Морфология туберкулёза человека. Палочка Коха. Тинкториальные свойства туберкулеза. Культуральные свойства возбудителя туберкулеза. Микобактерии Туберкулез таксономия

Учебник состоит из семи частей. Часть первая – «Общая микробиология» – содержит сведения о морфологии и физиологии бактерий. Часть вторая посвящена генетике бактерий. В части третьей – «Микрофлора биосферы» – рассматривается микрофлора окружающей среды, ее роль в круговороте веществ в природе, а также микрофлора человека и ее значение. Часть четвертая – «Учение об инфекции» – посвящена патогенным свойствам микроорганизмов, их роли в инфекционном процессе, а также содержит сведения об антибиотиках и механизмах их действия. Часть пятая – «Учение об иммунитете» – содержит современные представления об иммунитете. В шестой части – «Вирусы и вызываемые ими заболевания» – представлены сведения об основных биологических свойствах вирусов и о тех заболеваниях, которые они вызывают. Часть седьмая – «Частная медицинская микробиология» – содержит сведения о морфологии, физиологии, патогенных свойствах возбудителей многих инфекционных заболеваний, а также о современных методах их диагностики, специфической профилактики и терапии.

Учебник предназначен для студентов, аспирантов и преподавателей высших медицинских учебных заведений, университетов, микробиологов всех специальностей и практических врачей.

5-е издание, исправленное и дополненное

Книга:

Туберкулез (лат. tuberculum – бугорок) – инфекционное заболевание человека и животных с наклонностью к хроническому течению, характеризующееся образованием специфических воспалительных изменений, часто имеющих вид маленьких бугорков, с преимущественной локализацией в легких и лимфатических узлах. Туберкулез распространен повсеместно. В заболеваемости туберкулезом и его распространении решающее значение имеют социально-бытовые условия жизни, так как и врожденная устойчивость, и приобретенный к нему иммунитет определяются этими условиями.

Возбудитель туберкулеза – Mycobacterium tuberculosis – был открыт в 1882 г. Р. Кохом. Он относится к роду Mycobacterium семейства Mycobacteriaceae . Микобактерии широко распространены в природе: они встречаются в почве, воде, в организме теплокровных и холоднокровных животных. Морфологически характеризуются способностью образовывать нитевидные и ветвящиеся формы, особенно в старых культурах. Кроме того, они отличаются от других микроорганизмов более высокой устойчивостью к кислотам, щелочам и спирту, что связано с особенностями химического состава их клеток.

M. tuberculosis имеет форму тонких, стройных, коротких или длинных, прямых или искривленных палочек, длиной 1,0 – 4,0 мкм и диаметром 0,3 – 0,6 мкм; неподвижны; спор, капсул не образуют, грамположительны; обладают большим полиморфизмом. В старых культурах наблюдаются нитевидные, ветвящиеся формы, нередко зернистые формы (зерна Муха), как в виде свободно лежащих зерен, так и в виде зерен, содержащихся внутриклеточно. В организме больных под влиянием химиопрепаратов часто образуются ультрамалые формы, способные проходить через мелкопористые бактериальные фильтры («фильтрующиеся формы»). M. tuberculosis – аэроб, оптимальная температура для роста 37 °C, оптимальная рН – в пределах 6,4 – 7,0. Содержание Г + Ц в ДНК – 62 – 70 мол % (для рода). Рост при температуре 37 °C стимулируется инкубацией в воздухе, содержащем 5 – 10 % CO 2 , и добавлением к среде 0,5 % глицерина. Микобактерии туберкулеза способны синтезировать ниацин; каталазная активность относительно слабая и утрачивается при 68 °C. Многие биологические свойства микобактерий объясняются высоким содержанием липидов, составляющих до 40 % сухого остатка клеток. Обнаружены три фракции липидов: фосфатидная (растворимая в эфире), жировая (растворимая в эфире и ацетоне) и восковая (растворимая в эфире и хлороформе). В составе липидов имеются различные кислотоустойчивые жирные кислоты, в том числе туберкулостеариновая, фтиоидная, миколовая и др. Высокое содержание липидов определяет следующие свойства туберкулезных палочек.

1. Устойчивость к кислотам, щелочам и спирту.

2. Трудная окрашиваемость красителями. Для их окрашивания применяют интенсивные методы. Например, по способу Циля – Нильсена окрашивают концентрированным раствором карболового фуксина при подогревании. Восприняв окраску, туберкулезные бактерии, в отличие от других клеток, не обесцвечиваются ни спиртом, ни кислотой, ни щелочью, поэтому при докрашивании метиленовым синим в мазке все бактерии, клеточные элементы и слизь окрашиваются в синий цвет, а туберкулезные палочки сохраняют исходную красную окраску (см. цв. вкл., рис. 107.1). Этот метод позволяет дифференцировать их от некоторых непатогенных микобактерий, например M. smegmatis , содержащихся на слизистой оболочке уретры, но обесцвечивающихся спиртом. Вместе с тем необходимо иметь в виду, что встречаются и кислотоподатливые («синие» при окрашивании по Цилю – Нильсену) формы туберкулезных бактерий (в том числе палочковидные, нитевидные и зернистые).

3. Относительно высокая устойчивость к высушиванию и действию солнечных лучей. Рассеянный солнечный свет убивает их лишь через 8 – 10 сут. В мокроте при кипячении гибель наступает через 5 – 7 мин. В высохшей мокроте жизнеспособность сохраняется в течение многих недель.

4. Устойчивость к действию обычных дезинфицирующих веществ: 5 % раствор фенола при добавлении в равном объеме к мокроте вызывает гибель туберкулезных палочек через 6 ч, однако 0,05 % раствор бензилхлорфенола убивает через 15 мин.

5. Высокая гидрофобность, которая находит свое отражение в культуральных свойствах: на глицериновом бульоне рост в виде пленки желтоватого цвета, которая постепенно утолщается, становится ломкой и приобретает бугристо-морщинистый вид, при этом бульон остается прозрачным. На глицериновом агаре через 7 – 10 дней образуется сухой чешуйчатый налет, постепенно переходящий в грубые бородавчатые образования (см. цв. вкл., рис. 107.2 и см. рис. 107.3). На щелочном альбуминате (или на стекле, помещенном в цитратную лизированную кровь) рост туберкулезных бактерий, содержащих поверхностный гликолипид – корд-фактор, змеевидный: размножающиеся клетки располагаются, образуя структуру, напоминающую змею, жгут, веревку или женскую косу.

6. С высоким содержанием липидов связана и патогенность туберкулезных бактерий. Содержащиеся в липидах фтиоидная, миколовая и другие жирные кислоты оказывают своеобразное токсическое действие на клетки тканей. Например, фосфатидная фракция, наиболее активная из всех липидов, обладает способностью вызывать в нормальном организме специфическую тканевую реакцию с образованием эпителиоидных клеток, жировая фракция – туберкулоидной ткани. Эти свойства указанных липидных фракций связаны с наличием в их составе фтиоидной кислоты. Восковая фракция, содержащая миколовую кислоту, вызывает реакции с образованием многочисленных гигантских клеток. Таким образом, с липидами, состоящими из нейтральных жиров, восков, стеринов, фосфатидов, сульфатидов и содержащими такие жирные кислоты, как фтиоидная, миколовая, туберкулостеариновая, пальмитиновая и др., связаны патогенные свойства туберкулезной палочки и те биологические реакции, которыми ткани отвечают на их внедрение. Главным фактором патогенности является токсический гликолипид (корд-фактор), который располагается на поверхности и в толще клеточной стенки. По химической природе он представляет собой полимер, состоящий из одной молекулы дисахарида трегалозы и связанных с ней в эквивалентных соотношениях миколовой и миколиновой высокомолекулярных жирных кислот, – трегалоза-6,6"-димиколат (С 186 Н 366 О 117). Корд-фактор не только оказывает токсическое действие на ткани, но и защищает туберкулезные палочки от фагоцитоза, блокируя окислительное фосфорилирование в митохондриях макрофагов. Будучи поглощенными фагоцитами, они размножаются в них и вызывают их гибель. Корд-фактор обладает двумя характерными свойствами, указывающими на его важную роль как основного фактора патогенности.

