдения увеличивается и проступают его незаметные прежде детали.

Кратности увеличения

Окуляром микроскопа называется линза, в которую непосредственно смотрит глаз наблюдателя. Обычно для этих целей используются линзы с десятикратным увеличением. Ниже, в тубусе, располагается ряд объективов, каждый из которых имеет своё увеличение - 4, 10, 40 или же 100. Поскольку кратности перемножаются, то, в зависимости от выбранного объектива в сочетании с десятикратным окуляром, можно достигать кратности от 40 до 1000 соответственно.

Обычно наблюдение начинают с выбора четырёхкратного объектива, дающего наименьшее увеличение в 40 раз. Зачем? Дело в том, что для подробного рассмотрения какого-либо объекта нужно сперва этот объект найти. Осуществлять такой поиск при слишком большом увеличении неудобно. Поэтому при изучении микроскопического предмета, как правило, начинают от самого малого увеличения к большему. Объектив с маленьким увеличением позволяет гораздо быстрее фокусироваться, чем с большим.

Полезное и бесполезное увеличение

Увеличение бывает как полезным,так и бесполезным. В чём разница между тем и другим? Дело в том, что возможности любого светового микроскопа имеют предел. Теоретически возможно, используя множество линз, увеличить кратность прибора до бесконечности.

Но на практике наступает предел, после которого дальнейшее увеличение не делает видимыми новые детали объекта. До этого предела увеличение считается полезным, а после - бесполезным.

Разрешающая способность

Увеличивать изображение до бесконечности нет смысла потому, что разрешающая способность прибора конечна. Этой способностью называется расстояние между двумя близкими линиями, позволяющее видеть их раздельно. Для светового микроскопа такое расстояние достигает максимум 0,2 мкм. Именно этот фактор, а вовсе не конечные значения кратности, ограничивают область применения световой микроскопии. Более мелкие объекты доступны электронным и другим более современным микроскопам.

бъектив представляет собой цилиндр из металла (тубус), в который вмонтированы несколько линз. Его увеличение обозначают цифры.

Две или три линзы используются для окуляра. Предназначение расположенной между ними диафрагмой - фокусировка поля зрения. Нижней линзой фокусируются исходящие от объекта лучи, а само наблюдение происходит с помощью верхней.

В осветительном устройстве используются зеркало или электрический осветитель. Важной деталью является наличие конденсора, в состав которого входят две или три линзы. Подымаясь или опускаясь на кронштейне со специальным винтом, он может концентрировать или рассеивать свет, падающий на объект. Диаметр потока света изменяется специальной диафрагмой управляемый рычажком. Степень освещённости объекта регулирует кольцо, имеющее матовое стекло или светофильтр.

Составляющие механической системы микроскопа:

  • Подставка.
  • Коробка с микрометренными приспособлениями.
  • Тубус.
  • Тубусодержатель.
  • Винт грубой наводки.
  • Кроншетейн и винт перемещения конденсора.
  • Револьвер.
  • Предметный столик.

На предметном столике располагается объект наблюдения. Микрометренные механизмы предназначены для небольших перемещений тубусодержателя с тубусом, чтобы расстояние между объективом и объектом было оптимальным для наблюдения. Для более значительного смещения используют винты, осуществляющие грубую наводку. Функция револьвера - быстрая смена объективов. Это чрезвычайно удобное приспособление, которого не имели первые микроскопы, поэтому испытатели прошлого вынуждены были тратить на данную процедуру чрезвычайно много времени и усилий. Кронштейн, на котором держится конденсор, также способен подниматься и опускаться при помощи винта.

Обычно в световой микроскоп рассматривают микроскопические биологические объекты. Именно с его помощью была открыта живая клетка. Сегодня с помощью светового микроскопа можно исследовать целый ряд клеточных органелл, играющих важную роль в функционировании живого организма.

Именно такой микроскоп используется при преподавании школьного курса биологии.

В частности, при помощи этого прибора можно увидеть:

  • Ядро , являющееся основным её компонентом.
  • Стенку, образующую поверхностный клеточный аппарат, включая мембрану.
  • Хлоропласты, содержащие важный для растительной клетки хлорофилл, с помощью которого углеводородов из воды и углекислого газа.
  • Митохондриальные структуры и коплекс Гольджи, важные для клеточного метаболизма.
  • различные виды ресничек, жгутиков, вакуолей и светочувствительных органелл.

Новейшие достижения — самые мощные микроскопы

В 2006 году исследовательской группой во главе с немецким учёным Штефаном Хелем и аргентинцем Мариано Босси была завершена разработка оптического (светового) микроскопа, ставшего настоящим прорывом в технологиях исследований с помощью высокоточной оптики. Изобретение, которое назвали наноскопом, позволяет вести наблюдение за объектами размерами менее 10 нм. При этом получаются их высококачественные изображения в трёхмерном формате. Вероятно,это не предел - исследования в разных странах, направленных на повышение разрешающей способности светового микроскопа, продолжаются.

Конфокальный микроскоп и изображения, сделанные с его помощью: растрескивание пыльника, сосуды ксилемы, хлоропласты в клетках рыльца.

  • Световая микроскопия

    Одним из главных методов цитологии на сегодняшний день остается микроскопия, предназначенная для изучения структуры клетки, она широко используется в фундаментальных и прикладных исследованиях. Изобретение микроскопа связывают с именами Галилео Галилея (итал.) и братьев Янсен (гол.) в 1609-1611 гг. Термин «микроскоп» был предложен Фабер (нем.) в 1625 г.

    На настоящий момент существует два основных вида микроскопии - световая и электронная. Различия между ними состоят в принципе рассмотрения объекта. В первом случае объект рассматривают в потоке видимой части электромагнитного излучения (длина волны = 400-750 нм), во втором случае - в потоке электронов. Эти два метода имеют разную разрешающую способность. Разрешающая способность или предел разрешения - это минимальное расстояние между двумя точками, при котором они видны раздельно. Предел разрешения микроскопа задается длиной волны потока излучения, в котором изучается объект. Поэтому излучение данной длины волны может быть использовано для исследования только таких структур, минимальные размеры которых сопоставимы с длиной волны самого излучения. Предел разрешающей способности световой микроскопии был достигнут конструкторами микроскопов еще в конце 19 века, и составил 0,2 мкм. Это значит, что два объекта, если они разделены расстоянием менее 0,2 мкм, будут выглядеть как одно целое, даже если мы будем сильно увеличивать изображение, например, проецируя его на экран. Поэтому, с помощью светового микроскопа не удается рассмотреть две центриоли в клеточном центре, они выглядят как одна точка (надо сказать, что в современных микроскопах, производимых серийно, максимальная разрешающая способность не реализуется). В связи с ограничением разрешающей способности светового микроскопа он может быть использован для изучения ограниченного числа внутриклеточных структур, включая: ядро, пластиды, крупные вакуоли, оболочку растительной клетки. Мельчайшими объектами, четко различимыми в световом микроскопе являются бактерии и митохондрии, размеры которых составляют около 500 нм (0,5 мкм), более мелкие объекты видны нечетко, повышение точности обработки линз не может преодолеть это ограничение, которое задано волновой природой света.

