Общие сведения о крахмале. Гомополисахариды: крахмал (амилоза и амилопектин), гликоген, целлюлоза. Строение, свойства, биологическая роль Ферментативный гидролиз крахмала

Значит, что он состоит из моносахаридов, связанных в длинные цепочки. На самом деле это смесь двух разных полимерных веществ: крахмал состоит из амилозы и амилопектина. Мономером в обоих цепочках является молекула глюкозы, однако по строению и свойствам они существенно различаются.

Общий состав

Как уже было сказано, и амилоза, и амилопектин - это полимеры альфа-глюкозы. Различие заключается в том, что молекула амилозы имеет линейное строение, а амилопектина - разветвленное. Первая является растворимой фракцией крахмала, амилопектин - нет, и в целом крахмал в воде - коллоидный раствор (золь), в нем растворенная часть вещества находится в равновесии с нерастворенной.

Здесь для сравнения даны общие структурные формулы амилозы и амилопектина.

Амилоза растворима за счет образования мицелл - это несколько молекул, собранных вместе в таком виде, что их гидрофобные концы спрятаны внутрь, а гидрофильные - наружу для контакта с водой. Они находятся в равновесии с молекулами, не собранными в такие агрегаты.

Амилопектин также способен образовывать мицеллярные растворы, однако в гораздо меньшей степени, и поэтому в холодной воде практически нерастворим.

Амилоза и амилопектин в крахмале находятся в соотношении приблизительно 20 % первого на 80 % второго. Этот показатель зависит от того, каким способом он был получен (в разных крахмалсодержащих растениях проценты также разные).

Как уже было сказано, в холодной воде может растворяться только амилоза, да и то частично, но в горячей из крахмала образуется клейстер - более или менее однородная клейкая масса из набухших отдельных крахмальных зерен.

Амилоза

Амилоза состоит из молекул глюкозы, связанных между собой по 1,4-гидроксильным связям. Это длинный неразветвленный полимер, количество отдельных молекул глюкозы в среднем равно 200.

В крахмале цепочка амилозы свернута в спираль: диаметр "окошек" в ней приблизительно 0,5 нанометра. Благодаря им амилоза способна образовывать комплексы, соединения-включения типа "гость-хозяин". К ним принадлежит известная реакция крахмала с йодом: молекула амилозы - "хозяин", молекула йода - "гость", помещающийся внутрь спирали. Комплекс имеет интенсивно синюю окраску и используется для обнаружения как йода, так и крахмала.

В разных растениях процентное содержание амилозы в крахмале может варьироваться. В пшеничном и кукурузном она составляет стандартно 19-24 % по массе. ее содержит 17 %, а в яблочном присутствует только амилоза - 100 % массовая доля.

В клейстере амилоза образует растворимую часть, и это используют в аналитической химии для разделения крахмала на фракции. Другим способом, фракционированием крахмала является осаждение амилозы в виде комплексов с бутанолом или тимолом в кипящих растворах с водой или диметилсульфоксидом. В хроматографии может использоваться свойство амилозы к адсорбции на целлюлозе (в присутствии мочевины и этанола).

Амилопектин

Крахмал имеет разветвленное строение. Это достигается за счет того, что, кроме 1 и 4-гидроксильных связей, молекулы глюкозы в нем образуют еще и связи по 6-й спиртовой группе. Каждая такая "третья" связь в молекуле - новое ответвление в цепи. Общая структура амилопектина по виду напоминает гроздь, макромолекула в целом существует в виде шаровидной структуры. Количество мономеров в ней примерно равно 6000, и молекулярная масса одной молекулы амилопектина значительно больше, чем у амилозы.

Амилопектин также образует с йодом соединение включения (клатрат). Только в этом случае комплекс окрашен в красно-фиолетовый (ближе к красному) цвет.

Химические свойства

Химические свойства амилозы и амилопектина, исключая уже обсужденное взаимодействия с йодом, абсолютно одинаковы. Их можно условно поделить на две части: реакции, характерные для глюкозы, то есть происходящие с каждым мономером по отдельности, и реакции, затрагивающие связи между мономерами, например гидролиз. Поэтому далее мы будем говорить о химических свойствах крахмала как смеси амилозы и амилопектина.

