Определение электрического заряда аминокислоты по кривой титрования. Положительно заряженные аминокислоты Неполярные аминокислоты

БИОЛОГИЧЕСКАЯ ХИМИЯ

Методический материал для самоподготовки)

Петрозаводск

ТЕМА 1. СТРОЕНИЕ, КЛАССИФИКАЦИЯ

И БИОЛОГИЧЕСКАЯ РОЛЬ АМИНОКИСЛОТ

Задание:

1. Выучить предложенный теоретический материал.

2. Ознакомиться с вариантами контрольной работы по теме.

(Выполнение контрольной работы по этой теме проводится на первом лабораторном занятии в 6-м семестре, во время летней сессии).

Аминокислотный состав белков

Историческая справка. Первая аминокислота – глицин была выделена в 1820 г. методом кислотного гидролиза желатины,полностью расшифрован аминокислотный состав белков в 1938 г., когда была идентифицирована последняя аминокислота – треонин (Имеются данные, что первым был выделен аспарагин из аспарагуса в 1806 г.).

Функции аминокислот. В настоящее время известно более 300 аминокислот, они могут выполнять разные функции:

· входят в состав всех белков – их 20, и такие аминокислоты называют стандартными, или протеиногенными ;

· входят в состав только редких, или определённых, белков (например, оксипролин, 5-оксилизин входят в состав коллагена; десмозин – в состав эластина);

· входят в состав других соединений (например, b-аланин входит в состав витамина В 3 , который необходим для синтеза КоА-SH);

· являются промежуточными метаболитами обменных процессов (например, орнитин, цитруллин);

· необходимы для синтеза биологически активных соединений, например, биогенных аминов, нейромедиаторов;

· необходимы для синтеза азотсодержащих соединений (полиаминов, нуклеотидов и нуклеиновых кислот);

· углеродный скелет аминокислот может использоваться для синтеза других соединений:

а) глюкозы – такие аминокислоты называются глюкогенными (большинство из протеиногенных);

б) липидов – кетогенными (вал, лей, иле, фен, тир);

· аминокислоты могут быть источником определенных функциональных групп – сульфатной (цистеин), одноуглеродных фрагментов (метионин, глицин и серин), аминогруппы (глутамин, аспарат).

Номенклатура аминокислот. Аминокислоты – производные карбо-новых кислот, в молекуле которых атом водорода у С, стоящего в a-положении, замещён аминогруппой. Общая формула L-изомеров аминокислот:



Отличаются аминокислоты между собой функциональными группами в боковой цепи (R). Каждая аминокислота имеет тривиальное, рациональное и сокращенное трех- или однобуквенное обозначение , например, глицин, аминоуксусная, гли.

Тривиальное название чаще всего связано с источником выделения или свойствами аминокислоты:

· серин входит в состав фиброина шелка (от лат. serius – шелковистый),

· тирозин впервые выделен из сыра (от греч. tyros – сыр),

· глутамин выделен из клейковины злаковых (от лат. gluten – клей),

· цистин – из камней мочевого пузыря (от греч. kystis – пузырь),

· аспарагиновая кислота – ростков спаржи (от лат. asparagus – спаржа),

· глицин от греч. glykos – сладкий.

Рациональное название складывается исходя из того, что каждая аминокислота является производной соответствующей карбоновой кислоты.

Сокращенное обозначение используют для написания аминокислотного состава и последовательности аминокислот в цепи. В биохимии чаще всего применяют тривиальное и сокращенное обозначение.

Классификация аминокислот.

Существует несколько классификаций:

1) по химической природе боковой цепи (R),

2) рациональная классификация (по степени полярности радикала, по Ленинджеру),

3) по способности синтезироваться в организме.

По химической природе боковой цепи (R) все аминокислоты делятся на:

Ациклические (алифатические):

· моноаминомонокарбоновые

· моноаминодикарбоновые

· диаминомонокарбоновые

· диаминодикарбоновые

Циклические:

1) гомоциклические (фен, тир);

2) гетероциклические :

· аминокислоты (гис, три);

· иминокислоты (про).

По Ленинджеру (по способности радикала взаимодействовать с водой) все аминокислоты делят на 4 группы:

· неполярные , незаряженные (гидрофобные ) – их 8: ала, вал, лей, иле, мет, фен, три, про;

· полярные , незаряженные (гидрофильные ) – их 7: сер, тре, глн, асн, цис, тир, гли;

· отрицательно-заряженные – их 2: асп, глу;

· положительно-заряженные – их 3: гис, арг, лиз.

