Определить однородна ли совокупность. Генеральная совокупность и выборочный метод. Смотреть что такое "Совокупность Однородная" в других словарях

Для которой характерны принадлежность составных ее элементов к одному и тому же типу явления и сходство между элементами по существенным для данного исследования признакам.

Словарь бизнес-терминов. Академик.ру . 2001 .

Смотреть что такое "Совокупность Однородная" в других словарях:

    СОВОКУПНОСТЬ, ОДНОРОДНАЯ - статистическая совокупность, для которой характерно принадлежность составных ее элементов к одному и тому же типу явления и сходство между элементами по существенным для данного исследования признакам. Статистическая совокупность может быть по… … Большой экономический словарь

    Совокупность объектов или явлений общественной жизни, объединённых общей связью, но различающихся по ряду варьирующих признаков. Эти объекты или явления представляют собой элементы (единицы) С. с. Так, С. с. будет население, элементами… … Большая советская энциклопедия

    однородная совокупность - (напр. ядерных энергетических установок) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN homogeneous population … Справочник технического переводчика

    Относительно однородная группа объектов или явлений, характеризующаяся наличием некоторых общих признаков и подвергающаяся изучению путем сбора количественных данных, их обработки и анализа … Большой медицинский словарь

    множество - ▲ , совокупность однородный множество совокупность объектов, имеющих к л. общую характеристику; однородная совокупность; совокупность видов; неупорядоченная совокупность однородных попарно различных элементов; оно включает все такие элементы;… … Идеографический словарь русского языка

Слово «статистика» имеет латинское происхождение (от status , что означает «определенное положение вещей» – состояние). В средние века оно использовалось для характеристики политического состояния государства и употреблялось в значении слова «государствоведение», (Готфрид Ахенваль, XVIII в., Германия). Как наука статистика возникла только в XVII в., когда правительства различных западноевропейских стран стали заниматься сбором разного рода информации о своих гражданах. Однако статистический учет существовал уже в глубокой древности, упоминания о статистических обследованиях встречаются и в библейские времена.

Еще за 5 тыс. лет до н.э. проводились переписи населения в Китае, велся учет имущества граждан в Древнем Риме, использование средней было хорошо известно еще при жизни Пифагора. В средние века осуществлялось сравнение военного потенциала разных стран, численности их населения, домашнего имущества, земель.

У истоков статистической науки стояли две школы – немецкая описательная и английская школа политических арифметиков.

Представители описательной школы (Г. Конринг (1606-1661), Г. Ахенваль (1719-1772), А. Бюшинг (1724-1793) и др. считали, что задачей статистики является описание достопримечательностей государства: территории, населения, климата, вероисповедания, ведения хозяйства и т. п. – только в словесной форме, без цифр и вне динамики, т. е. без отражения особенностей развития государств в те или иные периоды, а только лишь на момент наблюдения. Они были «политические арифметики», которые ставили целью изучать общественные явления с помощью числовых характеристик – меры веса и числа. Политические арифметики видели основное назначение статистики в изучении массовых общественных явлений, осознавали необходимость учета в статистическом исследовании требований закона больших чисел, поскольку закономерность может проявиться лишь при достаточно большом объеме анализируемой совокупности. Виднейшим представителем и основателем этого направления был В. Петти (1623-1687). Именно школа политических арифметиков стала основообразующей в развитии современной статистики.

В XIX в. получило развитие учение бельгийского статистика Адольфа Кетле (1796-1874), который первым применил современные методы сбора данных, его считают основоположником учения о средних величинах. Математическое направление в статистике развивалось в работах англичан – сэра Фрэнсиса Гальтона (1822-1911) и Карла Пирсона (1857-1936), Рональда Фишера, которые внесли значительный вклад в развитие теории корреляции и оказали существенное воздействие на современную статистику. * Примечание. Знаком (*) отмечены издания, на основании которых составлен тематический обзор.

Прогрессу статистической методологии способствовали труды российских статистиков – А.А. Чупрова (1874-1926), B.C. Немчинова (1894-1964), С.Г. Струмилина (1877 – 1974), В.Н. Старовского (1905-1975) и др.

Развитие статистической науки, расширение сферы практической статистической работы привели к изменению содержания самого понятия «статистика». В настоящее время данный термин употребляется в трех значениях:

Во-первых , под статистикой понимают отрасль практической деятельности, которая имеет своей целью сбор, обработку, анализ и публикацию массовых данных о различных явлениях общественной жизни. Осуществляется сбор данных в каждом регионе и по стране в целом о численности и составе населения, ведется подсчет предприятий и организаций, собираются данные об объемах производства и объемах продаж и т.д. Эту деятельность на профессиональном уровне осуществляет Федеральная служба государственной статистики (Госкомстат РФ) и система ее учреждений, организованных, по административно-территориальному признаку, например, Ростовский областной комитет государственной статистики или Таганрогский межрайоннный отдел государственной статистики и т. д.

Во-вторых , статистикой называют цифровые материалы, служащие для характеристики какой-либо области общественных явлений или территориального распределения какого-то показателя, публикуемые в периодической прессе, справочниках, сборниках. Например, динамика цены на бензин в Ростовской области представленная за летние месяцы текущего года.

В-третьих , статистикой называется отрасль знания, особая научная дисциплина, которая в широком понимании разрабатывает методы сбора, систематизации, анализа, интерпретации и отображения результатов наблюдений массовых случайных явлений и процессов целью выявления существующих в них закономерностей. Например, исследования взаимосвязи между качеством трудовых ресурсов и экономическим ростом в регионах РФ.

Итак, статистика – это вид научно-практической деятельности, направленной на получение, обработку, анализ и хранение информации, характеризующей количественные закономерности жизни общества во всём ее многообразии в неразрывной связи с её качественным содержанием.

Если рассматривать статистику как инструмент изучения социально-экономических явлений и процессов, то предмет статистики состоит в изучении размеров и количественных соотношений массовых общественных явлений в конкретных условиях места и времени, а так же числовое выражение проявляющихся в них закономерностей.