    Разрешающая способность зависит не только от длины волны источника освещения, но и от коэффициента преломления среды, через которую происходит наблюдение объекта, а также от угла наклона, под которым лучи освещения входят в объектив. Стандартный набор объективов микроскопа составляют: объективы малого увеличения (х8) с апертурой А=0,2 и объективы большого увеличения (х20) с А= 0,40 и - (х40) с А= 0,65. Эти объективы называют «сухими», так как рассмотрение объекта с их помощью происходит через воздушную среду (коэффициент преломления n=1). Но большинство микроскопов оснащены, кроме этого, специальными иммерсионными объективами, для которых необходима специальная иммерсионная среда (n=1). Такой средой может быть вода, объектив х40 ВИ имеет апертуру 0,75. Наиболее распространена масляная иммерсия (n=1,51), при х90 значение апертуры объектива А=1,25. В случае использования иммерсии улучшается разрешающая способность светового микроскопа. Однако, у объективов с высокой разрешающей способностью имеются недостатки: небольшая глубина резкости и невысокая контрастность.

    Самым распространенным методом световой микроскопии является метод светлого поля, при котором световые лучи осветителя проходят через объект и попадают в объектив. Таким способом изучают клетки фиксированные и окрашенные. Открытие основных клеточных структур связано с разработкой и применением набора красителей, которые избирательно окрашивают компоненты клетки и обеспечивают контраст для их наблюдения. Имеется большое разнообразие красителей. Некоторые из них извлекаются из растений и животных, до сих пор не существует их синтетических аналогов. Например, широко используемый гематоксилин - экстракт тропического кампешевого дерева, кармин - пигмент жирового тела некоторых видов тлей. Все это так называемые ядерные красители, окрашивающие структуры, содержащие нуклеиновые кислоты. Применение неядерного красителя -азотнокислого серебра, позволило Камилло Гольджи в 1898 г. наблюдать и описать то, что позднее было названо аппаратом Гольджи.

    Окрашивание живой клетки возможно лишь в редких случаях, поэтому для их изучения используют другие методы. В отличие от метода светлого поля при наблюдении объектов методом темного поля лучи осветителя не попадают в объектив и изображение создается только рассеянными лучами, идущими от объекта. При этом на темном фоне можно увидеть светящиеся частицы, которые по своим размерам меньше, чем разрешающая способность объектива, хотя размеры и форму частиц определить трудно. Темнопольная микроскопия в проходящем свете используется для изучения прозрачных объектов обычно невидимых в светлом поле и, особенно, для рассмотрения живых клеток. Совершенно по-разному на темном фоне выглядят живые и погибающие клетки. Протопласт погибающих клеток светится ярче, объяснения этому факту нет. Изобретен этот метод Зигмонди (австр.) в 1912 г. В световой микроскоп можно различать объекты, изменяющие амплитуду лучей освещения, однако живые клетки прозрачны для видимого света и лучи, проходя через клетку, практически не меняют амплитуды. Человеческий глаз не способен воспринимать смещение фазы лучей без изменения амплитуды. Поэтому специально для изучения живых клеток используются методы фазово-контрастной (изобретен Зернике (голл.) в 1934 г.) и интерференционной микроскопии (изобретен Лебедевым в 1932 г.). В таких системах прохождение света через живую клетку сопровождается изменением фазы световой волны. Свет задерживается, проходя через толстые участки клетки, например, через ядро. Возникает рекомбинация двух наборов волн, которые создают изображение клеточных структур.

    Для изучения объектов, обладающих двойным лучепреломлением (крахмальные зерна, растительные волокна, кристаллы) используют поляризационную микроскопию, основы которой заложил Эбнер в 1882 г. В этом методе используют специальное устройство поляризатор, который преобразует разнонаправленные волны света и они приобретают одно направление.

    При флуоресцентной микроскопии объект рассматривают в свете, излучаемом им самим. Первый люминесцентный микроскоп сконструировали Келлер и Зиндентокф в 1908 г. В основе этого метода лежит способность ряда веществ, при освещении коротковолновыми лучами (фиолетовыми или ультрафиолетовыми), светиться. Часто люминесцентная микроскопия используется для выявления специфических белков, антител, впервые использовал флуорохромы для связывания с антителами Кунс, и эта реакция получила его имя. В цитоэмбриологических исследованиях этот метод используют для изучения структур, содержащих углевод каллозу. Для этого метода используют специальную оптическую систему с ртутной лампой, связанную со световым микроскопом.

    В последнее время возможности световой микроскопии существенно увеличились благодаря использованию чувствительных видеосистем. Изображение, созданное световым микроскопом, подвергается обработке в видеокамере. Оно очищается от «шумов», преобразуется в цифровые сигналы и направляется в компьютер, где подвергается дополнительной обработке для извлечения скрытой информации. Компьютерная интерференционная микроскопия позволяет достичь сильного контраста и анализировать прозрачные объекты и живые клетки.

  • Электронная микроскопия

    Длительные непрерывные усилия по улучшению методов исследования принесли желаемые результаты в конце второй мировой войны. Именно тогда, благодаря удивительному стечению обстоятельств, почти в одно и то же время, ученые обогатились рядом новых мощных инструментов и методов исследования. В морфологии таким инструментом стал электронный микроскоп. Созданный еще в 30-е г. 20 века, он обладал достаточной разрешающей способностью, позволяющей проникнуть в клетку, вплоть до структур размером в нанометр. Вместе с тем, электронный пучок имел слабую проникающую способность, и это требовало приготовления очень тонких образцов материала и высокого вакуума. Такие жесткие требования создавали серьезные трудности, но в удивительно короткий срок удалось разработать методы для подготовки образцов тканей и сконструировать приборы для получения из них тонких срезов. Качество объектов неуклонно повышалось и к началу 60-ых годов были описаны многие из ранее неизвестных клеточных структур.