1. При внутрибрюшинном заражении белых мышей он вызывает их гибель (после нескольких повторных инъекций по 0,005 мг) через 1 – 2 нед. после первой инъекции с явлениями распространенной легочной гиперемии. Подобным действием не обладает ни одна другая фракция туберкулезной палочки.

2. Он подавляет миграцию лейкоцитов больного туберкулезом человека (in vivo и in vitro).

M. tuberculosis , лишенные корд-фактора, являются непатогенными или слабопатогенными для человека и морских свинок. С необычным химическим составом туберкулезных клеток связана также способность их вызывать характерную для туберкулеза реакцию гиперчувствительности замедленного типа, выявляемую с помощью туберкулиновой пробы.

Помимо M. tuberculosis , заболевания людей могут вызывать M. bovis – возбудитель туберкулеза крупного рогатого скота, и M. avium – возбудитель туберкулеза птиц.

M. bovis – короткие и умеренно длинные толстые палочки. M. avium отличаются большим полиморфизмом (короткие и длинные палочки, иногда нити), оптимальная температура для их роста 42 – 43 °C.

Основное отличие M. bovis от M. tuberculosis заключается в их высокой патогенности для кроликов и других млекопитающих. При внутривенном заражении M. bovis в дозах 0,1 и 0,01 мг культуры кролики погибают от генерализованного туберкулеза через 3 – 6 нед. Заражение кроликов M. tuberculosis даже в дозе 0,1 мг не вызывает их гибели, у них развиваются местные доброкачественные, непрогрессирующие очаги в легких. При внутривенном заражении кроликов M. avium животные погибают через 1,5 – 2 нед. от септикопиемии.

Род Mycobacterium включает более 40 видов. Как оказалось, многие из них нередко выделяются в различных странах мира от людей, теплокровных и холоднокровных животных, страдающих заболеваниями легких, кожи, мягких тканей и лимфатических узлов. Эти заболевания получили название микобактериозов. Различают три типа микобактериозов, зависящих от вида микобактерий и иммунного статуса организма.

I. Генерализованные инфекции с развитием видимых невооруженным глазом патологических изменений, внешне напоминающих туберкулезные, но гистологически несколько отличающиеся от них.

II. Локализованные инфекции, характеризующиеся наличием макро– и микроскопических поражений, выявляемых в определенных участках тела.

III. Инфекции, протекающие без развития видимых поражений; возбудитель обнаруживается в лимфатических узлах внутриклеточно или внеклеточно.

По патогенным свойствам род Mycobacterium подразделяют на две группы: 1) патогенные и условно-патогенные (потенциально патогенные) и 2) сапрофиты. Для их ускоренной предварительной дифференциации учитывают прежде всего три признака: а) скорость и условия роста; б) способность к пигментообразованию; в) способность синтезировать никотиновую кислоту (ниацин).

По скорости роста род Mycobacterium подразделяют на три группы:

1. Быстрорастущие – крупные видимые колонии появляются ранее 7-го дня инкубации (18 видов).

2. Медленнорастущие – крупные видимые колонии появляются после 7 и более дней инкубации (20 видов).

3. Микобактерии, которые требуют специальных условий для роста или не растут на искусственных питательных средах. К этой группе относятся два вида: M. leprae и M. lepraemurium .

Дифференциация видов микобактерий среди быстро– и медленнорастущих проводится с учетом ряда их биохимических признаков: восстановление нитратов, теллурита; наличие каталазы, уреазы, никотин– и пиразинамидазы, способность синтезировать ниацин; а также пигментообразование (см. табл. 46).

По способности к пигментообразованию микобактерии также делят на 3 группы:

1. Фотохромогенные – образуют пигмент лимонно-желтого цвета при росте на свету.

2. Скотохромогенные – образуют пигмент оранжево-желтого цвета при инкубировании в темноте.

3. Нефотохромогенные – пигмента не образуют (независимо от наличия света), иногда культуры имеют светло-желтоватую окраску.

К патогенным и потенциально патогенным относится 24 вида.

1. Медленнорастущие:


3. Не растущие внеклеточно или требующие специальных условий для роста:


К наиболее частым возбудителям туберкулеза и микобактериозов относятся:

M. tuberculosis M. bovis M. ulcerans


Все они медленнорастущие, нефотохромогенные (кроме M. kansasii ) микобактерии. Основные различия между ними указаны в табл. 49.

В России главную роль в этиологии и эпидемиологии туберкулеза играет M. tuberculosis , на долю M. bovis приходится 2 – 3 % (в мире на долю этого возбудителя приходилось 4 – 20 %) заболеваний. Однако в африканских странах, США и ряде других стран микобактериозы, вызванные иными видами, составляют до 30 % всех заболеваний, относимых к туберкулезным.

Таблица 49

Дифференциальные признаки некоторых медленнорастущих видов рода Mycobacterium


Примечание. (+) – признак положительный; V – признак непостоянный; (–) – признак отрицательный; ф – фотохромогенный.

Для культивирования туберкулезных бактерий предложены различные питательные среды: глицериновые, картофельные с желчью, яичные, полусинтетические и синтетические. Наилучшей считается яичная среда Левенштейна – Иенсена. Кроме того, предложена специальная полужидкая среда для выделения L-форм M. tuberculosis . Эффективность получения культур микобактерий зависит от строгого соблюдения ряда условий: кислая рН, оптимальная температура, высокое качество питательной среды, достаточное обеспечение О 2 , соответствующая посевная доза, особенно с учетом возможного наличия измененных форм возбудителя.

Антигенная структура M. tuberculosis . В антигенном отношении этот вид однороден (сероваров не выявлено), имеет большое сходство с M. bovis и M. microti , но существенно отличается от других видов. Однако микробная клетка имеет сложный и мозаичный набор антигенов, способных вызывать в организме человека и животных образование антиполисахаридных, антифосфатидных, антипротеиновых и иных антител, различающихся по своей специфичности. Живые и убитые бактерии способны индуцировать развитие гиперчувствительности замедленного типа. Этим свойством не обладают ни белки, ни одна из липидных фракций микобактерий.

Для внутривидовой дифференциации M. tuberculosis разработана система классификации, основанная на фаготипировании штаммов с помощью набора из десяти микобактериофагов: 4 основных и 6 вспомогательных.

Патогенность для лабораторных животных. Наиболее восприимчивы к M. tuberculosis морские свинки. При любом способе заражения туберкулезная палочка вызывает у них генерализованную форму туберкулеза, от которой свинка погибает через 4 – 6 нед. При подкожном заражении через 1,5 – 2 нед. на месте введения образуется инфильтрат, переходящий в язву, которая не заживает до гибели животного. Регионарные лимфатические узлы увеличиваются, становятся плотными и подвергаются казеозному распаду. В печени, селезенке, легких и других органах образуются многочисленные бугорки, в которых при бактериоскопии обнаруживаются M. tuberculosis .

Эпидемиология. Источником заражения являются больной туберкулезом человек, реже животные. От больного человека возбудитель выделяется главным образом с мокротой, а также с мочой, испражнениями и гноем. Туберкулезная палочка проникает в организм чаще всего через дыхательные пути – воздушно-капельным и, особенно часто, воздушно-пылевым путем. Однако входными воротами могут быть любые слизистые оболочки и любой поврежденный участок кожи. Заражение M. bovis от крупного рогатого скота происходит в основном алиментарным путем через инфицированные молоко и молочные продукты. Туберкулез, вызванный M. bovis , наблюдается чаще всего у детей, поскольку молоко для них служит основным продуктом питания. Однако заражение M. bovis от больных животных возможно и аэрогенным путем.