Свой предмет статистика изучает при помощи определенных категорий, т.е. понятий, которые отражают наиболее общие и существенные свойства, признаки, связи и отношения предметов и явлений объективного мира. Закономерность, выявленная на основе массового наблюдения, то есть проявляющаяся лишь в большой массе явлений через преодоление свойственной её единичным элементам случайности, называется статистической закономерностью .

Свойство статистических закономерностей проявляться лишь в массе явлений при обобщении данных по достаточно большому числу единиц, находит свое отражение в законе больших чисел, сущность которого состоит в том, что по мере увеличения числа наблюдений влияние случайных факторов взаимопогашается и на поверхность выступает действие основных факторов, которые и определяют закономерность. Например, характеристика экологической ситуации предполагает изучение закономерности динамики выбросов загрязняющих веществ в атмосферный воздух регионов от динамики физического объема валового регионального продукта.

Познание закономерностей возможно только в том случае, если изучаются не отдельные явления, а совокупности явлений. То есть объектом статистического изучения является статистическая совокупность – множество единиц изучаемого явления, объединенных качественной однородностью, определенной целостностью, взаимозависимостью состояний отдельных единиц и наличием вариации. Таковы, например, совокупность домохозяйств, совокупность предприятий и фирм, совокупность нефтяных месторождений, совокупность регионов и т. п.

Однородная совокупность – это вид совокупности, в которой один или несколько научаемых существенных признаков являются общими для всех единиц. Например, принадлежность предприятий к одной и той же отрасли – заводы металлургического комплекса или регионы, относящиеся к одной природно-климатической зоне.

Разнородная совокупность – это вид совокупности, в которую входят явления разного типа. Совокупность может быть однородна в одном отношении и разнородна в другом. Регионы, включенные в одну группу по природно-климатическим характеристикам, различаются по уровню социально-экономического развития. Заводы, входящие в металлургический комплекс России, различаются по своей специализации – выделяются группы заводов по производству труб, или по производству листового проката и т.п. В каждом отдельном случае однородность совокупности устанавливается путем проведения качественного анализа, выяснения содержания изучаемого общественного явления.

Статистическая совокупность состоит из единиц совокупности. Единицы статистической совокупности представляют собой качественно однородные первичные элементы этой совокупности. Каждая единица совокупности представляет собой частный случай проявления изучаемой закономерности. Решение вопроса о единице и границах изучаемой совокупности определяется целью исследования. Это связано со сложной природой социально-экономических явлений. В каждом отдельном явлении одновременно реализуются различные процессы. Например, при изучении совокупности работников, каждый работник может рассматриваться как член определенной социально-профессиональной группы, как работник предприятия, как житель города поселка и т.д., то есть единица совокупности – это предел дробления объекта исследования, при котором сохраняются все свойства изучаемого процесса.

Единицы совокупности обладают определенными свойствами, качествами, которые принято называть признаками. Признак – качественная особенность единицы совокупности. Например, признаки человека: возраст, пол, образование, вес, семейное положение и т. д. Признаки предприятия: форма собственности, отрасль, численность работников, величина уставного фонда и т.д. Статистика изучает явления через их признаки: чем более однородна совокупность, тем больше общих признаков имеют ее единицы, тем меньше варьируют её значения.

По характеру отображения свойств единиц изучаемой совокупности признаки делятся на две основные группы:

признаки, имеющие непосредственное количественное выражение, например, площадь территории, численность жителей города и т. д. Они могут быть дискретно или непрерывно варьируемыми. Дискретно варьируемые признаки – это признаки, отдельные значения которых отличаются друг от друга на некоторую конечную величину (обычно целое число). Так, дискретные признаки мы используем, когда проводится группировка, например, магазинов по числу в них отделов или касс. В магазинах может быть один, два, три и т.д. отдела, но не может быть полтора или два с половиной отдела. Существует множество признаков, значения которых отличаются друг от друга на сколько угодно малую величину и могут принимать любые значения на некотором интервале. Такие признаки называют непрерывно варьирующими или непрерывными признаками. К ним относятся индексы экономического состояния, среднедушевые доходы, весовые и объемные характеристики товаров;

признаки, не имеющие непосредственного количественного выражения. В этом случае отдельные единицы совокупности различаются своим содержанием, например, отраслевая специализация предприятий и организаций; деление природных ресурсов по их происхождению: минеральные, водные, земельные или деление населения по полу – мужчины и женщины и т.д. Такие признаки обычно называют атрибутивными (в философии «атрибут» – неотъемлемое свойство предмета). В случае, когда имеются противоположные по значению варианты признака, говорят об альтернативном признаке (да, нет). Например, продукция может быть годной или бракованной (не годной); каждое лицо может состоять в браке или нет и т. д.

Особенностью статистического исследования является, то, что в нем изучаются только варьирующие признаки, т.е. признаки, принимающие различные значения (для атрибутивных, альтернативных признаков) или имеющие различные количественные уровни у отдельных единиц совокупности.

Поскольку статистика, как уже сказано, изучает количественную сторону массовых явлений, то возникает необходимость в обобщающих характеристиках статистической совокупности. Эту роль выполняет статистический показатель, являющийся количественной характеристикой какого-то свойства совокупности.

Статистический показатель это количественная оценка свойства изучаемого явления. Статистические показатели можно подразделить на два основных вида. Первый вид - это учетно-оценочные показатели, которые показывают размеры, объемы, уровни изучаемого явления, например, объем промышленной продукции в РФ в 2003 г, составил 8498,0 млрд. рублей или оборот розничной торговли – 4483,5 млрд. рублей. Второй вид показателей – аналитические, которые показывают, как развивается изучаемое явление, из каких частей состоит целое, т.е. в каком соотношении находятся части целого между собой и как распространяется явление в пространстве. Так, в составе Северо-Кавказского экономического района территория Ростовской области составляет 28,4%, а Республики Адыгея – 2,1 %. К аналитическим относят относительные и средние величины, показатели вариации и т.д. Например, среднедушевые денежные доходы населения в 2003 г. в РФ составляли 5129 рублей в месяц.