    Итак, разрешающая способность электронного микроскопа намного выше, чем светового. Теоретически при напряжении 100000 В его разрешение составляет 0,002 нм, но за счет коррекции электронных линз оно уменьшается и в реальности составляет у современных электронных микроскопов 0,1 нм. Значительные трудности наблюдения биологических объектов еще более снижают нормальное разрешение, оно не превышает 2 нм. Тем не менее, это в 100 раз больше, чем у светового микроскопа, поэтому электронную микроскопию называют ультрамикроскопической.

    Общая схема просвечивающего электронного микроскопа напоминает схему светового. Он существенно больше светового и как бы перевернут. В качестве источника излучения у электронного микроскопа служит нить катода, испускающая электроны (электронная пушка). Электроны испускаются с вершины цилиндрической колонны высотой около двух метров. Чтобы не было препятствий для движения электронов, происходит это в вакууме, разгоняются электроны анодом и проникают через крошечное отверстие в нижнюю часть колонны узким электронным лучом. Электронный луч фокусируется кольцевыми магнитами, расположенными вдоль колонны, они действуют подобно стеклянным линзам светового микроскопа. Образец помещается на пути электронного пучка. В момент его прохождения через образец часть электронов рассеивается в соответствии с плотностью вещества, остаток электронов фокусируется, образуя изображение на фотопластинке или на экране.

    Первый электронный микроскоп был создан Сименсом в 1939 г. Он позволил увидеть в клетке множество удивительных структур. Но для этого пришлось изобрести совершенно новые методы приготовления препаратов, которые стали применять с 1952 г. Фиксация клеток при этом проводится глутаральдегидом, ковалентно связывающим белки, а затем осмиевой кислотой, стабилизирующей белковые и липидные слои. Образец обезвоживают и пропитывают смолами, образующими после полимеризации твердый блок. Срезы для электронной микроскопии должны быть примерно 1:200 часть толщины одной клетки. Для изготовления таких срезов был создан ультрамикротом (1953) , в котором используются стеклянные или алмазные ножи. Полученные срезы помещают на специальную медную сеточку. Изображение в электронном микроскопе зависит от рассеивания электронов, которое определяется атомным числом вещества. Биологические объекты состоят главным образом из углерода, кислорода и водорода, которые обладают низким атомным числом. Для усиления контраста их импрегнируют тяжелыми металлами, такими как осмий, уран, свинец. Тонкие срезы при просвечивающей электронной микроскопии не позволяют судить о трехмерной структуре клетки, компенсировать этот недостаток можно серией срезов, по которой проводится реконструкция клетки. Это долгий процесс.

    Существует и прямой метод изучения трехмерного строения биологических объектов - сканирующая электронная микроскопия - она была создана в 1965 г. В этом случае для получения изображения используют электроны, рассеиваемые или излучаемые поверхностью объекта, который должен быть зафиксирован, высушен и покрыт пленкой тяжелого металла. Этот метод применим только для изучения поверхностей и его разрешение невелико - около 10 нм.

  • Электронный микроскоп

    Просвечивающий, зондовый и растровый электронные микроскопы. Электронмикроскопическое изображение поверхности пыльника и пыльцевого зерна

  • Химические методы исследования клетки

    Классический световой микроскоп обладает низкой разрешающей способностью, что не позволяет изучать детали строения клетки размером менее 0,25 мкм. Второй этап изучения клетки относится к тому времени, когда микроскописты трудились над усовершенствованием своих приборов. В это же время - конец 18 в. - французский ученый Антуан де Лавуазье и англичанин Джозеф Пристли создают новую науку - химию. В отличие от морфологии, которая развивается от сложного к простому, химия продвигается от простого к сложному. Начиналась химия с идентификации элементов, атомов и затем продвигалась по пути изучения некоторых их наиболее простых комбинаций - молекул.

    Пересечь границу между неорганической и органической химией и позволить проникнуть в живой мир химии помог, впервые проведенный в 1828 г. Немецким ученым Фридрихом Велером, синтез биологической молекулы мочевины. Это стало началом применения химического подхода к изучению клетки. В последующие сто лет были открыты, очищены, структурно изучены и получены синтетическим путем аминокислоты, сахара, жиры, пурины, пиримидины и др. небольшие молекулы. Ученым удалось составить представление о метаболизме этих веществ в организме и путях образования из них основных биологических молекул: белков, полисахаридов и нуклеиновых кислот. Но опять возникли труднопреодолимые препятствия на пути прогресса: перед сложностями структурной комплексности этих крупных молекул классическая химия оказалась бессильна. В течение длительного времени клетки изучали в основном путем наблюдения за ними. Но по мере развития экспериментального метода в естественных науках к нему начали прибегать и при исследовании живых организмов. Это облегчалось мощными биомедицинскими исследованиями проводимыми во второй половине 19 в. В начале 20 в. американец Росс Гаррисон и француз Алексис Каррель установили, что клетки животных можно культивировать в пробирке наподобие того как это делают с одноклеточными организмами. Тем самым они продемонстрировали способность клеток к независимой жизни и создали метод культивирования, который сейчас является одним из самых актуальных.

    Но все эти методы, по сути революционные, по-прежнему, были непрямыми, клетка оставалась закрытым черным ящиком. Сохранялась неизведанной огромная пропасть между наименьшей различимой в световом микроскопе частицей и наиболее крупной молекулой, доступной химическому исследованию. В этом неизведанном пространстве были скрыты важные понятия и концепции, неизвестными оставались функции, описанных клеточных структур, их связь с известными биомолекулами - без всего этого жизнь клетки оставалась неразгаданной.

    В свою очередь биохимия также обогатилась целым рядом принципиально новых приборов и методов. Особый интерес представляла хроматография, основанная на очень простом феномене - образовании каемки или ореола вокруг пятна (то, что мы видим, когда пытаемся вывести пятно специальным раствором). В основе этого явления лежат различия в скорости движения разных красок в потоке растекающейся жидкости. В начале 20 века русский физиолог и биохимик Михаил Семенович Цвет первым использовал этот феномен. Пропуская экстракт из листьев через вертикальную трубку, заполненную адсорбирующим порошком, он сумел разделить основные пигменты листьев - зеленый и оранжевый - и получить их в виде отдельных окрашенных полос или колец вдоль трубки. Свой метод он назвал хроматография (греч. khroma - цвет, graphein - записывать). Цвет умер относительно молодым и потенциальные возможности его метода оставались неиспользованными до начала 40-х гг. Сейчас существует множество вариантов хроматографии - применимой ко всем веществам, которые могут быть идентифицированы химически.