Особенности патогенеза. В зависимости от двух основных способов заражения первичный туберкулезный очаг локализуется или в легких, или в мезентеральных лимфатических узлах. Однако некоторые специалисты считают, что вначале происходит лимфогематогенное распространение возбудителя в обоих случаях заражения, а потом он избирательно поражает легкие или другие органы и ткани. При попадании через дыхательные пути (или другим способом) в альвеолы и бронхиальные железы туберкулезные палочки вызывают образование первичного аффекта в виде бронхопневмонического фокуса, из которого они по лимфатическим сосудам проникают в регионарный лимфатический узел, вызывая специфическое воспаление. Все это вместе: бронхопневмонический фокус + лимфангоит + лимфаденит – и образует первичный туберкулезный комплекс (первичный очаг туберкулеза). Туберкулезная палочка, благодаря наличию в ее клетках различных жирных кислот и других антигенов, вызывает в тканях определенную биологическую реакцию, которая приводит к формированию специфической гранулемы – бугорка. В центре его обычно располагаются гигантские клетки Пирогова – Лангганса со множеством ядер. В них обнаруживаются туберкулезные палочки. Центр бугорка окружен эпителиоидными клетками, которые составляют главную массу бугорка. По периферии его располагаются лимфоидные клетки. Судьба первичного очага может быть различной. В тех случаях, когда общая резистентность ребенка в силу ряда причин снижена, очаг может увеличиваться и подвергаться творожистому (казеозному) распаду в результате действия токсических продуктов туберкулезной палочки и отсутствия в бугорках кровеносных сосудов. Такая казеозная пневмония может стать причиной тяжелой первичной легочной чахотки, а при попадании возбудителя в кровь – генерализованного туберкулеза, приводящего ребенка к смерти. В большинстве же случаев при наличии достаточно высокой естественной резистентности организма первичный очаг через некоторое время окружается соединительнотканной капсулой, сморщивается и пропитывается солями кальция (обызвествляется), что рассматривается как завершение защитной реакции организма на внедрение туберкулезной палочки и означает формирование уже приобретенного нестерильного (инфекционного) иммунитета к туберкулезу, так как микобактерии могут сохранять жизнеспособность в первичном очаге многие годы.

В случае заражения алиментарным путем туберкулезные палочки попадают в кишечник, захватываются фагоцитами слизистой оболочки и заносятся по лимфатическим путям в регионарные кишечные лимфатические узлы, вызывая их характерные поражения. По мнению некоторых специалистов, туберкулезные палочки в этом случае через ductus thoracicus и правые отделы сердца также могут проникнуть в легкие и стать причиной туберкулеза легких.

Туберкулезная палочка может поражать практически любой орган и любую ткань с развитием соответствующей клиники заболевания.

Для клиники туберкулеза легких характерно чередование периодов выздоровления, наступающих после эффективной химиотерапии, и частых рецидивов, причиной которых являются сохранение в организме туберкулезных палочек, особенно в виде L-форм, и изменение иммунного статуса больного. L-формы микобактерий мало вирулентны, но, возвращаясь в исходную форму, они восстанавливают вирулентность и способны вновь и вновь вызывать обострения процесса.

Особенности иммунитета. Организм человека обладает высокой естественной резистентностью к возбудителю туберкулеза. Она и является причиной того, что в большинстве случаев первичное заражение приводит не к развитию заболевания, а к формированию очага, его отграничению и обызвествлению. Естественная резистентность во многом определяется социально-бытовыми условиями жизни, поэтому у детей, находящихся в тяжелых бытовых условиях, она может быть легко подорвана, и тогда первичное заражение приведет к развитию тяжелого туберкулезного процесса. Ухудшение условий жизни взрослых людей также может привести к ослаблению и естественной резистентности, и приобретенного иммунитета. С 1991 по 1996 г. показатель заболеваемости туберкулезом в России вырос с 30,6 до 42,2, а смертность возросла с 7,9 до 15,0 на 100 000 населения.

Приобретенный постинфекционный иммунитет при туберкулезе имеет ряд особенностей. Хотя у больных и переболевших обнаруживаются антитела к различным антигенам туберкулезной палочки, не они играют решающую роль в формировании приобретенного иммунитета. Для понимания его природы при туберкулезе очень важными были следующие наблюдения Р. Коха. Он показал, что если ввести здоровой морской свинке туберкулезные палочки, в месте заражения через 10 – 14 дней формируется отграниченный инфильтрат, а затем – упорно не заживающая до самой смерти свинки язва. Одновременно идет распространение возбудителя по лимфатическим путям, которое и приводит к генерализованному процессу и гибели животного. Если же ввести живые туберкулезные палочки морской свинке, зараженной за неделю до этого туберкулезом, то реакция развивается быстрее: воспаление появляется через 2 – 3 дня, приводит к некрозу, а образующаяся язва быстро заживает. При этом процесс ограничивается местом нового заражения и распространения возбудителя из него не происходит. Феномен Коха свидетельствует о том, что инфицированный туберкулезной палочкой организм отвечает на повторное заражение совершенно иначе, чем здоровый, так как у него к возбудителю сформировалась повышенная чувствительность (сенсибилизация), благодаря чему он приобрел способность быстро связывать новую дозу возбудителя и удалять ее из организма. Сенсибилизация проявляется в виде гиперчувствительности замедленного типа, она опосредуется системой Т-лимфоцитов. Т-лимфоциты с помощью своих рецепторов и при участии белков МНС класса I распознают клетки, инфицированные туберкулезными палочками, атакуют их и разрушают. Специфические антимикробные антитела, связываясь с различными микробными антигенами, образуют циркулирующие иммунные комплексы (ЦИК) и способствуют удалению антигенов из организма. Вместе с тем, взаимодействуя с микробными клетками, антитела к корд-фактору и другим факторам вирулентности могут оказывать токсическое действие на микобактерии; антитела к полисахаридным антигенам – усиливать фагоцитоз, активировать систему комплемента и т. д.

Аллергическая перестройка организма играет большую роль в патогенезе туберкулеза. Заболевание у взрослых людей, уже инфицированных туберкулезной палочкой, в большинстве случаев протекает в относительно доброкачественной форме местного процесса в легких, а не в виде генерализованного процесса, как у детей при первичном заражении. Появление реакции гиперчувствительности замедленного действия к туберкулезной палочке свидетельствует о формировании к ней приобретенного постинфекционного (и поствакцинального) иммунитета. Этот тип гиперчувствительности замедленного типа и был впервые выявлен Р. Кохом с помощью туберкулиновой пробы.

Туберкулиновая проба и ее значение. Свой препарат туберкулина Р. Кох получил следующим образом. Он стерилизовал текучим паром при 100 °C в течение 30 мин 5 – 6-недельную культуру туберкулезной палочки на глицериновом бульоне, а затем выпаривал ее при температуре 70 °C до 1/10 объема и фильтровал. Лица, инфицированные туберкулезной палочкой, на введение небольших доз туберкулина отвечают характерной реакцией: на месте внутрикожного введения не ранее чем через 6 – 8 ч появляется небольшое уплотнение, максимальное развитие реакции происходит в течение 24 – 48 ч, – образуется хорошо отграниченная папула диаметром не менее 0,5 см с геморрагическим или некротическим центром. Туберкулиновая аллергическая реакция является очень специфической. Подобную сенсибилизацию можно вызвать только цельными живыми или убитыми туберкулезными палочками, она выявляется туберкулином, но он сам по себе не вызывает такой сенсибилизации. Положительная туберкулиновая проба специфически свидетельствует об инфицировании организма туберкулезной палочкой и, следовательно, о наличии к ней приобретенного иммунитета. Туберкулиновая проба имела важное диагностическое значение для выявления первичного заражения туберкулезом детей в то время, когда не проводилась обязательная массовая вакцинация их против туберкулеза, но не взрослых, так как они в большинстве случаев инфицированы туберкулезной палочкой. Ныне туберкулиновая проба повсеместно используется для контроля эффективности противотуберкулезной вакцинации. В связи с тем, что старый коховский туберкулин содержит различные посторонние вещества и трудно стандартизуется, с 1934 г. для туберкулиновых проб используется высокоочищенный препарат туберкулина, полученный Ф. Зейбертом – PPD-S (purified protein derivative-Seibert). Международная стандартная единица туберкулина 0,000028 мг сухого порошка. Для определения туберкулиновой чувствительности используется 0,0001 мг PPDS. В нашей стране выпускают старый коховский туберкулин (АТК – альт-туберкулин Коха), содержащий 10 000 ТЕ (туберкулиновых единиц) в 1 мл (он применяется для накожной пробы и градуированной накожной пробы по Пирке), и очищенный препарат PPD, содержащий или 5 ТЕ в 0,1 мл или 100 ТЕ в 0,1 мл. Очищенный препарат PPD, содержащий 5 ТЕ/0,1 мл, используется для внутрикожной пробы Манту с целью отбора лиц, подлежащих ревакцинации. Ревакцинации подлежат лица, отрицательно реагирующие на внутрикожное введение 5 ТЕ PPD. Кроме того, имеются препараты-сенситины для выявления повышенной чувствительности к другим патогенным микобактериям.