Статистическая совокупность - это множество единиц, обладающих массовостью, однородностью, определенной целостностью, взаимозависимостью состояния отдельных единиц и наличием вариации. Например, в качестве особых объектов статистического исследования, т. е. статистических совокупностей, может выступать множество коммерческих банков, зарегистрированных на территории РФ, множество акционерных обществ, множество граждан какой-либо страны и т. д. Важно помнить, что статистическая совокупность состоит из реально существующих материальных объектов. Каждый отдельно взятый элемент данного множества называется единицей статистической совокупности. Единицы статистической совокупности характеризуются общими свойствами, именуемыми в статистике признаками, т. е. под качественной однородностью совокупности понимается сходство единиц (объектов, явлений, процессов) по каким-либо существенным признакам,но различие по каким-либо другим признакам.

2. Признаки и их классификация. Признак – это объективная характеристика единицы статистической совокупности, характерная черта или свойство, которое может быть определено или измерено. Признаки подразделяются на количественные и качественные, а последние, в свою очередь, на альтернативные, атрибутивные и порядковые.

Количественным является признак, отдельные варианты которого имеют числовое выражение и отражают размеры, масштабы изучаемого объекта или явления. Альтернативным называется признак, имеющий только два варианта значений. В отличие от альтернативного атрибутивный признак имеет более двух вариантов, которые при этом выражаются в виде понятий или наименований. Порядковые признаки отличаются от атрибутивных тем, что они имеют несколько ранжированных, т.е. упорядоченных по возрастанию или убыванию, качественных вариантов.

5. Метод статистики. Статистика как наука выработала приемы и способы изучения массовых общественных явлений,зависящие от особенностей ее предмета и задач, которые ставятся при его изучении. Приемы и способы, с помощью которых статистика изучает свой предмет, образуют, статистическую методологию. Под статистической методологией понимается система приемов, способов и методов, направленных на изучение количественных закономерностей, проявляющихся в структуре, динамике и взаимосвязях социально-экономических явлений.

3.Статистический показатель представляет собой количественную характеристикусоциально-экономических явлений и процессов в условиях качественной определенности.

Система статистических показателей – это совокупность взаимосвязанных показателей, имеющая одноуровневую или многоуровневую структуру и нацеленная на решение конкретной статистической задачи. В отличие от признака статистический показатель получается расчетным путем.

Конкретный статистический показатель характеризует размер, величину изучаемого явления или процесса в данном месте и в данное время

Показатель-категория отражает сущность, общие отличительные свойства конкретных статистических показателей одного и того же вида без указания места, времени и числового значения. Все статистические показатели по охвату единиц совокупности разделяются на индивидуальные и сводные, а по форме выражения – на абсолютные, относительные и средние.

Индивидуальные показатели характеризуют отдельный объект или отдельную единицу совокупности – предприятие, фирму, банк, домохозяйство и т. п. Сводные показатели в отличие от индивидуальных характеризуют группу единиц,представляющую собой часть статистической совокупности или всю совокупность в целом. Эти показатели, в свою очередь, подразделяются на объемные и расчетные.Объемные показатели получают путем сложения значений признака отдельных единиц совокупности. Расчетные показатели , вычисляемые по различным формулам, служат для решения отдельных статистических задач анализа – измерения вариации, характеристики структурных сдвигов, оценки взаимосвязи и т. д. В зависимости от принадлежности к одному или двум объектам изучения различают однообъектные и межобъектные показатели . С точки зрения пространственной определенности статистические показатели подразделяются на общетерриториальные , характеризующие изучаемый объект или явление в целом по стране, региональные и местные (локальные) , относящиеся к какой-либо части территории или отдельному объекту.

4. Статистическая закономерность. Закон больших чисел. Статистическая закономерность - это форма проявления причинной связи, выражающаяся в последовательности,регулярности,повторяемости событий с достаточно высокой степенью вероятности, если причины (условия), порождающие события, не изменяются или изменяются незначительно.Статистическая закономерность устанавливаемая на основе анализа массовых данных возникает в результате действия объективных законов, выражая каузальные отношения.Так как статистическая закономерность обнаруживается в итоге массового статистического наблюдения, это обусловливает ее взаимосвязь с законом больших чисел. Сущность закона больших чисел заключается в том, что в числах, суммирующих результат массовых наблюдений, выступают определенные правильности, которые не могут быть обнаружены на небольшом числе факторов.Закон больших чисел порожден свойствами массовых явлений. Важно помнить, что тенденции и закономерности, вскрытые с помощью закона больших чисел, имеют силу лишь как массовые тенденции, но не как законы для каждого отдельного, индивидуального случая.

9. Формы статистического наблюдения выделяются на основе их наиболее общих организационных особенностей. В отечественной статистике по этому признаку выделяют три основные формы наблюдения: отчетность, специальное (специально организованное) наблюдение и регистры.

Виды статистического наблюдения классифицируются чаще всего по следующим трем признакам:

а) охвату наблюдением единиц совокупности, подлежащих статистическому исследованию; б) систематичности наблюдения;

в) источнику сведений, на основании которого устанавливаются факты, подлежащие регистрации в процессе наблюдения.

По первому признаку выделяют сплошное наблюдение, когда наблюдению подвергаются все без исключения единицы совокупности, и несплошное, при юмором сведения собирают не о всех единицах совокупности, а только некоторой части их, отобранной определенным образом. Несплошное наблюдение, в свою очередь, подразделяют на выборочное, основного массива, монографическое. Различие между этими видами заключается в способе отбора тех единиц, которые должны быть подвергнуты наблюдению. По признаку систематичности наблюдения различают непрерывное, или текущее, и прерывное наблюдение, Последнее подразделяют на периодическое и единовременное. Текущее - это наблюдение, которое проводится постоянно; факты, подлежащие регистрации, фиксируются по мере их возникновения (например, регистрация браков и разводов). Прерывное проводится с перерывами, время от времени. Если оно проводится строго регулярно, т. е. через равные промежутки времени, оно называется периодическим, если же такой регулярности нет, то оно называется единовременным.