Крахмал относится к невосстанавливающимся сахарам: все гликозидные гидроксилы (гидроксильная группа при 1-м атоме углерода) участвуют в межмолекулярных связях и поэтому не могут присутствовать в реакциях окисления (например, проба Толленса - качественная реакция на альдегидную группу, или взаимодействие с реактивом Феллинга - свежеосажденным гидроксидом меди). Сохранившиеся гликозидные гидроксилы, конечно, есть в наличии (на одном из концов полимерной цепи), но в незначительных количествах и на свойства вещества не влияют.

Однако, также как и отдельные молекулы глюкозы, крахмал способен образовывать эфиры с помощью не участвующих в связях между мономерами гидроксильных групп: на них можно "повесить" метильную группу, остаток уксусной кислоты и так далее.

Также крахмал способен окисляться с помощью йодной (HIO 4) кислоты до диальдегида.

Гидролиз крахмала бывает двух видов: ферментный и кислотный. Гидролиз с помощью ферментов относится к разделу биохимии. Фермент амилаза расщепляет крахмал на более короткие полимерные цепочки из глюкозы - декстрины. Кислотный гидролиз крахмала является полным в присутствии, например, серной кислоты: крахмал расщепляется сразу до мономера - глюкозы.

В живой природе

В биологии крахмал - это прежде всего сложный углевод, и поэтому растениями используется как способ хранения питательных веществ. Он образуется при фотосинтезе (сначала в виде отдельных молекул глюкозы) и откладывается в клетках растения в виде зерен - в семенах, клубнях, корневищах и т. д. (чтобы потом использоваться как "продовольственный склад" новыми зародышами). Иногда крахмал содержится в стеблях (например, у - мучнистая крахмальная сердцевина) или листьях.

В организме человека

Крахмал в составе пищи попадает сначала в ротовую полость. Там фермент, содержащийся в слюне (амилаза), расщепляет полимерные цепи амилозы и амилопектина, превращая молекулы в более короткие - олигосахариды, потом расщепляет и их, и в конце концов остается мальтоза - дисахарид, состоящий из двух молекул глюкозы.

Мальтозу расщепляет мальтаза до глюкозы - моносахарида. И уже глюкоза используется организмом в качестве источника энергии.

Полисахарид, содержащий остатки моносахарида одного вида, называют гомополисахаридом.

По своему функциональному назначению гомополисахариды могут быть разделены на две группы: структурные и резервные полисахариды. Важным структурным гомополисахаридом является целлюлоза, а главными резервными – гликоген и крахмал.

Крахмал представляет собой смесь 2 гомополисахаридов: линейного – амилозы и разветвленного – амилопектина, общая формула которых (С6Н10О5)n. Как правило, содержание амилозы в крахмале составляет 10–30%, амилопектина – 70–90%.

Амилоза - полисахарид крахмала, состоящий преимущественно из линейных или слаборазветвлённых цепочек, образованных остатками α-глюкозы, соединённых гликозидными связями между первым и четвертым углеродными атомами. Цепь амилозы включает от 200 до 1000 моносахаридных единиц. Вследствие аксиального положения гликозидной связи макромолекула амилозы свернута в спираль. Ее коллоидные частицы (мицеллы) дают с йодом характерное синее окрашивание.

Амилопектин – разветвленный полисахарид, построенный из остатков α-глюкозы, которые связаны в основной цепи α-1,4-гликозидными, а в местах разветвлений - α-1,6-гликозидными связями:


Амилоза и амилопектин формируются в растениях в виде крахмальных зерен.

Применяют крахмал как наполнитель, а в хирургии – для приготовления неподвижных повязок. Он широко используется в присыпках, мазях, пастах вместе с цинка оксидом, тальком. Внутрь крахмал применяют как обволакивающее средство при желудочно-кишечных заболеваниях.