Лабораторная диагностика. Для диагностики туберкулеза применяют все методы: бактериоскопический, бактериологический, серологический, биологический, аллергические пробы, ПЦР. При бактериоскопическом исследовании исходного материала (мокрота, моча, гной, спинномозговая жидкость, испражнения) необходимо учитывать, что содержание в нем микобактерий может быть незначительным, выделение их эпизодическим и в нем могут быть измененные варианты возбудителя, в том числе L-формы. Поэтому для повышения вероятности обнаружения микобактерий туберкулеза используют методы концентрирования их с помощью центрифугирования или флотации, а также фазово-контрастной (для обнаружения L-форм) и люминесцентной микроскопии (в качестве флуорохромов используют аурамин, аурамин-родамин, акридиновый оранжевый и др.).

Биологический метод – заражение морских свинок – является одним из наиболее чувствительных. Считается, что заражающая доза возбудителя для них составляет несколько клеток. Морские свинки могут быть использованы и для обнаружения L-форм туберкулезных бактерий, но в этом случае необходимо сделать несколько последовательных заражений, так как L-формы обладают меньшей вирулентностью и вызывают у свинок доброкачественную форму туберкулеза, которая в случае реверсии L-форм в исходное состояние может перейти в генерализованный процесс.

О значении туберкулиновой пробы сказано выше.

Из числа серологических реакций для диагностики туберкулеза предложены РСК, РПГА, реакции преципитации, методы иммуноферментного анализа (в том числе точечного), радиоиммунный метод, иммуноблотинг, реакция агрегат-гемагглютинации (для обнаружения ЦИК) и др. Использование различных антигенов позволяет обнаруживать наличие определенных антител. Для совершенствования серологических методов диагностики туберкулеза важное значение имеет получение моноклональных антител к различным антигенам микобактерий. Это позволит выявить те специфические эпитопы туберкулезных бактерий и соответственно те антитела к ним, обнаружение которых имеет наибольшее диагностическое значение, а также позволит создать коммерческие тест-системы для иммунодиагностики туберкулеза.

Среди всех методов микробиологической диагностики туберкулеза решающим все же остается бактериологический. Он необходим не только для постановки диагноза болезни, но и для контроля эффективности химиотерапии, своевременной оценки чувствительности микобактерий к антибиотикам и химиопрепаратам, диагноза рецидивов туберкулеза, степени очищения больного организма от возбудителя и выявления его измененных вариантов, особенно L-форм. Исследуемый материал перед посевом необходимо обрабатывать слабым раствором серной кислоты (6 – 12 %) для устранения сопутствующей микрофлоры. Выделение чистых культур микобактерий ведут с учетом скорости их роста, пигментообразования и синтеза ниацина. Дифференциацию между отдельными видами микобактерий осуществляют на основании их биологических свойств, как указано выше. Вопрос о вирулентности микобактерий решается с помощью биологических проб и на основании обнаружения корд-фактора. Для этой цели предложены цитохимические реакции. Они основаны на том, что вирулентные микобактерии (содержащие корд-фактор) прочно связывают красители – нейтральный красный или нильский голубой – и при добавлении щелочи сохраняют цвет краски, а раствор и невирулентные микобактерии изменяют свою окраску.

Для более быстрого выделения возбудителя туберкулеза предложен метод микрокультур. Суть его состоит в том, что на предметное стекло наносят исследуемый материал, обрабатывают его серной кислотой, отмывают, стекло помещают в цитратную лизированную кровь и инкубируют при температуре 37 °C. Уже через 3 – 4 сут. рост микобактерий на стекле проявляется в виде микроколоний, которые к 7 – 10-му дню достигают максимального развития, а микобактерии хорошо выявляются при микроскопии. При этом вирулентные микобактерии образуют змеевидные колонии, а невирулентные растут в виде аморфных скоплений.

Туберкулез (tuberculosis; от лат. tuberculum – бугорок) – инфекционная болезнь, вызываемая микобактериями, характеризующаяся поражением различных органов и систем (легких, пищеварительного тракта, кожи, костей, мочеполовой системы и др.). Вызывается тремя видами микобактерий: М. tuberculosis, M. bovis, М. africanum. Все три вида отличаются по морфологическим, куль-туральным, биохимическим и патогенным свойствам. Кроме них, к этому роду относятся нетуберкулезные или условно-патогенные микобактерий (М. avium, M. cansasi), которые могут иногда вызывать заболевания человека и животных. Возбудитель был открыт Р. Кохом (1882).

Таксономия. Возбудитель относится к отделу Firmicutes, семейству Mycobacteriaceae, роду Mycobacterium.

Морфология и тинкториальные свойства . Культивирование. М. tuberculosis – длинные (1-3,5 мкм), тонкие (0,2.0,4 мкм), слегка изогнутые палочки, грамположительные, неподвижные, спор и капсул не образуют, окрашиваются по Цилю.Нильсену. На жидких средах через 2-3 нед дают рост в виде морщинистой пленки, а на плотной среде образуют бородавчатый налет. Оптимальная среда для культивирования – яичная среда с добашіением глицерина (среда Левенштейна.Йенсена). Оптимальная биологическая модель – морская свинка. При микрокультивировании на стеклах в жидкой среде через 3 сут образуются микроколонии, где вирулентные микобактерий располагаются в виде «кос», или «жгутов». Этот феномен называется корд-фактором. М. bovis – короткие толстые палочки с зернами. Оптимальная биологическая модель – кролики. М. africanum – тонкие длинные палочки. Растут на простых питательных средах. Температурный оптимум 40.42ºС. Малопатогенны для человека. Вирулентные штаммы М. tuberculosis на плотных средах дают R-колонии.

Ферментативная активность . Туберкулезные микобактерий дают положительный результат при ниациновом тесте, редуцируют нитраты, разлагают мочевину, никотинамид, пиразинамид.

Антигенная структура . Антигенная структура микобактерий довольно сложная. Антигены связаны с клеточной стенкой, рибосомами, цитоплазмой, имеют белковую и липополисахаридную природу, участвуют в реакциях ГЗТ и ГНТ, обладают протективной активностью.

Резистентность . Микобактерий устойчивы к окружающей среде: в пыли сохраняются 10 дней, на книгах, игрушках – до З мес, в воде – до 5 мес, масле – до 10 мес, сыре – до 8 мес, мокроте – до 10 мес. При кипячении погибают через 5 мин. Для дезинфекции используют активированные растворы хлорамина и хлорной извести.

Эпидемиология, патогенез и клиническая картина. Туберкулез распространен повсеместно, является социальной проблемой; ин-фицированность населения, заболеваемость и летальность довольно высоки, особенно в слаборазвитых странах. Восприимчивость людей к туберкулезу всеобщая. На заболеваемость влияют социальные условия жизни населения. Источником инфекции является больной человек; пути передачи инфекции – преимущественно воздушно-капельный, редко контактно-бытовой. Эпидемическую опасность представляют только больные с открытой формой туберкулеза, когда происходит выделение возбудителя в окружающую среду. При заражении (инкубационный период 3.8 нед) на месте внедрения возбудителя формируется первичный туберкулезный комплекс (воспалительная или воспалительно-некротическая реакция), который может распространиться и придать болезни различные формы – от легких до тяжелых септических, с поражением различных органов и систем. Чаще всего туберкулез поражает легкие. Для туберкулезной инфекции характерна реакция ГЗТ, выявляемая внутрикожным введением туберкулина (реакция Манту). Для проведения этой пробы используется PPD-белковый очищенный препарат из микобактерий туберкулеза. Несенсибилизированный организм на препарат не реагирует, но если в организме присутствуют живые микобактерий (у больного или вакцинированного), то через 48 ч развивается местная воспалительная реакция.