По источнику сведений различают наблюдение непосредственное, когда факты, подлежащие регистрации, устанавливаются лицами, проводящими наблюдение (путем замера, подсчета числа каких-либо предметов и т. п.), документированное, при котором необходимые сведения берутся из соответствующих документов, и опрос, особенность которого состоит в том, что сведения фиксируются со слов опрашиваемого.

10.Программно-методологически вопросы. Каждый объект состоит, как правило, из многих элементов или единиц, его составляющих. Тот элемент объекта, который является носителем признаков, подлежащих регистрации, называется единицей наблюдения. Определяя единицу конкретного статистического наблюдения, нужно как можно точнее ее охарактеризовать, указав специфические черты, которые позволили бы легче отличить ее от близких к ней по виду единиц других объектов, например при демографических обследованиях единицей наблюдения может быть человек, но может быть и семья; при бюджетном обследовании - семья или домашнее хозяйство.

Программа наблюдения получает свое воплощение в перечне вопросов, ответы на которые нужно получить в процессе наблюдения. Вопросы программы наблюдения фиксируются в

формуляре (бланке) наблюдения. Очень важно, чтобы вопросы были сформулированы ясно и по возможности наиболее кратко. Для этого при выполнении упражнения нужно привести различные возможные формулировки вопроса. Целесообразно ознакомиться с формулировками вопросов в формулярах, в которых собирают сведения наши статистические учреждения (бланки форм отчетности переписей и т. п.).

Конструируя формуляр наблюдения по условиям нижеприводимых задач, следует обосновать выбор той или иной его формы. При этом надо учитывать объем программы наблюдения, способ проведения наблюдения и способ обработки данных, записанных в формулярах в процессе наблюдения. Формуляры могут предназначаться для записи данных об одной единице наблюдения (индивидуальная форма, иначе бланк-карточка) или нескольких (списочная форма, бланк-список). Надо помнить, что применение списочной формы бланка возможно лишь при относительно небольшой программе и только при экспедиционном способ наблюдения.

11. Погрешности, появляющиеся в процессе наблюдения, называются ошибками наблюдения. Все погрешности, возникающие при сплошном наблюдении, называются ошибками регистрации.

В программе наблюдения могут быть поставлены контрольные вопросы, ответы на которые разрабатываться не будут. В процессе регистрации такие вопросы помогают уточнить ответы на другие вопросы, а в последующем с их помощью произвести проверку данных наблюдения.При несплошном наблюдении, в частности выборочном, могут возникать специфические ошибки, называемые ошибками репрезентативности. Они появляются в силу того, что наблюдение является несплошным. После получения статистических формуляров следует провести проверку полноты и качеств собранных данных. Контроль полноты - это проверка того, насколько полно охвачен объект наблюдением, иначе говоря, о всех ли единицах наблюдения собраны сведения. Контроль качества материала осуществляется с помощью логического и арифметического контроля.

13.Сводка - это комплекс последовательных операций по обобщению конкретных единичных фактов, образующих совокупность, для выявления типичных черт и закономерностей, присущих изучаемому явлению в целом. По глубине и точности обработки материала различают сводки простую и сложную. Простая сводка - это операция по подсчету общих итогов по совокупности единиц наблюдения. Сложная сводка - это комплекс операций, включающих группировку единиц наблюдения, подсчет итогов по каждой группе и по всему объекту и представление результатов группировки и сводки в виде статистических таблиц. Группировкой называется разделение единиц изучаемой совокупности на однородные группы по определенным, существенным для них признакам. Типологическая группировка - это разделение качественно неоднородной совокупности на отдельные качественно однородные группы и выявление на этой основе экономических типов явлений. Таким образом, основная задача такой группировки - это идентификация типов социально-экономических явлений, поэтому важное значение при ее построении должно уделяться выбору группировочного признака.

Структурная группировка - это выявление закономерностей распределения единиц однородной совокупности по варьирующим значениям исследуемого признака. Она позволяет изучить структуру совокупности и происходящих в ней сдвигов. Надобность в таких группировках возникает потому, что однородность однокачественных явлений, элементов, входящих в статистическую совокупность, отнюдь не означает их тождественности. Структурные группировки отличаются от типологических не столько по внешнему виду, сколько по целям, т. е. отличаются по уровню качественных различий между группами.Аналитическая группировка - это исследование взаимосвязей варьирующих признаков в пределах однородной совокупности. При ее построении можно установить взаимосвязи между двумя признаками и более. При этом один признак будет результативным, а другой (другие) факторным.

14.Группировкой называется разделение единиц изучаемой совокупности на однородные группы по определенным, существенным для них признакам. Группировка в статистическом анализе выполняет следующие определенные функции:

Выделение социально-экономических типов явлений;

Изучение структуры и структурных сдвигов, происходящих в социально-экономических явлениях;

Анализ взаимосвязей между явлениями.

15. Ряд распределения - это упорядоченное распределение единиц совокупности на группы по определенному признаку.

Атрибутивным называют ряд распределения, построенный по качественным признакам, не имеющим числового выражения. Вариационным рядом называют ряд распределения, построенный по количественному признаку. Любой вариационный ряд состоит из двух элементов: вариантов и частот. Вариантами называются отдельные значения признака, которые он принимает в вариационном ряду, т. е. конкретное значение варьирующего признака. Частотами называются численности отдельных вариантов или каждой группы вариационного ряда, т. е. это числа, которые показывают, как часто встречаются те или иные варианты в ряду распределения. Сумма всех частот определяет численность всей совокупности, ее объем. Частостями называются частоты, выраженные в долях единицы или в процентах к итогу.В зависимости от характера вариации признака различают дискретные и интервальные ряды.