    Близким к хроматографии является электрофорез в геле, при котором не поток растворителя, а электродвижущая сила способствует передвижению и разделению электрически заряженных компонентов. Эти методы произвели переворот в области химического анализа. Теперь на следовых количествах смеси практически любого состава можно провести анализ.

    Вторым методом, радикально изменившем химическое исследование живых клеток, явился метод изотопного мечения. Изотопы - это разновидности одного и того же химического элемента, отличающиеся по атомной массе. Некоторые изотопы существуют в природе, многие могут быть получены искусственным путем в процессе ядерных реакций. Изотопы используются для специфического мечения определенных молекул, такие молекулы можно отличить от им родственных без нарушения общей структуры. Этот метод используется при анализе биосинтетических процессов, которые не могли быть изучены другим способом. Например, с получением меченых аминокислот появилась возможность изучать их соединение в белки в живом организме или в экспериментальных условиях, даже, несмотря на бесконечно малое количество вновь образованного белка, благодаря его радиоактивности. Широкое распространение этот метод получил с созданием атомных реакторов и производством широкого спектра радиоизотопов. Без метода меченых атомов достижения клеточной и молекулярной биологии были бы невозможны.

    Таким образом, и морфология, и биохимия, обогащенные новыми методами постоянно совершенствовались, разрыв между их знанием становился все меньше и исчез совсем, когда появилась возможность разделить клетку на части таким образом, чтобы каждую часть можно было бы независимо изучить.

    Методы, применяемые для такого фракционирования, основываются главным образом на центрифугировании. Этот метод использует различия в физических свойствах, в частности величине и плотности, тех или иных составных частей клетки для отделения их друг от друга. Это позволило изучить большую часть клетки и объединить морфологическое и биохимическое знание.

    Однако одна часть клетки - ее важнейшая центральная часть, ядро - оставалась в значительной степени недоступной, пока не произошло еще одно событие. А началось оно с попытки проанализировать с помощью генетики особенности некоторых простых вирусов, инфицирующих бактерии и названные бактериофагами или пожирателями бактерий. Это исследование оказалось верным подходом к решению проблемы генетической организации, которая даже у простейших неклеточных организмов была необыкновенно сложной. Длительное время новая дисциплина известная сегодня как молекулярная биология, ограничивалась изучением вирусов и бактерий, но затем она буквально ворвалась в эукариотическую клетку, позволив изучать регуляцию жизнедеятельности клетки.

    Для изучения молекулярных основ организации клетки необходим детальный биохимический анализ. Для него необходимо значительное количество клеток определенного типа, поэтому невозможно использовать кусочки ткани, ведь они содержат клетки разных типов. На первом этапе работы кусочки ткани превращают в суспензию. Это можно сделать, разрушив межклеточное вещество и межклеточные связи. Для этого ткань обрабатывают протеолитическими ферментами, разрушающими белки (трипсин, коллагеназа). В соединении клеток, их слипании большую роль играет кальций, поэтому используют и вещества хелатирующие, которые связывают кальций. Затем ткани подвергают мягкому механическому разрушению и разделяют на отдельные клетки. Второй этап - разделение суспензии на отдельные фракции. Для этого используют центрифугирование, с помощью которого крупные клетки отделяют от мелких, а легкие - от тяжелых или используют антитела, и способность клеток с разной прочностью прикрепляться к стеклу или пластмассе. Третий этап - введение выделенных клеток в культуру. Первые опыты были проведены в 1907 г. Гаррисоном, он культивировал спинной мозг амфибий в сгустке плазмы. Среды для культивирования имеют довольно сложный состав. Стандартная среда была разработана в начале 70-х, она содержит набор из 13 аминокислот, 8 витаминов, минеральные соли. Кроме того, в среду могут включаться глюкоза, пенициллин, стрептомицин, сыворотка лошади или теленка. Как показали Хайфлик и Мурхед в 1961 г., большинство клеток млекопитающих погибает в культуре после определенного числа делений. Клетки кожи человека делятся в культуре 50-100 раз. Однако в культуре иногда появляются мутантные клетки, которые могут размножаться бесконечно, образуя клеточную линию. В 1952 г. была выделена перевиваемая клеточная линия из раковой опухоли шейки матки, известная как линия HeLa. Такие линии хранят при температуре -70 С, после размораживания они сохраняют способность делиться. Метод культивирования растительных клеток был разработан к 1964 г. Пользуясь им, удалось вырастить in vitro целое растение моркови из клеток корня.

  • 1. Все живые организмы на Земле состоят из клеток, сходных по строению, химическому составу и функционированию. Это говорит о родстве (общем происхождении) всех живых организмов на Земле (о единстве органического мира).


    2. Клетка является:

    • структурной единицей (организмы состоят из клеток)
    • функциональной единицей (функции организма выполняются за счет работы клеток)
    • генетической единицей (клетка содержит наследственную информацию)
    • единицей роста (организм растет за счет размножения его клеток)
    • единицей размножения (размножение происходит за счет половых клеток)
    • единицей жизнедеятельности (в клетке происходят процессы пластического и энергетического обмена) и т.п.

    3. Все новые дочерние клетки образуются из уже существующих материнских клеток путем деления.


    4. Рост и развитие многоклеточного организма происходит за счет роста и размножения (путем митоза) одной или нескольких исходных клеток.

    Мужики

    Гук открыл клетки.


    Левенгук открыл живые клетки (сперматозоиды, эритроциты, инфузории, бактерии).


    Броун открыл ядро.


    Шлейден и Шванн вывели первую клеточную теорию («Все живые организмы на Земле состоят из клеток, сходных по строению»).

    Методы

    1. Световой микроскоп увеличивает до 2000 раз (обычный школьный - от 100 до 500 раз). Видно ядро, хлоропласты, вакуоль. Можно изучать процессы, происходящие в живой клетке (митоз, движение органоидов и т.п.).


    2. Электронный микроскоп увеличивает до 10 7 раз, что позволяет изучать микроструктуру органоидов. Метод не работает с живыми объектами.


    3. Ультрацентрифуга. Клетки разрушаются и помещаются в центрифугу. Компоненты клетки разделаются по плотности (самые тяжелые части собираются на дне пробирки, самые легкие - на поверхности). Метод позволяет избирательно выделять и изучать органоиды.

    Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Укажите формулировку одного из положений клеточной теории
    1) Оболочка грибной клетки состоит из углеводов
    2) В клетках животных отсутствует клеточная стенка
    3) Клетки всех организмов содержат ядро
    4) Клетки организмов сходны по химическому составу
    5) Новые клетки образуются путем деления исходной материнской клетки

    Ответ


    Выберите три варианта. Какие положения содержит клеточная теория?
    1) Новые клетки образуются в результате деления материнской клетки
    2) В половых клетках содержится гаплоидный набор хромосом
    3) Клетки сходны по химическому составу
    4) Клетка – единица развития всех организмов
    5) Клетки тканей всех растений и животных одинаковы по строению
    6) Все клетки содержат молекулы ДНК

    Ответ



    1) биогенной миграции атомов
    2) родстве организмов

    4) появлении жизни на Земле около 4,5 млрд. лет назад

    6) взаимосвязи живой и неживой природы

    Ответ


    Выберите один, наиболее правильный вариант. Какой метод позволяет избирательно выделять и изучать органоиды клетки
    1) окрашивание
    2) центрифугирование
    3) микроскопия
    4) химический анализ

    Ответ


    Выберите один, наиболее правильный вариант. В связи с тем, что в любой клетке происходит питание, дыхание, образование продуктов жизнедеятельности, ее считают единицей
    1) роста и развития
    2) функциональной
    3) генетической
    4) строения организма

    Ответ


    Выберите три варианта. Основные положения клеточной теории позволяют сделать выводы о
    1) влиянии среды на приспособленность
    2) родстве организмов
    3) происхождении растений и животных от общего предка
    4) развитии организмов от простого к сложному
    5) сходном строении клеток всех организмов
    6) возможности самозарождения жизни из неживой материи

    Ответ


    Выберите три варианта. Сходное строение клеток растений и животных - доказательство
    1) их родства
    2) общности происхождения организмов всех царств
    3) происхождения растений от животных
    4) усложнения организмов в процессе эволюции
    5) единства органического мира
    6) многообразия организмов

    Ответ


    Выберите один, наиболее правильный вариант. Клетку считают единицей роста и развития организмов, так как
    1) она имеет сложное строение
    2) организм состоит из тканей
    3) число клеток увеличивается в организме путем митоза
    4) в половом размножении участвуют гаметы

    Ответ


    Выберите один, наиболее правильный вариант. Клетка – единица роста и развития организма, так как
    1) в ней имеется ядро
    2) в ней хранится наследственная информация
    3) она способна к делению
    4) из клеток состоят ткани

    Ответ


    1. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. С помощью световой микроскопии в растительной клетке можно различить:
    1) эндоплазматическую сеть
    2) микротрубочки
    3) вакуоль
    4) клеточную стенку
    5) рибосомы

    Ответ


    2. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. В световой микроскоп можно увидеть
    1) деление клетки
    2) репликацию ДНК
    3) транскрипцию
    4) фотолиз воды
    5) хлоропласты

    Ответ


    3. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. При изучении растительной клетки под световым микроскопом можно увидеть
    1) клеточную мембрану и аппарат Гольджи
    2) оболочку и цитоплазму
    3) ядро и хлоропласты
    4) рибосомы и митохондрии
    5) эндоплазматическую сеть и лизосомы

    Ответ


    Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. В разработку клеточной теории свой вклад внесли:
    1) Опарин
    2) Вернадский
    3) Шлейден и Шванн
    4) Мендель
    5) Вирхов

    Ответ


    Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Метод центрифугирования позволяет
    1) определить качественный и количественный состав веществ в клетке
    2) определить пространственную конфигурацию и некоторые физические свойства макромолекул
    3) очиститить макромолекулы, выведенные из клетки
    4) получить объемное изображение клетки
    5) разделить органоиды клетки

    Ответ


    Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Каково преимущество использования электронной микроскопии перед световой?
    1) большее разрешение
    2) возможность наблюдать живые объекты
    3) дороговизна метода
    4) сложность приготовления препарата
    5) возможность изучать макромолекулярные структуры

    Ответ


    Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Какие органоиды были обнаружены в клетке с помощью электронного микроскопа?
    1) рибосомы
    2) ядра
    3) хлоропласты
    4) микротрубочки
    5) вакуоли

    Ответ


    Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны. Основные положения клеточной теории позволяют сделать вывод о
    1) биогенной миграции атомов
    2) родстве организмов
    3) происхождении растений и животных от общего предка
    4) появлении жизни на Земле около 4,5 млрд. лет назад
    5) сходном строении клеток всех организмов

    Ответ


    1. Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны. В цитологии используют методы
    1) гибридологический
    2) генеалогический
    3) центрифугирования
    4) микроскопирования
    5) мониторинга

    Ответ

    © Д.В.Поздняков, 2009-2019

    Методы световой и электронной микроскопии

    1. Световая микроскопия

    световой электронный микроскоп интерференция

    Световой микроскоп может повысить разрешающую способность человеческого глаза примерно в 1000 раз. Это является "полезным" увеличением микроскопа. При использовании видимой части спектра света конченый предел разрешения светового микроскопа составляет 0,2-0,3 мкм. Далее будут рассмотрены методы световой микроскопии.

    1 Метод темного поля (ультрамикроскопии)

    Метод тёмного поля в проходящем свете основан на эффекте Тиндаля, так как подобна частичкам пыли с луче света, при боковом освещениии светятся мельчайшие частицы, отраженный свет от которых попадает в объектив микроскопа. Свет от осветителя и зеркала направляется на препарат конденсором тёмного поля. По выходе из конденсора основная часть лучей света, не изменившая своего направления при прохождении через прозрачный препарат не попадает в объектив. Изображение в микроскопе формируется при помощи лишь небольшой части лучей, рассеянных микрочастицами находящегося на предметном стекле препарата. В поле зрения на тёмном фоне видны светлые изображения элементов структуры препарата, отличающихся от окружающей среды показателем преломления. У крупных частиц видны только светлые края, рассеивающие лучи света.

    В основе метода ультрамикроскопии лежит тот же принцип - препараты в ультрамикроскопах освещаются перпендикулярно направлению наблюдения. При этом методе можно обнаружить чрезвычайно мелкие частицы, размеры которых лежат далеко за пределами разрешающей способности наиболее сильных микроскопов. При помощи иммерсионных ультрамикроскопов удаётся зарегистрировать присутствие в препарате частиц размером до 210-9 м. Но форму и точные размеры этих частиц с помощью этого метода определить невозможно. Ультрамикроскопы применяются в основном в коллоидной химии.

    2 Метод светлого поля и его разновидности

    Метод светлого поля в проходящем свете применяется при изучении прозрачных препаратов с включенными в них поглощающими свет частицами и деталями. В отсутствие препарата пучок света из конденсора, проходя через объектив, даёт вблизи фокальной плоскости окуляра равномерно освещенное поле. При наличии в препарате абсорбирующего элемента происходит частичное поглощение и частичное рассеивание падающего на него света, что и обусловливает появление изображения.