Гликоген - разветвлённый гомополимер глюкозы (животный крахмал), в котором остатки глюкозы соединены в линейных участках α-1,4-гликозидной связью. В точках ветвления мономеры соединены α-1,6-гликозидными связями. По строению он подобен амилопектину, но имеет еще большее разветвление цепей, что способствует выполнению энергетической функции. Откладывается как энергетический запас в клетках преимущественно животных организмов, встречается также в малых количествах в тканях растений и грибов; Гликоген содержится почти во всех органах и тканях животных и человека, но больше всего в печени и в мышцах. Это резервный углевод.

Целлюлоза – самый распространенный растительный полисахарид. Выполняет функцию опорного материала растений. Это линейный полисахарид, построенный из остатков β-глюкозы, связанных β-1,4-гликозидными связями. Структурным элементом целлюлозы является целлобиоза.

Целлюлоза является одним из структурных компонентов

Целлюлоза, или клетчатка, - самый распространённый полисахарид в растительном мире. Содержание целлюлозы в древесине 50-70%, в хлопке - 98%. Основным структурным звеном являются остатки -D - глюкопиранозы, соединённые 1,4-гликозидными связями. Макромолекулы не имеют разветвлений, в них содержится от 2500 до 12 000 глюкозных остатков.

Макромолекулы имеют линейное строение, что обусловлено конфигурацией аномерного атома углерода (в -форме); дополнительную устойчивость линейным молекулам придают водородные связи внутри цепи (между атомом кислорода пиранозного кольца и гидроксогруппой второго углеродного атома).

Макромолекулы расположены параллельно друг другу и связаны между собой межмолекулярными водородными связями, образуя волокна. В связи с этим целлюлоза обладает высокой механической прочностью и служит материалом для построения клеточных стенок растений.

Целлюлоза в воде не растворяется и набухает только в растворах щелочей. Она не расщепляется обычными ферментами желудочно-кишечного тракта, но она является необходимым балластным веществом. В желудке жвачных животных (коров, овец) содержатся микроорганизмы, расщепляющие целлюлозу, поэтому жвачные животные могут питаться продуктами, содержащими целлюлозу.

Целлюлоза широко применяется в производстве этанола, искусственного волокна, фотоплёнок, взрывчатых веществ.

При гидролизе целлюлозы с помощью водного раствора серной кислоты получают водный раствор глюкозы, который после удаления сульфат-ионов используют для получения этилового спирта путём спиртового брожения (гл. 7.1.3).

Искусственные волокна на основе целлюлозы - это прежде всего вискозные волокна. Их формуют из концентрированного раствора натриевой соли ксантогената целлюлозы. Схему реакции образования ксантогената целлюлозы условно можно представить следующим образом:

x = 0.450.65

Целлофан - это плёнка, формуемая из щелочных растворов ксантогената целлюлозы. Он нетоксичен, применяется в качестве упаковочного материала для жирных мясомолочных продуктов, фруктов, кондитерских изделий и др. В медицине целлофан - имплантируемый материал.

Этролы - это эфироцеллюлозные пластмассы. Важнейшим среди них является целлулоид, основой которого является нитрат целлюлозы (коллоксилин ) с низкой степенью этерификации (х = 1.5  2.5) [C 6 H 7 O 2 (OH ) 3- x (ONO 2 ) x ] n . Среди других этролов - это пластмассы на основе ацетата, ацетобутирата, ацетопропионата целлюлозы и этилцеллюлозы. Этролы применяют в производстве труб для перекачки природного газа, деталей автомобилей, самолётов, телефонных аппаратов, радио- и телеприёмников, медицинских инструментов и др.

Пироксилины - нитраты целлюлозы с высокой степенью этерификации (х = 2  3). Пироксилины и колоксилин применяются также в производстве бездымного пороха динамита и других взрывчатых веществ.

7.3.2. Амилоза и амилопектин

Амилоза и амилопектин - полисахариды, встречающиеся в составе клубней, корней и семян растений в виде смеси, имеющей название крахмал .

Амилоза представляет собой неразветвлённую макромолекулу, структурным звеном которой являются остатки ,D - глюкопиранозы, соединённые 1,4-гликозидными связями. В составе макромолекул содержится от 200 до 1000 глюкозных остатков. В пространстве макромолекулы свёрнуты в спираль:

На каждый виток спирали приходится 6 моносахаридных звеньев. Спираль имеет приблизительно 50 витков.