16. Дискретный вариационный ряд характеризует распределение единиц совокупности по дискретному признаку, принимающему только целые значения. Полигон используется при изображении дискретных вариационных рядов. Для его построения в прямоугольной системе координат по оси абсцисс в одинаковом масштабе откладываются ранжированные значения варьирующего признака, а по оси ординат наносится шкала для выражения величины частот. Полученные на пересечении абсцисс и ординат точки соединяют прямыми линиями и получают ломаную линию, называемую полигоном частот. Гистограмма применяется для изображения интервального вариационного ряда. При построении гистограммы на оси абсцисс откладываются величины интервалов, а частоты изображаются прямоугольниками, построенными на соответствующих интервалах. Высота столбиков должна быть пропорциональна частотам. В результате мы получим на графике гистограмму, где ряд распределения изображен виде смежных друг с другом столбиков.Если середины верхних сторон прямоугольников соединить прямыми, то гистограмма может быть преобразована в полигон распределения. Для графического изображения вариационных рядов может использоваться также кумулятивная кривая. При построении кумулятивной кривой по интервальному вариационному ряду на оси абсцисс откладываются варианты ряда, а на оси ординат - накопленные частоты, которые наносят на поле графика в виде перпендикуляров к оси абсцисс в верхних границах интервалов. Затем эти перпендикуляры соединяют и получают ломаную линию, т. е. кумулятивную кривую.

17. Статистической называется таблица , которая содержит сводную числовую характеристику исследуемой совокупности по одному или нескольким существенным признакам, взаимосвязанным логикой экономического анализа. Статистическая таблица содержит три вида заголовков: общий, верхние и боковые. Общий заголовок отражает содержание всей таблицы (к какому месту и времени она относится), располагается над макетом таблицы по центру и является внешним заголовком. Верхние заголовки характеризуют содержание граф (заголовки сказуемого), а боковые (заголовки подлежащего) – строк. Они являются внутренними заголовками. Остов таблицы, заполненный заголовками, образует макет таблицы; если на пересечении граф и строк записать цифры, то получается полная статистическая таблица. Подлежащим статистической таблицы называется объект, который характеризуется цифрами. Это может быть одна или несколько совокупностей, отдельные единицы совокупности в порядке их перечня или сгруппированные по каким-либо признакам, территориальные единицы и так далее. Обычно подлежащее таблицы дается в левой части, в наименовании строк.

Сказуемое статистической таблицы образует система показателей, которыми характеризуется объект изучения, то есть подлежащее таблицы. Сказуемое формирует верхние заголовки и составляет содержание граф с логически последовательным расположением показателей слева направо.

18. Разработка подлеж и сказ. Подлежащим статистической таблицы называется объект, который характеризуется цифрами. Это может быть одна или несколько совокупностей, отдельные единицы совокупности в порядке их перечня или сгруппированные по каким-либо признакам, территориальные единицы и так далее. Обычно подлежащее таблицы дается в левой части, в наименовании строк. Сказуемое статистической таблицы образует система показателей, которыми характеризуется объект изучения, то есть подлежащее таблицы. Сказуемое формирует верхние заголовки и составляет содержание граф с логически последовательным расположением показателей слева направо.При простой разработке сказуемого показатель, определяющий его, не подразделяется на подгруппы и итоговые значения получаются путем простого суммирования значений по каждому признаку отдельно, независимо друг от друга. Сложная разработка сказуемого предполагает деление признака, формирующегоего, на подгруппы. При этом получается более полная и подробная характеристика объекта. Здесь оба признака сказуемого тесно связаны друг с другом. То есть, при сложной разработке сказуемого явление или объект могут быть охарактеризованы различной комбинацией признаков, формирующих их.

19. Групповыми называются статистические таблицы , подлежащее которых содержит группировку единиц совокупности по одному количественному или атрибутивному признаку. Простейшим видом групповых таблиц являются ряды распределения. Групповая таблица может быть более сложной, если в сказуемом дополнительно приводятся ряд показателей, характеризующих группы подлежащего. Комбинационными называются статистические таблицы, подлежащее которых содержит группировку единиц совокупности одновременно по двум и более признакам: каждая из групп, построенная по одному признаку, разбивается, в свою очередь, на подгруппы по какому-либо другому признаку и так далее.

1. Таблица должна быть компактной и содержать только те данные, которые непосредственно отражают исследуемое явление в статике и динамике и необходимы для познания его сущности. Цифровой материал необходимо излагать таким образом, чтобы при анализе таблицы сущность явления раскрывалась чтением строк слева направо и сверху вниз;

2. Заголовок таблицы и названия граф и строк должны быть четкими, краткими. Названия таблицы, граф и строк пишутся полностью, без сокращений.

3. Информация, располагаемая в столбцах (графах) таблицы, завершается итоговой строкой.

4. Если названия отдельных граф повторяются между собой, содержат повторяющиеся термины или несут единую смысловую нагрузку, то необходимо им присвоить объединяющий заголовок.

5. Графы и строки полезно нумеровать.

6. Взаимосвязанные данные, характеризующие одну из сторон анализируемого явления целесообразно располагать в соседних друг с другом графах.

7. Графы и строки должны содержать единицы измерения, соответствующие поставленным в подлежащем и сказуемом показателям.

8. Числа целесообразно, по возможности, округлять.

9. Отсутствие данных об анализируемом социально-экономическом явлении может быть обусловлено различными причинами и это по-разному отмечается: а) если данная позиция вообще не подлежит заполнению, то ставится знак «Х»;б) если по какой-либо причине отсутствуют сведения, то ставится многоточие «...» или «нет свед.»; в) если явление отсутствует полностью, то клетка заполняется тире (–)г) для отображения очень малых чисел используют обозначения (0,0) или (0,00).

10. В случае необходимости дополнительной информации – разъяснений к таблице, могут даваться примечания.

20. Графический образ (основа графика) – это геометрические знаки, то есть сово-

купность точек, линий, фигур, с помощью которых изображаются статистические показа-

тели. Важно правильно выбрать графический образ, который должен соответствовать це-

ли графика и способствовать наибольшей выразительности изображаемых статистических

данных. Экспликация графика – словесное описание его содержания. Оно включает в се-

бя общий заголовок графика, подписи вдоль масштабных шкал и пояснения к отдельным

частям графика.

Заголовок графика должен в краткой и ясной форме отражать основное содержание

(тему) данных, изображенных на графике. Пространственные ориентиры графика задаются в виде системы координатных

сеток. Системы координат бывают прямолинейные (декартовые) и криволинейные. Для

построения графиков используется обычно только первый и, изредка, первый и четвертый

квадранты.