По способности синтезироваться в организме аминокислоты могут быть:

· заменимыми , которые могут синтезироваться в организме;

· незаменимыми , которые не могут синтезироваться в орга-низме и должны поступать с пищей.

Понятие «незаменимые» относительно для каждого вида – у человека и свиней их 10 (вал, лей, иле, тре, мет, фен, три, арг, гис, лиз), у животных с четырехкамерным желудком – 2 серосодержащие (цис, мет), у птиц – 1 (гли).

Физико-химические свойства аминокислот:

1. Растворимы в воде (лучше растворимы положительно- и отрицательно заряженные аминокислоты, затем гидрофиль-ные, хуже – гидрофобные).

2. Имеют высокую точку плавления (обусловлено тем, что в кристаллическом виде находятся в виде биполярных ионов).

3. Обладают оптической активностью, которая обусловлена наличием асимметрического атома углерода(за исключением гли). В связи с этим аминокислоты:

· существуют в виде L- и D-стереоизомеров, но в состав белков высших животных входят в основном аминокислоты L-ряда; количество стереоизомеров зависит от количестваасимметрических атомов углерода и рассчитывается по формуле 2 n , где n – количество асимметрических атомов С;

· способны вращать плоскость поляризованного света вправо или влево; величина удельного вращения у разных аминокислот варьирует от 10 до 30 º .

4. Амфотерные свойства (аминокислоты, кроме гли, при физиологических значениях рН и в кристаллическом виде находятся в виде биполярных ионов). Величина рН, при которой суммарный заряд аминокислоты равен 0, называется изоэлектрической точкой. Для моноаминомонокарбоновых аминокислот она лежит в интервале 5,5-6,3, диаминомоно-карбоновых – больше 7, для дикарбоновых – меньше 7.

5. Химические свойства :

· кислотные свойства, обусловленные наличием карбоксильной группы;

· основные свойства, обусловленные наличием аминогруппы;

· свойства, обусловленные взаимодействием амино-

и карбоксильной групп между собой;

· свойства, обусловленные наличием функциональных групп в боковой цепи.

К ним относятся гидрофобные радикалы аланина, валина, лейцина, изолейцина, пролина, метионина, фенилаланина и триптофана. Радикалы этих аминокислот воду не притягивают, а стремятся друг к другу или к другим гидрофобным молекулам.

2. Аминокислоты с полярными (гидрофильными) радикалами.

К ним относятся серин, треонин, тирозин, аспарагин, глутамин и цистеин. В состав радикалов этих аминокислот входят полярные функциональные группы, образующие водородные связи с водой.

В свою очередь, эти аминокислоты делят на две группы:

1) способные к ионизации в условиях организма (ионогенные).

Например, при рН = 7 фенольная гидроксильная группа тирозина ионизирована на 0,01%; тиольная группа цистеина  на 8%.

2) не способные к ионизации (неионогенные).

Н
апример, гидроксильная группатреонина:

3. Аминокислоты с отрицательно заряженными радикалами.

К этой группе относят аспарагиновую и глутаминовую кислоты. Эти аминокислоты называют кислыми, так как они содержат дополнительную карбоксильную группу в радикале, которая диссоциирует с образованием карбоксилат-аниона. Полностью ионизированные формы этих кислот называют аспартатом и глутаматом:

К этой же группе иногда относят аминокислоты аспарагин и глутамин, содержащие карбоксамидную группу (СОNH 2), как потенциальную карбоксильную группу, возникающую в процессе гидролиза.

Величины р K a β-карбоксильной группы аспарагиновой кислоты и γ-карбоксильной группы глутаминовой кислоты выше по сравнению с р K a α-карбоксильных групп и в большей степени соответствуют значениям р K a карбоновых кислот.

4. Аминокислоты с положительно заряженными радикалами

К ним относят лизин, аргинин и гистидин. У лизина есть вторая аминогруппа, способная присоединять протон:

У аргинина положительный заряд приобретает гуанидиновая группа:

Один из атомов азота в имидазольном кольце гистидина содержит неподеленную пару электронов, которая также может присоединять протон:

Эти аминокислоты называют оснóвными.

Отдельно рассматриваются модифицированные аминокислоты, содержащие в радикале дополнительные функциональные группы: гидроксилизин, гидроксипролин, γ-карбоксиглутаминовая кислота и др. Эти аминокислоты могут входить в состав белков, однако модификация аминокислотных остатков осуществляется уже в составе белков, т.е. только после окончания их синтеза.

Способы получения α-аминокислот в условиях in vitro.