Очень характерным свойством крахмала является цветная реакция с йодом - появление интенсивной синей окраски. Предполагается, что появление окраски обусловлено специфическим донорно-акцепторным взаимодействием между гидроксильными группами и молекулами йода за счёт включения йода во внутренний канал спирали макромолекулы амилозы.

Макромолекула амилопектина построена также из остатков ,D - глюкопиранозы, но она разветвлена. В точках ветвления глюкозный остаток образует не только 1,4-, но и 1,6-гликозидные связи:

Между точками ветвления располагается от 20 до 25 глюкозных остатков. Общее количество моносахаридных звеньев в макромолекуле амилопектина достигает 6000 и более.

Крахмал обычно содержит до 10-20% связанной воды. При быстром нагревании крахмала происходит гидролитическое расщепление макромолекул с образованием более коротких молекулярных цепей. Продукт такого гидролитического расщепления крахмала называют декстринами . В отличие от целлюлозы, крахмал в воде набухает и образует вязкие растворы (гели), которые здесь называются клейстером .

Гидролиз крахмала в пищеварительном тракте человека происходит под действием ферментов, расщепляющих 1,4- и 1,6-гликозидные связи.

Крахмал широко применяется в различных отраслях промышленности. Из него в ферментативных процессах получают этанол, бутанол-1, молочную, лимонную кислоты.

Халиков Рауф Музагитович

кандидат химических наук, доцент кафедры инженерной физики и физики материалов Башкирский государственный университет г. Уфа, Российская Федерация

Нигаматуллина Гузель Булатовна

специалист по учебно-методической работе кафедры техники и технологии пищевых производств Уфимский государственный университет экономики и сервиса г. Уфа, Российская Федерация

Аннотация: Обобщены изменения в надмакромолекулярной структуре амилозы и амилопектина в процессе формирования крахмальных зерен. Предложены оригинальные схемы фрактальной наноструктуры при формировании аморфно – кристаллических слоев гранул крахмала. Кластеры макромолекул амилозы и амилопектина располагаются в кристаллических слоях крахмальных зерен более упорядоченно и такая компактность обусловливает замедленность превращений полисахаридов в технологии переработки сырья. Модифицированные крахмалы в настоящее время применяются в производстве пищи в качестве гель-стабилизирующих ингредиентов.

Ключевые слова: крахмал, амилоза, амилопектин, супрамолекулярная наноструктура, фрактальные кластеры, модифицированные крахмалы, пищевые технологии

Transformation amylose and amylopectin macromolecules with technological processing of starch granules of vegetable raw materials in the food industry

Khalikov Rauf Muzagitovich

Ph. D., associate professor of the department of engineering physics and materials Bashkir State University Ufa, Russian Federation

Nigamatullina Guzel Bulatovna

specialist in educational and methodical work of the department of engineering and technology of food production Ufa State University of Economics and Service Ufa, Russian Federation

Abstract: Summarizes the changes in the supramacromolecular structure of amylose and amylopectin during the formation of starch granules. Original scheme proposed fractal nanostructures in the formation of amorphous - crystalline layers of starch granules. Clusters of amylose and amylopectin macromolecules are arranged in crystalline layers of starch grains more orderly and compact size makes this slowness transformations of polysaccharides in the technology of processing of raw materials. Modified starches currently used in food production as a gel-stabilizing ingredients.

Keywords: starch, amylose, amylopectin, supramolecular nanostructure, fractal clusters, modified starches, food technology

Крахмал является одним из наиболее многофункциональных источников сырья в пищевой промышленности. Он представляет собой запасное вещество растений, откладываемое в клетках семян и клубней в виде крахмальных зерен, которые могут быть легко извлечены после разрушения клеток. Физико-химические и биохимические изменения, происходящие с макромолекулами крахмала в процессе технологической обработки продуктов, оказывают существенное влияние на качество готовых блюд и кондитерских изделий: вкус и аромат .