Масштаб статистического графика – это мера перевода чи-

словой величины в графическую. Масштабы выбирают так, чтобы на графике ясно выступало различие изображаемых

величин, но в то же время не терялась возможность их сравнения. Масштабной шкалой называется линия, отдельные точки которой могут быть прочита-

ны как определённые числа. Поле графика – то пространство, в котором размещаются образующие график

геометрические знаки. Например, лист бумаги, на котором располагается график, должен быть пропор-

циональным.

21. Наиболее распростра-

нённым видом таких диаграмм являются столбиковые диаграммы. Они представляют

собой график, в котором различные величины представлены расположенными в высоту

прямоугольниками («столбиками») одинаковой или разной высоты. Если прямоугольники, изображающие показатели, расположить не по вертикали, а

по горизонтали, то диаграмма получит название ленточной.

Иногда разница между наименьшими и наибольшими значениями сравниваемых

данных настолько велика, что установление подходящего масштаба для столбиков или

полос оказывается затруднительным. В этих случаях вместо столбиковой (полосовой)

диаграммы целесообразно применить плоскостную (двухмерную) диаграмму – квадрат-

ную или круговую. Принцип построения этих диаграмм заключается в том, что величины

сравниваемых данных изображаются площадями квадратов или кругов. Диаграммы, предназначенные для популяризации, иногда строятся в виде стан-

дартных фигур-рисунков, характерных для изображаемых статистических данных, что де-

лает диаграмму более выразительной, привлекает к ней внимание. Такие диаграммы на-

зываются фигурными или изобразительными. Для графического изображения трех взаимосвязанных показателей, один из кото-

рых равен произведению двух других, российский статистик проф. В.Е.Варзар предложил

использовать прямоугольную диаграмму, названную им «статистическим знаком». В на-

стоящее время такие диаграммы часто называют знаком Варзара. Вторую большую группу показательных графиков составляют структурные диа-

граммы. Это такие диаграммы, в которых отдельные статистические совокупности сопос-

тавляются по их структуре, характеризующейся соотношением разных параметров сово-

купности или ее отдельных частей. Секторные диаграммы удобно строить следующим образом: вся величина явле-

ния принимается за сто процентов, рассчитываются доли отдельных частей в процентах.

Круг разбивается на секторы пропорционально частям изображаемого целого. Другим видом структурных статистических диаграмм являются диаграммы удель-

ных весов, отражающие структуры сравниваемых совокупностей по процентному соот-

ношению в них отдельных частей, выделяемых по тому или иному количественному или

атрибутивному признаку. Для изображения и внесения суждений о развитии явления во времени строятся

диаграммы динамики. В рядах динамики используются для наглядного изображения явле-

ний многие диаграммы: столбиковые, ленточные, квадратные, круговые, линейные, ради-

альные и другие. Выбор вида диаграмм зависит в основном от особенностей исходных

данных, от цели исследования. Карты статистические представляют собой вид графических изображений стати-

стических данных на схематичной географической карте, характеризующих уровень или

степень распространения того или иного явления на определенной территории. Картограмма – это схематическая географическая карта, на которой штриховкой

различной густоты, точками или окраской различной степени насыщенности показывается

сравнительная интенсивность какого-либо показателя в пределах каждой единицы нане-

сенного на карту территориального деления (например, плотность населения по областям

или республикам, распределение районов по урожайности зерновых культур и т.п.). Кар-

тограммы делятся на фоновые и точечные.

Картограмма фоновая – вид картограммы, на которой штриховкой различной

густоты или окраской различной степени насыщенности показывают интенсивность како-

го-либо показателя в пределах территориальной единицы. Картограмма точечная – вид

картограммы, где уровень какого-либо явления изображается с помощью точек. Точка

изображает одну единицу совокупности или некоторое их количество, чтобы показать на

географической карте плотность или частоту появления определенного признака.

23. Сред ариф величина-такое значение признака на единицу совокупности при вычислении которого,общий V признаков совокупности остается неизменным.

Средняя гармоническая взвешенная используется, когда известен числитель ис-

ходного соотношения средней, но неизвестен его знаменатель.

Средняя геометрическая. Наиболее широкое применение этот вид средней получил в анализе динамики для

определения среднего темпа роста

Средняя квадратическая. Наиболее широко этот вид средней используется при расчете показателей вариации.

Среднее линейное отклонение вычисляется,чтобы учесть различие всех единиц исследуемой совокупности:

22. Индивидуальные абсолютные показатели , как правило, получают непосредственно

в процессе статистического наблюдения как результат замера, взвешивания, подсчета и

оценки интересующего количественного признака. Сводные абсолютные показатели , характеризующие объем признака или объем

совокупности как в целом по изучаемому объекту, так и по какой-либо его части, получа-

ют в результате сводки и группировки индивидуальных значений. зависимости от социально-экономической сущности исследуемых явлений, их

физических свойств они выражаются в натуральных, стоимостных или трудовых еди-

ницах измерения. Относительный показатель представляет собой результат деления одного абсолют-

ного показателя на другой и выражает соотношение между количественными характери-

стиками социально-экономических процессов и явлений. Поэтому, по отношению к абсо-

лютным показателям, относительные показатели или показатели в форме относительных

величин являются производными, вторичными. Относительные показатели могут выражаться в коэффициентах, процентах, про-

милле, продецимилле или быть именованными числами. Относительный показатель динамики (ОПД) представляет собой отношение

уровня исследуемого процесса или явления за данный период времени (по состоянию на

данный момент времени) к уровню этого же процесса или явления в прошлом:

Различают относительные показатели динамики с постоянной и переменной базой

сравнения. Относительные показатели плана и реализации плана. Первый из этих показателей характеризует относительную высоту планового уров-

ня, т.е. во сколько раз намечаемый объемный показатель превысит достигнутый уровень

или сколько процентов от этого уровня составит. Второй показатель отражает фактиче-

ский объем производства или реализации в процентах или коэффициентах по сравнению с

плановым уровнем.