    Метод косого освещения - разновидность предыдущего метода. Отличие между ними состоит в том, что свет на объект направляют под большим углом к направлению наблюдения, это помогает выявить "рельефность" объекта за счёт образования теней.

    Метод светлого поля в отражённом свете применяется при исследовании непрозрачных отражающих свет объектов. Освещение производится сверху, через объектив, который одновременно играет и роль конденсора. В изображении, создаваемом в плоскости объективом совместно с тубусной линзой, структура препарата видна из-за различия в отражающей способности её элементов; на светлом поле выделяются также неоднородности, рассеивающие падающий на них свет.

    1.3 Метод фазово-контрастной микроскопии

    Большая часть клеточных структур мало отличается коэффициентом преломления света, поглощения лучей друг от друга и среды. Для того, чтобы изучить такие компоненты приходится изменять освещенность(с потерей четкости изображения) или применять особые методы и приборы. Метод фазово-контрастной микроскопии является одним из таких. Его широко применяют при витальном изучении клеток. Суть метода в том, что даже при очень малых различиях в показателях преломления разных элементов препарата световая волна, проходящая через них, претерпевает разные изменения по фазе. Невидимые непосредственно ни глазом, ни фотопластинкой, эти фазовые изменения с помощью специального оптического устройства преобразуются в изменения амплитуды световой волны, т. е. в изменения яркости, которые уже различимы глазом или фиксируются на фоточувствительном слое. В получаемом видимом изображении распределение яркостей (амплитуд) воспроизводит фазовый рельеф. Получаемое таким образом изображение называется фазово-контрастным. Объекты могут выглядеть темными на светлом фоне (позитивный фазовый контраст) или светлыми на темном фоне (негативный фазовый контраст).

    4 Метод интерференционного контраста (интерференционная микроскопия)

    Метод интерференционного контраста сходен с предыдущим - они оба основаны на интерференции лучей, прошедших через микрочастицу и миновавших её. Пучок параллельных световых лучей от осветителя раздваивается на два потока, входя в микроскоп. Один из полученных лучей направляется сквозь наблюдаемую частицу и приобретает изменения в фазе колебания, другой - мимо минуя объект по той же или дополнительной оптической ветви микроскопа. В окулярной части микроскопа оба луча вновь соединяются и интерферируют между собой. В результате интерференции будет строиться изображение, на котором участки клетки, обладающие разной толщиной или разной плотностью, будут отличаться друг от друга по степени контрастности. Метод интерференционного контраста часто применяют совместно с другими методами микроскопии, в частности с наблюдением в поляризованном свете. Его применение в сочетании с микроскопией в ультрафиолетовых лучах позволяет, к примеру, определить содержание нуклеиновых кислот в общей сухой массе объекта.

    5 Поляризационная микроскопия

    Поляризационная микроскопия - это метод наблюдения в поляризованном свете за объектами, обладающими изотропией, т.е. упорядоченной ориентацией субмикроскопических частиц. Перед конденсором поляризационного микроскопа помещается поляризатор, который пропускает световые волны с определенной плоскостью поляризации. После препарата и объектива помещается анализатор, который может пропускать свет с этой же плоскостью поляризации. Если анализатор повернуть затем на 90о по отношению к первой, то свет проходить не будет. В том случае, когда между такими скрещенными призмами будет находиться объект, обладающий способностью поляризовать свет, он будет виден как светящийся на темном поле. С помощью поляризационного микроскопа можно убедиться, например, в ориентированном расположении мицелл в клеточной стенке растений.

    6 Витальное изучение клеток

    Методы световой микроскопии дают нам возможность наблюдать живые клетки. Для короткого наблюдения клетки обычно помещают в жидкую среду на предметное стекло. Но для более длительного времени нужны другие способы. Часто для длительного наблюдения используют специальные камеры (плоские флаконы с отверстиями, закрытыми тонкими стеклами, или разборные плоские камеры). Клетки изучают в специально подобранных для них средах. Обычно для простейших это сбалансированные солевые растворы с добавками микроорганизмов и других простейших, служащих для объекта изучения пищей. Свободные клетки многоклеточных могут изучаться в плазме крови или в специальных синтетических средах. Для изучение клеток и тканей животных используют метод клеточных культур.

    Культивирование клеток представляет собой процесс, посредством которого in vitro отдельные клетки (или единственная клетка) искусственно выращиваются в контролируемых условиях для дальнейшего изучения. Более простой вариант этого метода представляет собой то, что в камеру с питательным раствором помещается небольшой кусочек живой ткани и через некоторое время по периферии начинает идти рост и деление клеток. Второй способ получения культуры клеток это обработка кусочка ткани трипсином или хелатоном (что приведет к диссоциации клеток), а затем помещение в сосуд с питательным экстрактом, где, после опущения клеток на дно и их прикрепления, начинается рост и размножение культуры. Для культуры клеток предпочитают использовать эмбриональный материал, который обладает большей способностью к делению чем взрослый. При культуре клеток следует соблюдать специальные условия стерильности, температурного режима, pH. Таким же методом можно культивировать клетки растительного происхождения. Для этого их обрабатывают ферментами, растворяющими клеточные оболочки, а отделившееся содержимое помещают в специальную среду, где происходит их рост и деление. Вместе с культивированием клеток обычно используют микрокиносъемку и микрофотосъемку, с помощью которой регистрируются многие клеточные процессы.

    6.2 Метод микрохирургии

    Метод микрохирургии применяется для исследования живых клеток. Это метод оперативного вмешательства и воздействия на клетку, в т.ч. удаление или вживление отдельных органелл. Этот метод также предусматривает пересадку органелл из клетки в клетку, введение крупных макромолекул в клетку. Обычно микроманипулятор совмещается с микроскопом, который служит для наблюдения за ходом оперативного вмешательства. Микрохирургическими инструментами являются стеклянные крючки, иглы, капилляры, которые изготавливаются на "микрокузницах". При микрооперациях клетку помещают в специальную камеру, куда также вводят инструменты. В последнее время также широко используются лазерные микропучки и микропучки UV спектра. Их применяют для точечного поражения клетки в ходе исследования.