Предоставленная статья нацелена на разбор наноструктурных изменений полисахаридов, протекающих в крахмальных гранулах при биотехнологической переработки исходного сырья в пищевых предприятиях в рамках фрактальной концепции.

Для глубокого анализа процессов, идущих в пищевой индустрии с крахмалсодержащим сырьем, необходимо вначале рассмотреть биосинтез полисахаридов и формирование крахмальных зерен. У большинства возделываемых растений (зерновых, картофеля и др.) гексозные углеводы, которые образуются в процессе фотосинтеза, запасаются в форме крахмала. Зеленые растения осуществляют биосинтез полисахаридов - ассимиляционного (транзиторного) крахмала в хлоропластах листьев и незрелых плодов, а резервного крахмала в амилопластах гетеротрофных тканей . У хлебных злаков (пшеницы, риса, кукурузы и т.п.) резервный крахмал в форме зерен (гранул) в эндосперме составляет 65-75% сухого веса семян.

Энзиматический биосинтез крахмала у растений осуществляется фосфотрансферазами (крахмалсинтазами ), переносящими остатки глюкозы от молекул фосфатглюкозы (G-1,6-Р-дифосфат, G-1-Р-монофосфат) на растущие макромолекулы с образованием α-(1→4)-связей и «ветвеобразующими» энзимами, перестраивающим линейные цепи в разветвленные полисахариды. Активированная фосфорилированием глюкоза переносится на терминальный конец «растущей» глюкановой цепочки, а полиглюкановые цепи макромолекул амилопектина через 15-25 мономерных звеньев имеют разветвление за счет α-(1→6) гликозидных связей (рис. 1):

Донором глюкозных остатков при биосинтезе амилозы может служить уридиндифосфатглюкоза, а под действием специфических изоферментов гексозофосфаты быстро превращаются в другие фосфорилированные соединения. Решающим этапом для биосинтеза крахмала является активация глюкозо-1-монофосфата в АДФ-глюкозу. Синтез разветвленной макромолекулы амилопектина, имеющей α-(1→6)-связи, происходит при помощи фермента α-глюкантрансферазы (Q-фермент) .

Проникновение через мембрану хлоропластов фосфорилированных метаболитов гексоз и сахарозы затруднено и поэтому транспортными формами углеводов зеленых растений служат триозофосфаты. Предполагается, что образующиеся в процессе фотосинтеза углеводы распадаются на интермедиаты – триозофосфаты и в таком виде передвигаются в цитоплазму клеток эндосперма семян, где могут служить материалом для ресинтеза гексоз, сахарозы, крахмала.

Макромолекулы линейной амилозы и разветвленного амилопектина являются основными структурообразующими ингредиентами крахмальных зерен. Крахмальные гранулы в эндосперме семян содержат кроме полисахаридов и энзимы для метаболизма амилозы (≈20-25%) и амилопектина (≈75-80%). Супрамолекулярная наноструктура амилозы представляет ≈ 10 3 -6.10 4 остатков глюкозы, соединенных α-(1→4) связями; макромолекула скручена в витки спирали. Концевой глюкозный остаток амилозы (так и амилопектин а) содержит редуцирующую (латентную альдегидную) группу (рис. 2):

Рис. 2. Структурные ингредиенты крахмала: амилоза и амилопектин

Рост крахмальных зерен происходит путем наложения новых слоев полигюканов на предыдущие, поэтому гранулы имеют слоистую структуру. Форма и размеры крахмальных зерен в значительной степени обусловлены генетическими факторами, внешними условиями в период «роста» гранул. Крупные зерна картофельного крахмала (от 15 до 100 мкм и более) имеют овальную форму; у пшеницы и ржи они мелкие: 2-10 мкм (В -тип) или крупные 25-40 мкм (А -тип), а у кукурузного крахмала гранулы имеют размеры в основном от 5 до 30 мкм .