Относительный показатель структуры представляет собой соотношение струк-

турных частей изучаемого объекта и их целого:

Относительный показатель координации представляет собой отношение одной

части совокупности к другой части этой же совокупности:

Относительный показатель интенсивности характеризует степень распростра-

нения изучаемого процесса или явления и представляет собой отношение исследуемого

показателя к размеру присущей ему среды:

Относительный показатель сравнения представляет собой соотношение одно-

именных абсолютных показателей, характеризующих разные объекты

24. Мода представляет собой значение изучаемого признака,

повторяющееся с наибольшей частотой. Медианой называется значение признака, прихо-

дящееся на середину ранжированной (упорядоченной) совокупности.

По несгруппированным данным: Мода – наиболее часто встречающееся значение;Медиана – нумеруем значения от 0 до N,то медиана при четном N – между х с номерами 0,5N и 0,5N+1,при нечетн N,медиана соответ х с номером 0,5(N+1).

по сгруппированным данным:

номер медианной единицы ряда:

Хо - нижняя граница модального интервала (модальным назы-

вается интервал, имеющий наибольшую частоту);

i - величина модального интервала;

fМо - частота модального интервала;

fМо-1 - частота интервала, предшествующего модальному;

fМо+1 - частота интервала, следующего за модальным.

Хо - нижняя граница медианного интервала (медианным назы-

вается первый интервал, накопленная частота которого

превышает половину общей суммы частот);

i - величина медианного интервала:

Sme-1 - накопленная частота интервала, предшествующего

медианному;

fMe - частота медианного интервала.

25. размах вариации. Он представляет собой разность максимального и минималь-

ного значений признака:

R = X max – X min

дисперсия, рассчитываемый как

средний квадрат отклонений значений признака от их средней величины.

Для сравнения разных совокупностей с точки зрения устойчивости ка-

кого-либо одного признака или для определения однородности совокупности рассчиты-

вают относительные показатели.

Коэффициент осцилляции:

Линейный коэффициент вариации (d V ):

Наиболее распространенным показателем является коэффициент вариации:

26. Общая дисперсия характеризует вариацию признака по всей совокупности как ре-

зультат влияния всех факторов, определяющих индивидуальные различия единиц сово-

купности.

Межгрупповая дисперсия характеризует вариацию, обусловленную влиянием

фактора, положенного в основу группировки.

Средняя из внутригрупповых дисперсий отражает ту часть вариации результа-

тивного признака, которая обусловлена действием всех прочих неучтенных факторов,

кроме фактора, по которому осуществлялась группировка.

Взаимосвязь между тремя видами дисперсий получила название правила сложения

дисперсий.

27. Теснота связи между факторным и результативным признаками оценивается на ос-

нове эмпирического корреляционного отношения:

мера ассиметричности: коэф ассиметрии Пирсона

Ка=0 – ряд распределения симметричен,Ка>0 скошенность ряда правостроняя,Ка<0 – левостроняя.

При оценке крутизны рассчитывается коэф эксцесса:

28. Выборочным наблюдением называется такое несплошное обследование, при ко-

тором признаки регистрируются у отдельных единиц изучаемой статистической совокуп-

ности, отобранных с использованием специальных методов, а полученные в процессе об-

следования результаты с определенным уровнем вероятности распространяются на всю

исходную совокупность. Генеральной совокупностью называется вся исходная изучаемая статистическая

совокупность, из которой на основе отбора единиц или групп единиц формируется сово-

купность выборочная. Поэтому генеральную совокупность также называют основой вы-

ральную. Систематические ошибки репрезентативности связаны с нарушением принци-

пов формирования выборочной совокупности. Случайные ошибки репрезентативности обусловлены действием случайных

факторов, не содержащих каких-либо элементов системности в направлении воздействия

на рассчитываемые выборочные характеристики. Отбор единиц из генеральной совокупности может быть комбинированным, много-

ступенчатым и многофазным.

Комбинированный отбор предполагает объединение нескольких видов выборки. Многоступенчатым называется отбор, при котором из генеральной совокупности

сначала извлекаются укрупненные группы, потом – более мелкие и так до тех пор, пока не

будут отобраны те единицы, которые подвергаются обследованию.

Многофазная выборка, в отличие от многоступенчатой, предполагает сохранение

одной и той же единицы отбора на всех этапах его проведения; при этом отобранные на

каждой стадии единицы подвергаются обследованию, каждый раз – по более расширенной

программе. Собственно-случайная выборка заключается в отборе единиц из генеральной сово-

купности в целом, без разделения ее на группы, подгруппы или серии отдельных единиц.

При этом единицы отбираются в случайном порядке, не зависящем ни от последователь-

ности расположения единиц в совокупности, ни от значений их признаков. Механическая выборка может быть применена в тех случаях, когда генеральная

совокупность каким-либо образом упорядочена, т.е. имеется определенная последова-

тельность в расположении единиц (табельные номера работников, списки избирателей,

телефонные номера респондентов, номера домов и квартир и т.п.). Типический отбор целесообразно использовать в тех случаях, когда все единицы

генеральной совокупности объединены в несколько крупных типических групп. Сущность серийной выборки заключается в собственно-случайном либо механиче-

ском отборе групп единиц (серий), внутри которых производится сплошное обследование.

29. Ошибки репрезентативности обусловлены тем обстоятельством, что выборочная

совокупность не может по всем параметрам в точности воспроизвести совокупность гене-

ральную. Получаемые расхождения или ошибки репрезентативности позволяют заклю-

чить, в какой степени попавшие в выборку единицы могут представлять всю генеральную

совокупность. При этом следует различать систематические и случайные ошибки репре-

зентативности. Систематические ошибки репрезентативн

Лекция 1.3

РАЗВЕДОЧНЫЙ АНАЛИЗ ДАННЫХ

Основные узловые моменты разведочного анализа

Слайд 2

Цель разведочного анализа – представить наблюдаемые данные компактной и простой форме, позволяющей выявить имеющиеся в них закономерности и связи. Разведочный анализ включает преобразование данных и способы наглядного их представления, выявление аномальных значений, грубую оценку типа распределения, сглаживание.