1. Действие аммиака на α-галогенкислоты:

2. Циангидринный синтез:

3. Восстановление α-нитрокислот, оксимов или гидразонов α-оксокислот:

4. Каталитическое восстановление оксокислот в присутствии аммиака:

Стереоизомерия аминокислот

Все природные α-аминокислоты, кроме глицина (NH 2  CH 2  COOH), имеют асимметрический атом углерода (α-углеродный атом), а некоторые из них даже два хиральных центра, например, треонин. Таким образом, все аминокислоты могут существовать в виде пары несовместимых зеркальных антиподов (энантиомеров).

За исходное соединение, с которым принято сравнивать строение α-аминокислот, условно принимают D- и L-молочные кислоты, конфигурации которых, в свою очередь, установлены по D- и L-глицериновым альдегидам.

Все превращения, которые осуществляются в этих рядах при переходе от глицеринового альдегида к α-аминокислоте, выпол-няются в соответствии с главным требованием  они не создают новых и не разрывают старых связей у асимметрического центра.

Для определения конфигурации α-аминокислоты в качестве эталона часто используют серин (иногда аланин). Конфигурации их так же выведены из D- и L-глицериновых альдегидов:

Природные аминокислоты, входящие в состав белков, относятся к L-ряду. D-формы аминокислот встречаются сравнительно редко, они синтезируются только микроорганизмами и называются «неприрод-ными» аминокислотами. Животными организмами D-аминокислоты не усваиваются. Интересно отметить действие D- и L-аминокислот на вкусовые рецепторы: большинство аминокислот L-ряда имеют сладкий вкус, а аминокислоты D-ряда  горькие или безвкусные.

Без участия ферментов самопроизвольный переход L-изомеров в D-изомеры с образованием эквимолярной смеси (рацемическая смесь) осуществляется в течение достаточно длительного промежутка времени.

Рацемизация каждой L-кислоты при данной температуре идет с определенной скоростью. Это обстоятельство можно использовать для установления возраста людей и животных. Так, например, в твердой эмали зубов имеется белок дентин, в котором L-аспартат переходит в D-изомер при температуре тела человека со скоростью 0,01% в год. В период формирования зубов в дентине содержится только L-изомер, поэтому по содержанию D-аспартата можно рассчитать возраст человека или животного.

1. Неполярные аминокислоты (аланин, валин, лейцин, изолейцин, метионин, фенилаланин, триптофан, пролин). Эти аминокислоты гидрофобны. Имеют незаряженный радикал. При сближении в пространстве радикалы этих аминокислот обеспечивают гидрофобное взаимодействие .

2. Полярные, гидрофильные, незаряженные аминокислоты (глицин, треонин, цистеин, тирозин, серин, аспарагин, глутамин). Содержат такие полярные функциональные группы как гидроксильная, сульфгидрильная и амидогруппа. При сближении в пространстве радикалы этих аминокислот образуют водородные связи . Связанные дисульфидной связью два остатка цистеина называют цистином.

3. Кислые аминокислоты (отрицательно заряженные аминокислоты) имеют отрицательный заряд (аспарагиновая и глутаминовая кислоты) при рН 7,0

4. Основные аминокислоты (положительно заряженные аминокислоты) имеют положительный заряд при рН 7,0.

Радикалы аминокислот 3 и 4 групп участвуют в образовании ионных связей .

Аминокислоты классифицируются на заменимые и незаменимые (эссенциальные).

1. Незаменимые (эссенциальные) аминокислоты не могут синтезироваться в организме и должны поступать с пищей. Они необходимы для обеспечения и поддержания роста: аргинин, валин, гистидин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин (шесть аминокислот 1-й группы, одна – второй и три – четвертой).

2. Заменимые аминокислоты. Организм может синтезировать около 10 аминокислот для обеспечения биологических потребностей, поэтому поступление их с пищей не обязательно (аланин, аспарагин, аспарагиновая кислота, цистеин, глутаминовая кислота, глутамин, глицин, пролин, серин, тирозин).

Аминокислоты, связанные пептидной связью, образуют полипептидную цепь и каждая аминокислота в ней называется аминокислотный остаток . В полипептиде выделяют N-конец (терминальная альфа-аминогруппа) и С-конец (терминальная альфа-карбоксильная группа). Большинство природных полипептидных цепей, содержащих от 50 до 2000 аминокислотных остатков, называют белками (протеинами). Полипептидные цепи меньшей длины называют олигопептидами или просто пептидами. В некоторых белках полипептидные цепи связываются поперечными дисульфидными связями, образованными окислением двух остатков цистеина. Внеклеточные белки часто содержат дисульфидные связи, а внутриклеточные белки часто утрачивают их. В некоторых белках образуются поперечные связи при взаимодействии радикалов других аминокислотных остатков (коллаген, фибрин).