Противотуберкулезный иммунитет непрочен и сохраняется только при наличии в организме микобактерий.

Микробиологическая диагностика. Для лабораторного подтверждения диагноза туберкулеза обычно исследуют мокроту, промывные воды бронхов, мочу, спинномозговую жидкость и др. Бактериоскопия мазков, окрашенных по Цилю.Нильсену, эффективна только при высокой концентрации микобактерий в исследуемом материале. Для «обогащения» исследуемого материала используют различные методы, в частности центрифугирование. Бактериологический метод, посев на жидкие и плотные питательные среды более эффективны, но требуют 3-4 нед. Как ускоренный метод диагностики используется микрокультивирование на стеклах в среде Школьникова. Иногда используют биологический метод – заражение морской свинки.

Лечение . Назначают изониазид, рифампицин, этамбутол, протионамид, пиразинамид, циклосерин, стрептомицин, канами-цин, флоримицин, тиоацетазон (тибон), парааминосалицило-вую кислоту (ПАСК).

Профилактика. Проведение комплекса санитарно-гигиенических и противоэпидемических мероприятий (санитарное состояние предприятий, детских учреждений, школ и т.д., выявление больных, взятие на учет семей, диспансеризация, эпидемиологический надзор и т.д.). Специфическую профилактику осуществляют путем введения живой вакцины – BCG (Вас. Calmette.Guerin), полученной Кальметтом и Гереном при ат-тенуации микобактерий на специальной среде. Вакцинируют новорожденных (5-7-й день жизни) внутрикожно с последующей ревакцинацией в 7, 12 и 17 лет. Перед ревакцинацией проводят пробу Манту. При положительной реакции ревакцинацию не проводят.

Факторы патогенности.

Липидный корд-фактор – гликолипид, является фактором адге-зии, разрушает митохондрии клеток инфицированного организма,

нарушает у них функцию дыхания, тормозит миграцию полиморфно-ядерных лейкоцитов. При культивировании вызывает склеивание ви-

рулентных особей в виде кос, тяжей.Туберкулин (туберкулопротеины) обладает аллергизирующимдействием, вызывает развитие ПЧЗТ.

Гликолипиды наружного слоя клеточной стенки (микозиды ) иманнозные рецепторы микобактерий способствуют незавершенному

фагоцитозу.Туберкулостеариновая , фтионовая , миколевая и другие жирныекислоты оказывают токсическое действие на ткани.

Сидерофоры микобактерий конкурируют с фагоцитами за железо– синтезируют железосодержащие ферменты и колонизируют альвео-

лярные макрофаги.

Характеристика заболевания

Источник инфекции – больные люди и больные животные (круп-ный рогатый скот), выделяющие микобактерии.Пути передачи – чаще воздушно-капельный, реже контактный иалиментарный (молоко коров). Заражению способствует постоянныйконтакт, проживание с больным туберкулезом.Патогенез туберкулеза. Ингалированные бактерии фагоцитиру-ются альвеолярными легочными макрофагами и транспортируются врегионарные лимфоузлы. Фагоцитоз носит незавершенный характер.Гликолипиды-микозиды усиливают токсическое действие корд-фактора, поражая мембраны митохондрий, и ингибируя фагосомо-лизосомальное слияние. Корд-фактор тормозит активность поли-морфноядерных фагоцитов.У входных ворот легких в ацинусах развивается первичный аф-фект, идущие от него лимфатические сосуды и регионарные лимфо-узлы воспаляются, формируется первичный комплекс . В ацинусе воз-никает гранулема в виде бугорка . Этому способствует накопление вочаге молочной кислоты, низкое значение рН, высокая концентрацияуглекислого газа. В гранулеме накапливается большое количестволимфоидных, плазматических клеток и фибробластов. В центре гра-нулемы возникают участки творожистого некроза. Здесь располага-ются возбудители, вокруг них эпителиоидные и гигантские клетки.При формировании иммунитета размножение возбудителя замедляет-ся, а потом прекращается, развивается ПЧЗТ. Очаг воспаления зати-

хает, подвергается кальцификации и фиброзу, формируются кальци-наты (очаги Гона ). Клинические проявления отсутствуют.рофагов к гамма-интерферону, ослабевает HLA-зависимое представ-ление антигенов, тормозится пролиферация Т-лимфоцитов, активиру-ется система комплемента по альтернативному пути, развивается ге-нерализация инфекционного процесса.Высокая сенсибилизация организма приводит к токсико-аллергическим реакциям. Клинически этот период сопровождаетсякашлем, кровохарканьем, снижением массы тела, потливостью, суб-фебрилитетом.У лиц с иммунодефицитом наблюдается диссиминированный(милиарный) туберкулез – гранулемы развиваются в различных орга-нах.

Клинические формы туберкулеза:- очаговый: поражает отдельные органы (чаще в легких, костной

системе);

- генерализованные формы : милиарный туберкулез, туберкулез-ный менингит, туберкулез мочеполовой системы, кишечника и др. ор-

Иммунитет носит нестерильный клеточный характер.Имеютзначение Т-лимфоциты, выделяющие медиаторы, усиливающие фагоцитоз, иммунологическая память. Антитела не ингибируют возбудителя. Развивается инфекционная аллергия ПЧЗТ. Существует высокая естественная резистентность к возбудителютуберкулеза.

Лабораторная диагностика туберкулеза. Дифференциация возбудителей туберкулеза, микобактериозов и кислоустойчивых сапрофитов.

Лабораторная диагностика

Материалом для исследования служат мокрота, моча, ликвор,пунктат лимфоузла, биоптаты тканей.Бактериоскопический метод. Окрашивают мазки по Циль-Нильсену, выявляют мелкие красные палочки. При окраске флюорес-центными красителями (аурамином, родамином) микобактерии даютжелто-белое свечение в люминесцентном микроскопе.При малом количестве возбудителя используют методы обога-щения.Гомогенизация – материал обрабатывают щелочью, фибрин приэтом растворяется, а возбудитель высвобождается. Из осадка послецентрифугирования готовят мазки.Флотация – гомогенизированную мокроту обрабатывают ксило-лом или бензолом и тщательно встряхивают. Возбудитель всплываетв силу гидрофобности вместе с пеной. Из нее готовят мазок и окра-шивают по Цилю-Нильсену.Бактериологический метод. Материал обрабатывают серной кис-лотой и засевают на яичные среды.

Для идентификации M. tuberculosis проводят оценку свойств воз-будителя:характер роста – обнаруживают сухие, бородавчатые, кремовые

колонии (R-форма); длительность роста – 12-60 дней; выявляют нали-чие корд-фактора (определяют по методу Прайса – на стекло наносят

исследуемый материал, обрабатывают серной кислотой для уничто-жения кислоточувствительной флоры и погружают препараты в цит-

ратную кровь, через 3-4 дня препараты извлекают, окрашивают поЦиль-Нильсену, при микроскопии видны «косы» палочек, при отсут-

ствии корд-фактора возбудитель располагается аморфно); для мико-бактерий туберкулеза характерен рост только при температуре 37-

380С; они не растут на простых средах и средах с салицилатами; по-ложительный ниациновый тест (среда с хлорамином В желтеет при

накоплении никотиновой кислоты); обладают термолабильной ката-лазой ; восстанавливают нитраты в нитриты; выделяют уреазу; к ми-

кобактериям туберкулеза чувствительны морские свинки.Для внутривидовой дифференциации используют фаготипирова-ние штаммов десятью микобактериофагами.Для выявления АГ используют ИФА или РИФ, для генной диа-гностики ставят ПЦР и выявляют генетические маркеры.__Mycobacterium bovis вирулентны в S-форме; колонии кремовые,гладкие; ниациновый тест отрицательный; рост до 40 дней; каталазатермолабильная; выделяют уреазу; не восстанавливают нитраты; росттолько при температуре 37-400С.Mycobacterum africanum – рост 31-40 дней; ниациновый тест по-ложительный; вирулентны в S-форме; каталаза термолабильна; невосстанавливают нитраты; выделяют уреазу. Остальные свойства каку M.tuberculosis .Микобактерии туберкулеза необходимо дифференцировать отатипичных кислотоустойчивых бактерий, вызывающих микобактери-озы.Атипичные кислотоустойчивые бактерии имеют оранжевый пиг-

мент, вирулентны в S-форме, растут на средах с салицилатами, имеюттермостабильную каталазу, рост через 10-20 дней при температуре 22-450С, нет корд-фактора.Кислотоустойчивые сапрофиты M.smegmatis , в отличие отпредыдущих возбудителей, растут на простых средах, длительность258роста 3-4 дня, имеют S-форму, оранжевый пигмент, нет признаковболезнетворности, чувствительны к спирту.