    6.3 Метод флуоресцентной микроскопии

    Метод получения увеличенного изображения с использованием свечения возбуждённых атомов и молекул образца. В флуоресцентном микроскопе образец облучается светом с большей частотой, а изображение получают в оптическом спектре. Изображение флуоресцентного препарата может сфотографировано специализированной цифровой камерой, позволяющей делать снимки с большой выдержкой. Довольно часто используются вещества способные к флуоресценции или же в клетку инъецируются флуоресцентные агенты

    Одним из видов флуоресцентной микроскопии является конфокальная микроскопия - метод, позволяющий получать изображения с некоторой глубины в середине образца.

    1.6.4 Метод конфокальной сканирующей световой микроскопии

    Конфокальный световой сканирующий микроскоп используют для получения трехмерной реконструкции объекта. С его помощью получают серию последовательных срезов клетки, взятой с различной глубины. После этого специальная компьютерная программа сводит эти изображения воедино и мы можем получить объемное, трехмерное изображение объекта.

    7 Изучение фиксированных клеток

    Многие данные об устройстве и функционировании клетки были получены именно на фиксированных клетках. Фиксация - сложный процесс, направленный на убийство клетки, прекращение активности клеточных ферментов, распада компонентов, избежание потери структур и веществ, а также их приобретения, если они отсутствовали в живой клетке. Но, к сожалению, еще не существует фиксатора, который бы удовлетворял всем этим требованиям.

    7.1 Методы цитохимического анализа

    Это ряд приемов окрашивания, главной целью которого является выявление специфических химических веществ клетки. Существует целый ряд приемов окрашивания, прямо выявляющие те или иные вещества. К таким цитохимическим реакциям предъявляют требования: специфичность связывания красителя, неизменность локализации вещества. Пример такой реакции это реакция на ДНК - Фёльгена.

    7.2 Метод цитофотометрии

    Данный метод позволяет количественно измерить конечный продукт цитохимической реакции. Он основывается на определении кол-ва веществ по поглощению ими света определенной волны. Интенсивность поглощения лучей пропорциональна концентрации вещества при одной и той же толщине объекта. Для этого метода используют микроскопы-цитофотометры (за их объективами расположен чувствительный фотометр). Этот метод широко используется при определении количества ДНК после реакции Фёльгена. Также можно провести количественную оценку не только поглощающих свет веществ, но и его излучающих. На этом основывается флуорометрия.

    7.3 Метод иммунохимического исследования (иммунохимическиереакции с использованием флуоресцентных антител)

    Метод обладает высокой чувствительностью и специфичностью. Существуют методы прямой и непрямой иммунофлуоресценции, в первом случае антиген связывается с антителом, конъюгированным с флуоресцентной меткой (флуорохромом, например, FITС или TRITC, во втором же антиген связывается с неконъюгированным специфическим антителом (первичным антителом). Флуоресцентная метка конъюгирована со вторичным антителом, специфичным к Fc-фрагменту первичного антитела. Непрямой метод более чувствителен, чем прямой метод. По свечению флуорохрома находят места локализации искомых белков в клетке. Но для того, чтобы меченные антитела проникли в клетку нужно сделать мембрану более проницаемой. Обычно это достигается фиксацией клеток и частичной экстракцией липидов из мембран.

    7.4 Метод радиоавтографии

    Данный метод используется для обнаружения локализации мест синтеза биополимеров, определения путей переноса веществ в клетке, наблюдения за миграцией или свойствами клеток. Для этого применяют регистрацию веществ, меченных изотопами. Способ повторяет метод Беккереля. В среду с клетками вводится предшественник одного из веществ, в котором один из атомов замещен а радиоактивный изотоп. В процессе синтеза меченный атом попадет в саму молекулу и ее можно будет зарегистрировать с помощью фотоэмульсии. Точность этого метода зависит от величины зерна AgBr и от энергии частицы. Поэтому для метода радиоавтографии используют специальную мелкозернистую фотоэмульсию и изотопы с малой энергией. Радиоавтографически нельзя изучать растворимые в воде соединения, так как атомы могут потеряться.

    7.5 Метод молекулярной гибридизации

    Применение предыдущего метода совместно с методом радиоавтографии дает нам возможность локализовать на хромосоме места с определенной нуклеотидной последовательностью или даже расположение определенных генов. Для этого раствор с меченой нуклеиновой кислотой наносят на препарат с денатурированной ДНК в составе хромосом или ядер. В процессе ренатурации ДНК образуется гибрид меченной нуклеиновой кислоты и комплементарным участком исходной ДНК. Место такой связи регистрируется радиоавтографически. Также метод применяется при окраске нуклеиновой кислоты флуорохромами. Это значит, что мы можем определить положение любой последовательности ДНК.

    Поскольку вопрос повышения разрешения всегда стоял остро, ученые пришли к выводу, что в световой микроскопии повысить разрешение можно только за счет использования источника света, который испускает волны с наименьшей длинной. Таким источником может быть раскаленная нить, выбрасывающая поток электронов, который можно сфокусировать, пропуская через магнитное поле. На основе этого был создан световой микроскоп. В настоящее время различают просвечивающую электронную микроскопию (ПЭМ) и растровую электронную микроскопию (РЭМ). Далее будут рассмотрены методы электронной микроскопии.

    1 Контрастирование корпускулярных объектов

    Существует несколько методов контрастирования. Я рассмотрю два из них: негативное контрастирование и оттенение металлами. Негативное контрастирование производят с помощью ФВК, молибденовоскислого аммония, уранилацетата. после нанесения раствора на исследуемый объект, затем нанести на пленки-подложки и высушить, то исследуемый объект будет погружен в аморфное вещество высокой плотности. Это приведет к тому, что на снимках они будут выглядеть как белые объекты на темном фоне. Растворы могут также проникать вглубь исследуемого объекта и выявлять скрытые структуры. Также существует метод позитивного контраста. В этом случае используются соли тяжелых металлов, которые повышают электронную плотность объекта, таким образом, контраст его повышается. Оттенение металлами - при термическом испарении металлов их частицы разлетаются и осаждаются на исследуемом объекте в виде слоя, чья толщина варьируется в зависимости от направления полета частиц. В местах, где экранирует пучок частиц, пространство будет темнее.