Лекция №3

Тема: «Аминокислоты – строение, классификация, свойства, биологическая роль»

Аминокислоты – азотосодержащие органические соединения, в молекулах которых содержатся аминогруппа –NH2 и карбоксильная группа -СООН

Простейшим представителем является аминоэтановая кислота H2N - CH2 - COOH

Классификация аминокислот

Существует 3 основные классификации аминокислот:

Физико-химическая – основана на различиях в физико-химических свойствах аминокислот


  • Гидрофобные аминокислоты (неполярные). Компоненты радикалов содержат обычно углеводородные группы, где равномерно распределена электронная плотность и нет никаких зарядов и полюсов. В их составе могут присутствовать и электроотрицательные элементы, но все они находятся в углеводородном окружении .

  • Гидрофильные незаряженные (полярные) аминокислоты . Радикалы таких аминокислот содержат в своем составе полярные группировки: -ОН, - SH, -CONH2

  • Отрицательно заряженные аминокислоты . Сюда относятся аспарагиновая и глутаминовая кислоты. Имеют дополнительную СООН-группу в радикале - в нейтральной среде приобретают отрицательный заряд.

  • Положительно заряженные аминокислоты : аргинин, лизин и гистидин. Имеют дополнительную NH 2 -группу (или имидазольное кольцо, как гистидин) в радикале - в нейтральной среде приобретают положительный заряд.
Биологическая классификация по возможности синтеза в организме человека

  • Незаменимые аминокислоты, их еще называют "эссенциальные". Они не могут синтезироваться в организме человека и должны обязательно поступать с пищей. Их 8 и еще 2 аминокислоты относятся к частично незаменимым.
Незаменимые: метионин, треонин, лизин, лейцин, изолейцин, валин, триптофан, фенилаланин.

Частично незаменимые : аргинин, гистидин.


  • Заменимые (могут синтезироваться в организме человека). Их 10: глутаминовая кислота, глутамин, пролин, аланин, аспарагиновая кислота, аспарагин, тирозин, цистеин, серин и глицин.
Химическая классификация - в соответствии с химической структурой радикала аминокислоты (алифатические, ароматические).

Аминокислоты классифицируют по структурным признакам.

1. В зависимости от взаимного расположения амино- и карбоксильной групп аминокислоты подразделяют на α-, β-, γ-, δ-, ε- и т. д.

Потребность в аминокислотах снижается: При врожденных нарушениях, связанных с усваиваемостью аминокислот. В этом случае , некоторые белковые вещества могут стать причиной аллергических реакций организма, включая появление проблем в работе желудочно-кишечного тракта, зуд и тошноту.
Усваиваемость аминокислот

Скорость и полнота усвоения аминокислот зависит от типа продуктов, их содержащих. Хорошо усваиваются организмом аминокислоты, содержащиеся в белке яиц, обезжиренном твороге, нежирном мясе и рыбе.

Быстро усваиваются также аминокислоты при правильном сочетании продуктов: молоко сочетается с гречневой кашей и белым хлебом, всевозможные мучные изделия с мясом и творогом .
Полезные свойства аминокислот, их влияние на организм

Каждая аминокислота оказывает на организм свое воздействие. Так метионин особенно важен для улучшения жирового обмена в организме, используется как профилактика атеросклероза, при циррозе и жировой дистрофии печени.

При определенных нервно-психических заболеваниях используется глутамин, аминомасляные кислоты. Глутаминовая кислота также применяется в кулинарии как вкусовая добавка. Цистеин показан при глазных заболеваниях.

Три главные аминокислоты – триптофан, лизин и метионин, особенно необходимы нашему организму. Триптофан используется для ускорения роста и развития организма, также он поддерживает азотистое равновесие в организме.

Лизин обеспечивает нормальный рост организма, участвует в процессах кровеобразования .

Основные источники лизина и метионина – творог, говядина, некоторые виды рыбы (треска, судак, сельдь). Триптофан встречается в оптимальных количествах в субпродуктах, телятине и дичи.инфаркта.

Аминокислоты для здоровья, энергичности и красоты

Для успешного наращивания мышечной массы в бодибилдинге нередко используются аминокислотные комплексы, состоящие из лейцина изолейцина и валина.

Для сохранения энергичности во время тренировок спортсмены в качестве добавок к питанию используют метионин, глицин и аргинин, или продукты, их содержащие.