Макромолекулы амилопектина гранул крахмала упакованы в квазикристаллическую структуру: в кристаллических участках полисахариды расположены более упорядоченно и прочно связаны между собой водородными связями, а в аморфных – супрамолекулярная укладка менее упорядочена. Межмакромолекулярные связи образуются как при непосредственном взаимодействии гидроксильных групп амилозы и амилопектина между собой, так и при взаимодействии с участием молекул воды (рис. 3):

Макромолекулы полисахаридов в крахмальном зерне в ходе биосинтеза и транспортировки размещаются в трехмерном пространстве цитоструктуры в форме складчато-радиальных кластеров. Амилопектиновые полиглюканы располагаются в крахмальных зернах радиально, формируя концентрированные чередующиеся слои с амилозой. В природных крахмалах наряду с полисахаридными компонентами содержится 2-4 % других веществ: сопутствующих белков, липидов, фосфатов. Фосфаты и липиды включаются в структуру крахмальных гранул при биосинтезе и «усиливают» стабильность наноструктуры .

Существуют несколько уровней наноструктурной организации крахмальных гранул: амилопектиновые кластеры (≈ 1 нм), ламеллы (≈ 10 нм), блоки (≈ 50-200 нм). Кристаллические ламели формированы упорядоченной фракцией амилопектина, а цепи амилозы, ориентированные поперек направления чередования ламелей, образуют аморфные участки. Ассоцированные цепочки макромолекул амилозы распределены и в аморфных, и в кристаллических ламелях .

В крахмальной грануле имеются «связанные» молекулы воды, количество которой зависит от источника растительного сырья и особенностей технологии получения крахмала. Следует также отметить, что крахмальное зерно пронизано микропорами и на этом основано использование крахмала в качестве адсорбента. С точки зрения синергетики биосинтез гранул крахмала можно рассматривать как самоорганизацию молекулярных систем, эволюционирующих во времени, что приводит к формированию временных фрактальных структур . Использование концепции фрактальных кластеров дает корректную трактовку формирование и технологическая переработка крахмальных зерен растительного сырья. Наноструктура крахмальных зерен представляют собой области локального порядка (кластеры), погруженные в аморфную матрицу, где сконцентрированы микрополости и микропоры.

Именно аморфные участки гранул в первую очередь подвергаются воздействию воды в процессе технологического извлечения крахмала из семян, так как к беспорядочно и рыхло расположенным макромолекулам полисахаридов легче всего получить доступ. Кристаллические области (слои) крахмальной гранулы, в которых биополимеры плотно упакованы, напротив, более устойчивы к гидролизу. Для проникновения в плотные слои крахмальных зерен молекул воды (или другого модифицирующего химического агента) требуется предварительное набухание гранулы. Так как макромолекулы амиломектина более плотно упакованы в крахмальных зернах, то в случае, когда гранулы помещаются в холодную воду они вначале набухают.

Микропористое строение крахмальных зерен обусловливает их высокую сорбционную способность. Благодаря гидрофильным свойствам макромолекул амилозы и амилопектина крахмальные гранулы очень гигроскопичны, особенно высока гигроскопичность картофельного крахмала. При контакте водорастворимых полисахаридов с молекулы воды сначала проникают с образованием водородных связей в наименее организованные участки цепи макромолекул. Такая начальная гидратация ослабляет межмакромолекулярные связи в плотных слоях и способствует проникновению воды и гидролизу и наиболее кристаллические слои. Этот процесс проходит через этап гелеобразования, когда крахмальные зерна набухают и увеличиваются в объеме благодаря силам когезии между макромолекулами.

В технологии пищевых продуктов имеют место следующие превращения крахмала: клейстеризация, инверсия, карамелизация, декстринизация, ретроградация, модификация, ферментативный гидролиз и др. В случае технологической обработки горячей водой крахмальные гранулы подвергаются необратимому процессу клейстеризации – разрушение аморфно-кристаллической структуры крахмальных гранул и набухание этих гранул, вызываемое диффузией молекул воды внутрь гранулы. Следует отметить, что полное разрушение кристаллических участков гранулы (то есть ее клейстеризация ) нежелательно, так как после этого крахмал становится нетехнологичным: трудно обезвоживается, плохо сушится и т.д.