    2.2 Ультрамикротомия

    Ультрамикротомия представляет собой совокупность приемов для получения сверхтонких срезов с помощью ультратомов, или ультрамикротомов. Ультрамикротомы - аппараты для автоматического приготовления сверхтонких срезов тканей запрограммированной толщины (5-10 нм). Это нужно, потому что пучок электронов, проходя через более толстые объекты, поглощается, вызывает нагревание и приводит к деформации препарата. Процедура их довольна схожа с аналогичной для световой микроскопии. Сначала клетки фиксируют, часто используют ГА (глутаровый альдегид), а затем OsO4, хотя бывает и применение их по отдельности. Затем осуществляют проводку с последним этапом - погружением в ксилол. После препарат заливают эпоксидными смолами (эпон). Теперь препарат, заключенный в твердые блоки можно резать с помощью стеклянных или алмазных ножей для изготовления срезов настолько малой величины используют термическую подачу объекта. Затем идет окраска препарата, обычно уранилацетатом и нитратом свинца, которые контрастируют позитивно. Эта техника изготовления открыла огромные возможности для применения электронной микроскопии почти во всех областях биологии и медицины.

    Возможно проводить исследование методом радиоавтографии с использованием сверхтонкозернистых эмульсий и огромных экспозиций. А также исследований без фиксации и заключения в эпон методом криоультрамикротомии. В этом случае объект моментально замораживают до температуры жидкого азота, вода переходит в стекловидное состояние, а процессы моментально тормозятся. Полученные таким образом срезы используют в иммунохимических исследований и т.д.

    Для изучения структуры мембранных компонентов используют метод замораживания-скалывания. Метод похож на предыдущий: объект моментально охлаждается до температуры жидкого азота, а затем скалывается охлажденным ножом. Поверхность слоя покрывают слоем металла и углерода, а затем растворяют объект и получают реплику с поверхности скола. При этом можно исследовать рельеф поверхности мембран.

    3 Метод высоковольтной микроскопии

    Ускоряющее напряжение такого микроскопа составляет 1-3 млн вольт. Такое напряжение позволяет рассматривать объекты большей толщины(1-10 мкм), а использую стереоскопическую съемку, мы можем получить информацию о 3D организации внутриклеточных структур с высоким разрешением.

    4 Метод сканирующей (растровой) электронной микроскопии

    При использовании этого метода объект покрывается тонким слоем испаренного металла, отражаясь от которого, зонд(пучок электронов) попадает в приемное устройство, откуда далее передается сигнал. При этом получается практически трехмерное изображение поверхности исследуемого объекта, благодаря очень большой глубине фокуса. Также можно получить информацию о химическом составе клеток.

    3. Световой и электронный микроскопы

    1 Строение светового микроскопа и его основные характеристики

    Чтобы понять принцип работы светового микроскопа, необходимо рассмотреть его строение.

    Главный прибор биологии является оптической системой, которая состоит из штатива, осветительной и оптической части. В штатив входят башмак; предметный столик с держателем предметного стекла и двумя винтами, перемещающими столик в двух перпендикулярных направлениях; тубус, тубусодержатель; макро- и микровинты, передвигающие тубус в вертикальном направлении.

    Для освещения объекта используют естественное рассеянное или искусственное освещение, которое осуществляется посредством стационарно вмонтированного в башмак микроскопа или соединенного через планку осветителя.

    В осветительную систему также входят зеркало с плоской и вогнутой поверхностями и конденсор, расположенный под предметным столиком и состоящий из 2 линз, ирисовой диафрагмы и откидывающейся оправы для светофильтров. Оптическая часть включает наборы объективов и окуляров, которые позволяют изучать клетки на разных увеличениях.

    Принцип работа светового микроскопа заключается в том, что пучок света от источника освещения собирается в конденсаторе и направляется на объект. Пройдя через него, лучи света попадают в систему линз объектива. Они выстраивают первичное изображение, которое увеличивается при помощи линз окуляра. В целом объектив и окуляр дают обратное мнимое и увеличенное изображение объекта.

    Основными характеристиками любого микроскопа являются разрешающая способность и контраст.

    Разрешающая способность - это минимальное расстояние, на котором находятся две точки, демонстрируемые микроскопом раздельно.

    ,

    где λ - длина волны света осветителя,

    α - угол между оптической осью объектива и наиболее отклоняющимся лучом, попадающим в него,- коэффициент преломления среды.

    Чем меньше длина волны луча, тем более мелкие детали мы сможем наблюдать через микроскоп. И чем выше нумерическая апертура объектива (n, тем выше разрешение объектива.

    Световой микроскоп может повысить разрешающую способность человеческого глаза примерно в 1000 раз. Это является "полезным" увеличением микроскопа. При использовании видимой части спектра света конченый предел разрешения светового микроскопа составляет 0,2-0,3 мкм.

    Однако следует отметить, что световая микроскопия позволяет нам увидеть частицы, меньшие предела разрешения. Это можно осуществить благодаря методу "Темного поля" или "Ультрамикроскопии".

    Рис. 1 Световой микроскоп: 1 - штатив; 2 - предметный столик; 3 - насадка; 4 - окуляр; 5 - тубус; 6 - устройство смены объективов; 7 - микрообъектив; 8 - конденсор; 9 - механизм перемещения конденсора; 10 - коллектор; 11 - осветительная система; 12 - механизм фокусировки микроскопа.

    2 Строение электронного микроскопа

    Основная часть электронного микроскопа - полый вакуумный цилиндр (воздух откачан, чтобы исключить взаимодействие электронов с его составляющими и оксисления нити катода). Между катодом и анодом подаётся высокое напряжение, для дополнительного ускорения электронов. В конденсорной линзе(которая представляет собой электромагнит, как и все линзы электронного микроскопа) пучок электронов фокусируется и попадает на изучаемый объект. Прошедшие электроны, формируют на объективной линзе увеличенное первичное изображение, которое увеличивает проекционная линза, и проецируется на экран, который покрыт люминесцентным слоем для свечения при попадании на него электронов.

    Рис. 2. Электронный микроскоп: 1 - электронная пушка; 2 - анод; 3 - катушка для юстировки пушки; 4 - клапан пушки; 5 - 1-я конденсорная линза; 6 - 2-я конденсорная линза; 7 - катушка для наклона пучка;8 - конденсор 2 диафрагмы; 9 - объективная линза; 10 - блок образца; 11 -дифракционная диафрагма; 12 - дифракционная линза; 13 - промежуточная линза; 14 - 1-я проекционная линза; 15 - 2-я проекционная линза; 16 - бинокуляр (увеличение 12); 17 - вакуумный блок колонны; 18 - камера для 35-миллиметровой катушечной пленки; 19 - экран для фокусировки; 20 - камера для пластинок; 21 - главный экран; 22 - ионный сорбционный насос.

    Библиография

    Учебная литература

    .Ю.С. Ченцов, Введение в клеточную биологию, издание 4

    Интернет сайты

    .#"justify">.#"justify">.#"justify">.#"justify">.#"justify">.#"justify">.http://immunologja.ru/267/

    Поделиться