Биопроба применяется при стертых формах. Морским свинкамвнутрикожно втирают исследуемый материал. Через 10-14 дней появ-ляется долго не заживающая язва, и реакция Манту у них становитсяположительной.Метод аллергических проб – реакция Манту с туберкулином.Внутрикожно вводят туберкулин PPD (PPD – очищенный белко-вый дериват). Если организм инфицирован (иммунен), то через 24-48-72 часа наблюдается инфильтрация и гиперемия, т.е. развиваетсяПЧЗТ. У больных туберкулезом диаметр папулы на 6 мм (и более)больше, чем у вакцинированных.Генодиагностика – ПЦР.Серологический метод: для выявления антител используют

Микробиология: конспект лекций Ткаченко Ксения Викторовна

ЛЕКЦИЯ № 21. Туберкулез

ЛЕКЦИЯ № 21. Туберкулез

1. Морфология и культуральные свойства

Возбудитель относится к роду Mycobakterium, вид M. tuberculesis.

Это тонкие палочки, слегка изогнутые, спор и капсул не образуют. Клеточная стенка окружена слоем гликопептидов, которые называются микозидами (микрокапсулами).

Туберкулезная палочка тяжело воспринимает обычные красители (по Грамму окрашивается 24–30 ч). Грамположительна.

Туберкулезная палочка имеет особенности строения и химического состава клеточной стенки, которые отражаются на всех биологических свойствах. Главная особенность – в клеточной стенке содержится большое количество липидов (до 60 %). Большинство из них – миколовые кислоты, которые входят в каркас клеточной стенки, где находятся в виде свободных гликопептидов, входящих в состав корд-факторов. Корд-факторы обуславливают характер роста в виде жгутов.

В состав клеточной стенки входит липоарабиноманан. Его терминальные фрагменты – кэп – определяют способность возбудителя специфически связываться с рецепторами макрофагов.

Микобактерии туберкулеза окрашиваются по Цилю-Нильсену. Этот метод основан на кислотоустойчивости микобактерий, которая определяется особенностями химического состава клеточной стенки.

В результате лечения противотуберкулезными препаратами возбудитель может утратить кислотоустойчивость.

Для микобактерий туберкулеза характерен выраженный полиморфизм. В их цитоплазматической мембране обнаруживаются характерные включения – зерна Муха. Микобактерии в организме человека могут переходить в L-формы.

По типу получения энергии аэробы. По требованиям к температуре – мезофилы.

Размножение их происходит очень медленно, время генерации – 14–16 ч. Это связано с выраженной гидрофобностью, которая обусловлена высоким содержанием липидов. Это затрудняет поставку питательных веществ в клетку, что снижает метаболическую активность клетки. Видимый рост на средах – 21–28 дней.

Микобактерии требовательны к питательным средам. Факторы роста – глицерин, аминокислоты. Растут на картофельно-глицериновых, яично-глицериновых и синтетических средах. Во все эти среды необходимо добавлять вещества, которые ингибируют рост контаминирующей флоры.

На плотных питательных средах образуются характерные колонии: морщинистые, сухие, с неровными краями, не сливаются друг с другом.

В жидких средах растут в виде пленки. Пленка сначала нежная, сухая, со временем утолщается, становится бугристо-морщинистой с желтоватым оттенком. Среда при этом непрозрачная.

Туберкулезные бактерии обладают определенной биохимической активностью, и изучение ее используется для дифференцировки возбудителя туберкулеза от других представителей группы.

Факторы патогенности:

1) миколовые кислоты;

2) корд-фактор;

3) сульфатиды;

4) микозиды;

5) липоарабиноманан.

Из книги Здоровье Вашей собаки автора Баранов Анатолий

Туберкулез Туберкулез - заразная инфекционная болезнь, вызываемая микобактериями - возбудителями туберкулеза. Заболевание протекает по-разному, так как пораженными могут оказаться различные органы собаки: легкие, кишечник, лимфоузлы и др. Болеют туберкулезом не

Из книги Микробиология: конспект лекций автора Ткаченко Ксения Викторовна

ЛЕКЦИЯ № 1. Введение в микробиологию 1. Предмет и задачи микробиологии Микробиология – наука, предметом изучения которой являются микроскопические существа, называемые микроорганизмами, их биологические признаки, систематика, экология, взаимоотношения с другими

Из книги Микробиология автора Ткаченко Ксения Викторовна

ЛЕКЦИЯ № 6. Учение об инфекции 1. Общая характеристика инфекции Инфекция – это совокупность биологических реакций, которыми макроорганизм отвечает на внедрение возбудителя.Диапазон проявлений инфекций может быть различным. Крайними формами проявления инфекций

Из книги автора

ЛЕКЦИЯ № 8. Антибиотики и химиотерапия 1. Химиотерапевтические препараты Химиотерапевтические препараты – это лекарственные вещества, используемые для подавления жизнедеятельности и уничтожения микроорганизмов в тканях и средах больного, обладающие избирательным,

Из книги автора

ЛЕКЦИЯ № 9. Введение в иммунологию 1. Понятие об иммунитете. Виды иммунитета Иммунология – это наука, предметом изучения которой является иммунитет.Инфекционная иммунология изучает закономерности иммунной системы по отношению к микробным агентам, специфические

Из книги автора

ЛЕКЦИЯ № 11. Антигены 1. Свойства и типы антигенов Антигены – это высокомолекулярные соединения. При попадании в организм вызывают иммунную реакцию и взаимодействуют с продуктами этой реакции: антителами и активированными лимфоцитами.Классификация антигенов.1. По

Из книги автора

ЛЕКЦИЯ № 12. Антитела 1. Структура иммуноглобулинов Антитела (иммуноглобулины) – это белки, которые синтезируются под влиянием антигена и специфически с ним реагируют.Они состоят из полипептидных цепей. В молекуле иммуноглобулина различают четыре

Из книги автора

ЛЕКЦИЯ № 13. Иммунопатология 1. Иммунодефицитные состояния Иммунодефицитными состояниями называют нарушения иммунного статуса и способности к нормальному иммунному ответу на разные антигены. Эти нарушения обусловлены дефектами одного или нескольких звеньев иммунной

Из книги автора

ЛЕКЦИЯ № 14. Прикладная иммунология 1. Иммунодиагностика Иммунодиагностика – это использование реакций иммунитета для диагностики инфекционных и неинфекционных заболеваний.Реакции иммунитета – это взаимодействие антигена с продуктами иммунного ответа. В любой

Из книги автора

ЛЕКЦИЯ № 18. Патогенные кокки 1. Стафилококки Семейство Staphilococcoceae, род Staphilicoccus.Являются возбудителями стафилококковой пневмонии, стафилококка новорожденных, сепсиса, пузырчатки.Это мелкие грамположительные кокки. В мазках располагаются скоплениями, часто

Из книги автора

ЛЕКЦИЯ № 20. Дифтерия 1. Морфология и культуральные свойства Возбудитель относится к роду Carinobakterium, виду C. difteria.Это тонкие палочки, прямые или слегка изогнутые, грамположительные. Для них характерен выраженный полиморфизм. На концах булавовидные утолщения –

Из книги автора

ЛЕКЦИЯ № 22. Группа риккетсий 1. Характеристика группы Риккетсии представляют собой самостоятельный класс, который делится на подклассы a1, a2, b и g.a1 включает в себя семейство Rickettsiaceae, наиболее важными из которого являются два рода.1. Род Rickettsia, виды делят на две