В процессе набухания и клейстеризации часть полисахаридов растворяется и остается в полости зерна, а часть макромолекул переходят в раствор. Температура, при которой наступает такое изменение крахмального зерна, называется температурой клейстеризации , она колеблется в интервале 55…77ºС в зависимости от сырьевого источника крахмала. Например, структурообразующая фаза в пшеничном тесте состоит из клейковинного «каркаса» и набухших крахмальных гранул. При выпечке хлеба полисахариды частично клейстеризуются и гидролитическим путем расщепляются до декстринов. С течением времени при хранении хлебобулочных изделий «ухудшается» наноструктура клейстеризованного крахмала и хлеб черствеет.

Изменения крахмала в продуктах питания совершается в процессе их тепловой обработки и под воздействием механических деформаций и разрушений. Технологическое расщепление крахмальных гранул осуществляется в условиях повышенной температуры и под действием гидролитических ферментов (рис. 4):

Набухание сопровождается гидратацией макромолекул амилозы и амилопектина, ослаблением и разрушением водородных связей между ними. В холодной воде (до 40-45°С) крахмал набухает ограниченно, а с повышением температуры крахмальные гранулы поглощает больше воды, увеличиваются объем зерен и вязкость суспензии. При этом наноструктура зерен разрушается и более растворимая часть крахмала – амилоза переходит в раствор. В технологии спиртового производства водно-тепловой обработкой крахмал осахаривают амилолитическими энзимами до сбраживаемых углеводов.

Амилоза образует в горячей воде гидратированные мицеллы, но со временем ретроградирует (осаждается) в виде труднорастворимого геля. Ретроградация происходит вследствие тенденции амилозных макромолекул образовывать малорастворимые агрегаты при участии водородных связей. Амилопектин набухает в воде и дает стойкие вязкие коллоидные растворы; он препятствует ретроградации амилозы в растворах крахмала.

Нарушение агрегативной устойчивости дисперсных систем приводит к разделению их на макрофазы либо к возникновению в объеме системы пространственной фрактальных структур и переходу свободнодисперсной системы (золь) в связнодисперсную гелевую наноструктуру. В результате гелевая система на основе крахмальных макромолекул приобретает комплекс новых структурно-механических (реологических) свойств, к которым относятся прочность, упругость, эластичность и др. Гелеобразование обусловлено возникновением пространственного «каркаса», которая блокирует текучесть.

Разнообразные способы технологической обработки (физические, химические, биологические) нативных крахмалов позволяют существенно изменить их строение и свойства, к которым в первую очередь относятся гидрофильность (в частности, способность растворяться в холодной воде), способность к клейстеризации и гелеобразованию, устойчивость к нагреванию и воздействию кислот и т. п. Для различных отраслей пищевой индустрии кроме обычного (природного или нативного) сухого крахмала выпускаются модифицированные крахмалы (МК) .

Производство МК осуществляется из традиционного (картофель, кукуруза) и нетрадиционного (горох, сорго, пшеница и др.) сырья. При выборе источника крахмала для того или иного технологического процесса необходимо учитывать биохимический состав и структурно-механические свойства продукта, особенности его производства (температурные параметры, рН, продолжительность механического воздействия), хранения и реализации (замораживание ↔ оттаивание; вакуум-упаковку и т.д.).

Модифицированные крахмалы получают за счет физико-химических и биологических (энзимных) воздействий на крахмалсодержащее сырье . По характеру изменений все модифицированные крахмалы условно делят на группы: расщепленные крахмалы и замещенные крахмалы , а также сополимеры крахмала . При гелеобразовании макромолекул модифицированных крахмалов формируются самоподобные (фрактальные) кластеры с размерностью ≈ 1,75.

Модификация крахмала позволяет существенно изменить его свойства (гидрофильность, золь ↔ гелеобразование), а, следовательно, расширяет возможности использования. Одним из основных свойств, определяющих эффективность применения модифицированных крахмальных добавок в конкретном пищевом продукте, является совместимость с другими ингредиентами. Модификация крахмалов повышает их студнеобразующую, загущающую и эмульгирующую способность, обеспечивает использование в производстве различных блюд и кулинарных изделий, в том числе при замораживании ↔ оттаивании и тепловой обработке.