Для любого человека, ведущего активный здоровый образ жизни, необходимы специальные продукты питания, которые содержат ряд необходимых аминокислот для поддержания отличной физической формы, быстрого восстановления сил, сжигания лишних жиров или наращивания мышечной массы.

По мере открытия аминокислот, изучения их структуры и свойств пришлось систематизировать эти знания. В настоящее время существует несколько способов классификации аминокислот в зависимости от выбранного параметра оценки.

Если основным критерием является строение аминокислоты, то такой способ систематизации называют структурной классификацией (табл. 3.2). С позиций структуры все аминокислоты делят на несколько групп.

Таблица 3.2

Классификация аминокислот но структуре

Величина и форма радикалов аминокислот в дальнейшем определяют рельеф поверхности белковых молекул. Кроме этого от строения радикалов зависят функциональные свойства белков - растворимость, эластичность, активность и др.

Оценивая физико-химические свойства аминокислот по электрохимической классификации (табл. 3.3), их подразделяют на три группы.

У нейтральных аминокислот по одной NH. ; - и СООН-группе. У кислых аминокислот - две СООН-группы. В основных аминокислотах NH 2 -rpynn больше, чем других функциональных групп.

Таблица 3.3

Электрохимическая классификация аминокислот по физико-химическим свойствам

Сравнительный анализ различных природных белков показывает, что в большинстве из них кислые аминокислоты преобладают над основными.

Существует еще физиологическая или биологическая классификация , в соответствии с которой все аминокислоты делят на заменимые и незаменимые с точки зрения их значимости для организма (табл. 3.4).

Таблица 3.4

Классификация аминокислот по биологической значимости

Две аминокислоты, Apr и Гис, считаются частично заменимыми, поскольку их синтез в организме человека протекает довольно медленно. Однако для взрослых недостаток этих аминокислот в рационе обычно не вызывает серьезных последствий, в то время как для детей может привести к нарушению обмена белков.

Заменимые аминокислоты синтезируются в организме, поэтому дефицита в них не бывает. Источником заменимых аминокислот служат продукты углеводного обмена - ПВК, а-кетоглутаровая и фумаровая кислоты, а также NH 3 . Восстановительным аминированием ПВК и а-кетоглутаровой кислот образуются Ала и Глу. Прямым аминированием фумаровой кислоты получается Асп. Остальные аминокислоты возникают путем нереаминирования.

Незаменимые аминокислоты, как следует из названия, нельзя ничем заменить, поскольку они не синтезируются в организме млекопитающих и обязательно должны поступать с продуктами.

Белки, содержащие весь набор незаменимых аминокислот, считаются биологически полноценными. К ним относят белки животного происхождения, которые содержатся в яйце, молоке, рыбе, мясе. Белки растительного происхождения, содержащиеся в таких продуктах, как орехи, злаки, бобы и пр., не включают все незаменимые аминокислоты, поэтому не относятся к биологически полноценным белкам.

По решению ФАО и ВОЗ за эталон белка с точки зрения аминокислотного состава приняты белки яйца. В них содержится весь набор незаменимых аминокислот в оптимальном для организма человека соотношении. Наибольшее сходство в этом отношении с белками яйца имеют белки молока (рис. 3.6).

Из рис. 3.6 следует, что только две аминокислоты - Фен и Мет содержатся в молоке в меньшем количестве, чем в эталонном белке. Но и этот недостаток может быть компенсирован родственными аминокислотами. Потребность в Мет может быть удовлетворена другой серосодержащей аминокислотой Цис, а потребность в Фен - ее производной Тир. Содержание Цис и Тир составляет соответственно 0,9 и 5,3 г в 100 г белков молока.

Аминокислоты, содержание которых в продукте меньше содержания в эталонном белке, называются лимитирующими.

В настоящее время установлена суточная физиологическая потребность в незаменимых аминокислотах для человека и подсчитано, что она может

Рис. 3.6.

во многом покрываться за счет молока и молочных продуктов. Например, для взрослого человека с массой тела 70 кг суточная потребность в незаменимых аминокислотах показана на рис. 3.7.

Известно, что в детском возрасте и особенно в возрасте до 1 года требуется большее количество питательных веществ и незаменимых аминокислот, в частности, на единицу массы тела по сравнению с организмом взрослого человека. Это вызвано тем, что в растущих организмах происходит синтез новых тканей. Именно поэтому для детей и особенно детей первого года жизни актуальна разработка специализированных продуктов питания.


Поделиться