Из книги автора

ЛЕКЦИЯ № 23. Возбудители ОРВИ 1. Вирусы гриппа Относятся к семейству ортомиксовирусов. Выделяют вирусы гриппа типов А, В и С.Вирус гриппа имеет сферическую форму, диаметр 80-120 нм. Нуклеокапсид спиральной симметрии, представляет собой рибонуклеопротеиновый тяж (белок NP),

Из книги автора

ЛЕКЦИЯ № 25. Энтеровирусные инфекции 1. Вирус полиомиелита Относится к семейству Picornaviridae, роду энтеровирусов.Это относительно небольшие вирусы с икосаэдральной симметрией. Средний размер вирусных частиц – 22–30 нм. Устойчивы к действию жировых растворителей. Геном

Из книги автора

40. Туберкулез Возбудитель относится к роду Mycobakterium, вид M. tuberculesis.Это тонкие палочки, слегка изогнутые, спор и капсул не образуют.Т Грамположительна.Туберкулезная палочка имеет особенности – в клеточной стенке содержится большое количество липидов (до 60 %). Большинство из

Из книги автора

41. Туберкулез. Диагностика. Профилактика. Лечение Диагностика:1) микроскопические исследование. Из мокроты делают два мазка. Один окрашивают по Цилю-Нильсену, второй обрабатывают флюорохромом и исследуют с помощью прямой флюоресцентной

Туберкулез (от лат. tuberculum - бугорок) - это инфекционное антропозоонозное заболевание, вызываемое микобактериями и характеризующееся развитием специфического гранулематозного воспаления, чаще хроническим течением, многообразием клинических проявлений и поражением различных органов, главным образом дыхательной системы.

Актуальность.

1. Туберкулез - это самая распространенная инфекция.

2. Туберкулез - это глобальная проблема всех стран мира (ежегодно в мире регистрируется 8-10 млн случаев первичного инфицирования микобактериями туберкулеза). В 1993 г. ВОЗ объявила туберкулез проблемой «всемирной опасности».

3. В России один из самых высоких уровень заболеваемости туберкулезом.

4. Туберкулез - это инфекция, которая чаще всего является причиной смерти и инвалидности.

5. Туберкулез может поражать любой орган и систему организма, поэтому врач любой специальности должен знать и уметь распознать туберкулез.

Причины распространенности туберкулеза:

Проблема туберкулеза - на 80% социальная проблема и лишь на 15% зависит от состояния здравоохранения.

1. Снижение социально-экономического уровня жизни граждан.

2. Сокращение объемов финансирования противотуберкулезных программ, дефицит противотуберкулезных препаратов, дорогостоящее лечение.

3. Распространение лекарственно устойчивых штаммов микобактерий туберкулеза.

4. Распространение ВИЧ-ассоциированного туберкулеза (на сегодняшний день в РФ зарегистрировано более 13 тыс. случаев ВИЧ-ассоциированного туберкулеза).

5. Недостатки в работе первичного звена по диагностике и раннему выявлению туберкулеза.

История открытия.

Заболевание известно с глубокой древности. Легочная форма описана Аретеем Каппадокийским , Гиппократом . Ибн-Сина считал туберкулез наследственной болезнью. Первым указал на его инфекционную природу Фракосторо . В XVII-XIX веках туберкулез поражал различные слои населения: Моцарт, Шопен, Некрасов, Чехов страдали «чахоткой». Инфекционная природа заболевания была впервые доказана Вильменом в 1865 г . В 1882 г. Р.Кох открыл туберкулезную палочку (за что в 1911 г. получил Нобелевскую премию). Немаловажную роль в изучении туберкулеза, разработке методов диагностики, профилактики и лечения данного заболевания сыграли К. Пирке , А. Кальметт и К. Герен .

Таксономия.

Порядок - Actinomycetales

Семейство - Mycobacteriaceae (от греч. myces - гриб, bacteria - палочка).

Род - Mycobacterium

Виды - M. tuberculosis (92%), M. bovis (5%), M. africanum (3%).

Морфология и тинкториальные свойства.

Характерен полиморфизм и склонность к ветвлению :

· в свежих культурах - прямые или слегка изогнутые палочки размером 0,3-0,6×1-4 мкм;

Нитевидная форма;

Кокковидная форма;

Зернистые формы (зерна Муха - от 2 до 12 зерен разной величины, не являются КУБ);

Фильтрующиеся формы;

L-формы.

Из зерен, фильтрующихся и L-форм могут восстанавливаться в обычные формы, что способствует поддержанию хронического воспаления, возникновению рецидивов.

Жгутики отсутствуют, спор не образуют, имеют микрокапсулу, кислото-спирто-щелочеустойчивые (клеточная стенка на 46% состоит из липидов в 3-х фракциях: фосфатиды, воски и жирные кислоты - туберкулостеариновая, фтионовая, миколовая и др.).

Грамположительны. Окрашиваются по методу Циля-Нильсена в красный цвет, зернистые формы - в фиолетовый. При окраске ауромином приобретают желтый цвет.

Культуральные свойства.

Строгие аэробы (M. bovis - микроаэрофилы), оптимальная температура 370С, рН 6,4-7,2, большое содержание липидов замедляет обмен веществ, поэтому видимый рост M. tuberculosis появляется через 12-25 дней, M. bovis - через 21-60 дней, M. africanum - через 31-42 дня (это обусловлено длительным периодом генерации клеток - 14-15, даже до 24 часов, тогда как у большинства бактерий - 20-30 минут). Рост стимулируется 5-10% СО2, 0,5% глицерина и лецитином. Культивируются только на сложных питательных средах с глицерином, витаминами группы В, аминокислотами и глюкозой, а для подавления токсического действия жирных кислот добавляют активированный уголь, сыворотку животных и альбумин, а для подавления роста сопутствующей флоры - красители (малахитовый зеленый).

* Агаровые среды:

* среда Левенштайна-Йенсена (яично-картофельная среда с добавлением глицерина и малахитовой зелени для подавления сопутствующей флоры);

* среда Петраньяни (яично-картофельная среда с добавлением глицерина, кусочков картофеля и молока);

* среды Финна 2 (яичная среда), Миддлбрука и др.

* Жидкие среды:

* среда Сотона (аспарагин, глицерин, цитрат Fe и фосфат К);

* Миддлбрука, Дюбо, Школьниковой и др.

В жидких средах видимый рост появляется на 5-7 день в виде тонкой нежной желтоватой пленки, которая постепенно утолщается, становится морщинистой, ломкой, раствор остается прозрачным.

На плотных питательных средах на 15-20 день M. tuberculosis образует сухие морщинистые крошащиеся возвышающиеся колонии желтовато-кремового цвета с неровными изрезанными краями (в виде «цветной капусты»). M. bovis и M. africanum образуют небольшие слегка выпуклые бесцветные колонии с изрезанными краями.

Для выявления корд-фактора (от англ. cord - жгут, веревка) используется культивирование на стеклах в среде Прайса (агар с цитратной кроличьей кровью) - рост в виде кос или плетенных веревок (мазок из исследуемого материала, высушенный при 370С 5-10 минут, обработанный 6% серной кислотой и нейтрализованный раствором едкого натра, погружают во флаконы с цитратной кроличьей кровью и инкубируют при 370С 7-10 дней, затем окрашивают по Цилю-Нильсену и микроскопируют - микроколонии в виде «жгутов»).

Биохимическая активность.

Относительно активны. M. tuberculosis обладает каталазной активностью (в отличие от каталазы условно-патогенных микобактерий термолабильна), уреазой, никотинаминидазой, восстанавливает нитраты, накапливает в среде ниацин (ниациновый тест Конно - среда желтеет под действием никотиновой кислоты).

M. bovis и M. africanum обладают только уреазой, не восстанавливает нитраты, не продуцирует никотинаминидазу и не накапливает в среде ниацин, т.к. превращает его в ниацинрибонуклеотид.

Антигенная структура.