Во многих случаях МК могут быть представлены одновременно стабилизированными и поперечно сшитыми макромолекулами амилозы и амилопектина и этим обеспечивается агрегативная устойчивость ингредиентов пищи . В настоящее время разработаны новые виды набухающих МК для кондитерской, хлебопекарной промышленности, производства сухих смесей, мороженого, детского и лечебно-профилактического питания, десертов быстрого приготовления . Специальные виды МК с повышенным содержанием ионов железа, кальция, фосфора и сбалансированным аминокислотным составом применяются в производстве лечебно-профилактических продуктов.

Способность МК образовывать прочные эластичные пленки создает перспективы в изготовлении пищевых упаковок. Стабилизированные ингредиенты на основе модифицированных крахмалов широко применяются в питании, кулинарии при производстве супов (сухие, консервированные, замороженные), соусов (майонезы, томатные соусы), бульонных продуктов, продуктов для консервированных блюд.

Таким образом, в ходе формирования крахмальных гранул у растений происходят сложнейшие процессы «самоорганизованной укладки» макромолекул амилозы и амилопектиктина в супрамакромолекулярные кластеры. Агрегация кластеров полисахаридов самопроизвольно приводит к образованию фрактальноподобных ламелл. Крахмальные зерна являются достаточно устойчивыми наноструктурами, форма и размер которых очень разнообразны и характерны для данного вида растительного сырья.

Технологическая переработка крахмальных гранул зависит от наноструктурной организации полисахаридных компонентов и использование концепции фрактальных кластеров дает корректную интерпретацию формирования и технологической переработки крахмальных цитоструктур. Применение в современных пищевых технологиях структурирующих добавок на базе модифицированных крахмалов позволяет создать ассортимент продуктов эмульсионно-гелевой природы (майонезы, соусы, пастилы, зефиры, мармелады и др.).

Список литературы:

  1. Крахмал и крахмалопродукты / Под ред. Н.Г.Гулюка. – М.: Агропромиздат, 1985. - 240 с.
  2. Хелдт Г.-В. Биохимия растений. – М.: БИНОМ. Лаборатория знаний, 2011. - 471 с.
  3. James M.G, Denyer K., Myers A.M/ Starch synthesis in the cereal endosperm // Currrent Opinion in Plant Biology. – 2003. – V. 6. – P.215–222.
  4. Tester R.F., Karkalas J., Qi X. Starch – composition, fine structure and architecture // J. Cereal Sci. - 2004. - V.39. - P.151–165
  5. Халиков Р.М. Зависимость наноструктуры биомембран от стабилизирующего влияния полиеновых липидов // Электронный журнал «NAUKA–RASTUDENT.RU». – 2014. – №.1. – С.27-34. [Электронный ресурс] – Режим доступа.– URL: http://rastudent.ru/nauka/1/1139/
  6. Smith A.M., Zeeman S.C., Smith S.M. Starch degradation // Ann. Rev. Plant Biol. - 2005. - V.56. - P.73–93.
  7. Машуков Н., Халиков Р., Хараев А. Стабилизация и модификация молекулярных структур. – Saarbrucken: Palmarium Academic Publishing, 2014. - 216 с.
  8. Starch in food: Structure, function and applications. / Ed. Anne-Charlotte Eliasson. – Cambrige: Woodhead Publishing, 2004. - 598 р.
  9. Бутрим С. М., Бутрим Н.С., Бидьдюкевич Т.Д. и др. Получение и исследование физико-химических свойств низкозамещенных катионных эфиров крахмала // Журнал прикладной химии. - 2008. - Т.81. Вып.11. - С.1911-1917.
  10. Доценко С.М., Скрипко О.В., Богданов Н.Л. и др. Технология эмульсионных продуктов питания специализированного назначения // Пищевая промышленность. - 2014. - №7. - С.37-41.
  11. Соломин Д.А., Соломина Л.С.Инновации в производстве и применении модифицированных крахмалов // Хранение и переработка сельхозсырья. - 2014. - № 3. - С.19-22.

2015 Халиков Р.М., Нигаматуллина Г.Б.

Поделиться