Антигены туберкулезной палочки - это полисахаридные (родоспецифические антигены), белковые (туберкулопротеины), липидные компоненты клетки, фосфатиды. Туберкулопротеиды
являются полными антигенами, полисахариды только в соединении с γ-глобулинами. Антигены стимулируют образование антиполисахаридных, антифосфатидных, антипротеиновых и иных антител различной специфичности (но протективной роли не играют). Также антигены индуцируют развитие ГНТ и ГЗТ.

Факторы патогенности.

Экзотоксины не вырабатывают.

Токсическими свойствами обладают химические компоненты клетки:

Корд-фактор (высокотоксичен) - оказывает токсическое действие на ткани, блокирует окислительное фосфорилирование на митохондриях, тем самым нарушая функцию дыхания, защищает от фагоцитоза, подавляет миграцию лейкоцитов.

Липиды (миколовая, фтионовая и туберкулостеариновая кислоты, фосфатидный фактор, мураминдипептид, воск Д) и полисахариды - стимулируют развитие специфического гранулематозного воспаления в тканях (образование эпителиоидных клеток, гигантских многоядерных клеток Пирогова-Лангханса).

Туберкулопротеин - индуцирует развитие ГЗТ.

Ферменты патогенности: лецитиназа, каталаза, пероксидаза.

Резистентность.

Среди неспорообразующих бактерий самые устойчивые к действию неблагоприятных факторов окружающей среды. Устойчивы к кислотам, щелочам, спиртам, высушиванию (в высохшей мокроте до 2 месяцев). Рассеянный солнечный свет инактивирует микобактерий в течение 1-1,5 месяцев, прямой - 1,5 часа. На белье, книгах - свыше 3 месяцев; в воде - более 1 года; в почве - до 2 лет; в уличной грязи - до 4 месяцев; в желудочном соке - 6 месяцев; в масле - 10 месяцев. Выдерживают температуру жидкого азота (-1900С), при кипячении погибает через 5-7 минут, 500С - 12 часов, в молоке при 90-950С - 5 минут. 5% карболовая кислота, 1:1000 сулема - 1 сутки, 10% формалин - 12 часов, 5% фенол - 6 часов, 0,05% бензилхлорфенол - 15 минут. Чувствительны к УФО (погибают через 2-3 минуты) и хлорсодержащим дезсредствам (3-5 часов). Губительно действуют стрептомицин, рифампицин, тубазид, фтивазид, ПАСК.

Эпидемиология.

Антропозооноз.

Источник инфекции - больной человек и животные.

Механизмы передачи:

Аэрогенный (пути - воздушно-капельный, воздушно-пылевой);

Фекально-оральный (путь - алиментарный);

Контактный (путь - непрямой контактный);

Вертикальный (путь - трансплацентарный, реализуется редко, т.к. микобактерии вызывают развитие тромбоза кровеносных сосудов плаценты).

Инкубационный период - 3-8 недель - 1 год (до 40 лет).

Патогенез и клинические особенности.

К 40 годам 70-90% людей инфицированы, но только у 10% развивается первичный туберкулез.

В 85-95% случаях заболевание начинается в легких и во внутригрудных лимфатических узлах. Остальные случаи - это туберкулез костей, суставов, кишечника, мочеполовой системы и т.д.

При попадании в альвеолы M. tuberculosis вызывает образование первичного аффекта - специфической гранулемы (бугорка, от лат. granulum - зернышко, греч. oma - окончание опухолей): в центре его располагается зона казеозного некроза с M. tuberculosis , окруженная зоной эпителиоидных и гигантских многоядерных клеток Пирогова-Лангханса, далее расположен вал из лимфоцитов и мононуклеарных фагоцитов.

Из гранулемы M. tuberculosis , поглощенные макрофагами (незавершенный фагоцитоз), по лимфотическим сосудам (лимфангоит ) проникает в регионарные лимфоузлы (лимфаденит ). Т.о. формируется первичный туберкулезный комплекс , состоящий из:

Первичный аффект;

Лимфангоит;

Лимфаденит.
При высокой естественной резистентности первичный очаг окружается соединительнотканной капсулой и обызвестляется - формируется очаг Гона (петрификат). Микобактерии в виде L-форм могут сохранять жизнеспособность в первичном очаге многие годы.

При снижении невосприимчивости развивается прогрессия, которая может осуществляться 4 путями - развивается диссеминированный туберкулез :

1. По лимфатическим сосудам (лимфожелезистая прогрессия, «золотуха»).

2. Гематогенный путь.

3. Рост первичного аффекта вплоть до казеозной пневмонии.

4. Смешанный путь.

В ряде случаев первичный туберкулез может принимать хроническое течение в виде туберкулезной интоксикации, лихорадки и т.д.

Вторичный туберкулез развивается при повторном массивном инфицировании микобактериями, либо эндогенным путем из очага Гона и других локализаций первичного туберкулеза.

Симптомов, характерных только для туберкулеза, нет.

Иммунитет.

Значительный естественный иммунитет.

Приобретенный иммунитет - ведущее место клеточный нестерильный (устойчивость к суперинфекции). Формируется ГЗТ.

Микробиологическая диагностика.



Исследуемый материал - мокрота, гной, моча, СМЖ, плевральная жидкость, промывные воды желудка, кусочки органов, кровь.

1. Бактериоскопический метод.

2. Бактериологичекий метод (основной).

3. Ускоренный метод Прайса на обнаружение корд-фактора.

4. Биологический метод.

5. Серологический метод - РИФ, РСК, РПГА, РДП в геле, ИФА, РИА, иммуноблотинг.

6. Молекулярно-биологический метод - ПЦР, ДНК-гибридизация.

7. Аллергологический метод - проба Манту с 2 ТЕ PPD-L.


Обнаружение микобактерий туберкулёза при бактериоскопическом методе диагностики (схематично).

В исследуемом материале обнаруживают микобактерии туберкулеза путем микроскопии мазков, окрашенных по Цилю-Нильсену и с применением люминесцентных красителей (чаще всего аурамина). Бактериоскопию рассматривают как ориентировочный метод. Бактериологический метод является основным в лабораторной диагностике туберкулеза.

Посевы делают на среду Левенштейна-Йенсена и инкубируют при 37°С в термостате в течение 3 мес. Выделенные культуры идентифицируют и определяют их чувствительность к химиотерапевтическим препаратам. Для ускоренного обнаружения микобактерий делают посевы по методу Прайса , позволяющего получить микрокультуры туберкулезных бактерий и определить наличие корд-фактора, когда микобактерии располагаются в форме кос и жгутов.

В некоторых случаях, например, при туберкулезе почек, прибегают к биологической пробе -заражению морских свинок с последующим выделением чистой культуры. Кожно-аллергические туберкулиновые пробы (реакция Манту ) ставят с целью выявления лиц, инфицированных туберкулезными микобактериями, для оценки течения туберкулезного процесса у больных, а также для контроля эффективности вакцинации и отбора лиц для ревакцинации BCG .

В последние годы большое внимание уделяется новым методам диагностики туберкулеза — цепной полимеразной реакции (ЦПР) и др

Оценка пробы Манту с 2 ТЕ (через 48-72 часа).

Отрицательная - уколочная реакция (несостоятельность поствакцинального иммунитета, иммунодифицитные состояния).

Сомнительная - инфильтрат 2-4 мм/только гиперемия любого размера.

Положительная - инфильтрат 5 мм и более.

Гиперэргическая - инфильтрат 21 мм и более/везикуло-некротическая реакция независимо от размера инфильтрата.

У здорового вакцинированного человека проба Манту в норме должна быть слабоположительной (папула - 5-12 мм).

Специфическая профилактика.

Плановая вакцинация в соответствии с национальным календарем прививок в возрасте 3-7 дней жизни живой аттенуированной туберкулезной вакциной БЦЖ (BCG - Bacille Calmette Guerin) - авирулентный штамм M. bovis (длительно культивируют на картофильно-глицериновом агаре с бычьей желчью).

Первая ревакцинация - в 7 лет при отрицательной пробе Манту.

Вторая ревакцинация - в 14 лет при отрицательной пробе Манту и не получившим прививку в 7 лет.

Специфическое лечение - не разработано.

Неспецифическое лечение - АБ, ХТП: изониазид (тубазид), ПАСК, рифампицин, стрептомицин, этамбутол и др.

Поделиться