Термин разведочный анализ применяется также в более широком смысле, чем предварительная обработка данных. Например, в многомерных процедурах, таких как факторный анализ, многомерное шкалирование данных, цель разведочного анализа, кроме анализа первичных данных, заключается в определении минимального числа факторов, которые удовлетворительно воспроизводят ковариационную (корреляционную) матрицу или матрицу близостей наблюдаемых переменных

Слайд 3

Согласно предыдущей лекции считаем, что у исследователя имеются наблюдения в виде матрицы «объект-признак» или вектора признака и частичное или полное отсутствие априорной информации о причинно-следственном механизме этих данных. При анализе обычно возникают следующие вопросы

1. Какой обработке подвергнуть наблюдения?

2. Какую модель выбрать?

3. Какие заключения можно сделать?

Для выбора способа обработки необходима модель наблюдаемых данных. Прежде чем произвести наблюдение необходимо указать природу и свойства измеряемой величины, т.е. использовать априорную информацию. Чем полнее априорная информация, тем точнее и с меньшими затратами можно получить необходимые результаты. Поэтому большое значение имеет формализация методов сбора, обработки и использования априорной информации. На основе анализа этой информации строится модель исследуемого явления, выбирается аппаратура, разрабатывается методика проведения эксперимента.

Слайд 4

Для получения более полной информации об изучаемом явлении проводится первичный анализ данных, получивший название разведочного анализа (Exploratory data analysis). Разведочный анализ необходим во всех случаях, за исключением лишь очень простых задач. Например, выбору семейства моделей исследуемого явления в большинстве случаев должен предшествовать предварительный и графический анализ данных. Для иллюстрации сказанного рассмотрим модель простой одномерной линейной регрессии. В соответствии с этой моделью предполагается, что наблюдения n пар (x 1 ,Y 1), …, (x n ,Y n ) можно описать уравнением



В качестве минимального предварительного анализа можно рассматривать график рассеяния точек (x j ,Y j ). В результате анализа графиков можно сделать заключение о постоянстве дисперсии Y i , о целесообразности преобразования переменных, выявить наличие аномальных наблюдений, для исключения которых необходимы специальные исследования. После такой обработки данных, предполагая, что верна модель (1), необходимо оценить параметры b 0 , b 1 и провести графический анализ остатков между наблюдаемыми и оцененными значениями Y i . На основе этого анализа можно подтвердить или предложить другую модель.

Слайд 5

Рассмотрим простейшие процедуры разведочного анализа, относящиеся к предварительной обработке данных . Они дополняют методы, изложенные в первой лекции при рассмотрении конкретных форм представления данных. Поясним необходимость проведения разведочного анализа на конкретных вопросах оценивания.

Оценка среднего . Рассмотрим простейший пример оценки истинного среднего m независимой случайной величины x по выборкеобъема n . Если вычислена оценка среднего, то возникает вопрос: «насколько сильно отличается оценка от ненаблюдаемого истинного значения?» Так как истинное значение m недоступно, то определяется доверительный интервал , который с заданной вероятностью накрывает истинное значение.

Отношение имеет t- распределение Стьюдента. Очень часто строят 95%-е доверительные интервалы, считая, что величина t распределена нормально. Для нормального распределения величина t будет равна 1,96, тогда как для t- распределения при числе степеней свободы v (v = n – 1), равных 1; 3 и 12, величина t , соответственно, равна 12,7; 4,3 и 2,18. Поэтому при малых объемах выборок использование нормального распределения вместо t- распределения приводит к большим ошибкам в интервальной оценке. Большое различие интервальных оценок связано с различием t- распределения от нормального в хвостах распределения.

Слайд 6

Хвосты реальных распределений имеют, как правило, больший разброс, чем у нормального распределения. Природа отличия реального распределения от нормального может быть различной:

1. Большинство измерений проводится в конкретных единицах, например, в миллиграммах, микронах, и их значения ограничены. Для нормального же закона распределения значения изменяются от – ¥ до + ¥.

2. Резкая асимметрия некоторых распределений (например,c 2 , F ) при малых выборках, обрывистые края у равномерного распределения.

3. Поведение на «хвостах» распределения. Одно или несколько резко выделяющихся значений от основной массы наблюдений могут существенно изменить среднее и катастрофически дисперсию. Неправдоподобные значения почти неизбежны в экспериментальных данных. Количество таких значений в медицинских данных достигает до 30%, а в специально поставленных экспериментах оно составляет около 1% от всех данных.

Оценка среднего среднеарифметическим имеет большие достоинства: несмещенность для генеральных совокупностей, имеющих математическое ожидание, достаточность, полнота и, соответственно, полная эффективность для нормального, пуассоновского, гамма-распределений и при достаточно широких условиях удобное асимптотически нормальное распределение, которое во многих случаях приближенно достигается уже при средних объемах выборок n . Имеются и недостатки такой оценки: эффективность ее равна нулю для равномерного распределения, а для некоторых выборок уже одно неправдоподобно большое наблюдение может сделать среднеарифметическую оценку бесполезной.

Слайд 7

Если нормальность распределения нарушается резко выделяющимися данными, то желательно применять робастные (robust – крепкий, здоровый, дюжий) оценки . Примером робастной оценки среднего, терпимой к отклонению хвостов распределения от нормального является медиана распределения. Она, как срединное значение наблюдений, не зависит от одного или нескольких неправдоподобно больших измерений.

Медиана, как робастная, не является эффективной оценкой относительно среднеарифметической оценки для нормального распределения.

Слайд 8

Мера разброса . На практике для характеристики величины разброса данных используются следующие меры: среднеквадратическое отклонение s или его квадрат – дисперсия s 2 , а также размах R. Оценки этих величин обозначают соответственно S , S 2 , R . Оценка разброса по S широко применяется, и оно полезно при линейных преобразованиях типа Y = b + aX. Для некоторых распределений s 2 = ∞, а размах применим; неправдоподобно большие отклонения в наблюдениях также могут сделать оценку дисперсии очень большой, что приводит к типу распределения, отличному от истинного.

Оценка разброса по выборочному размаху относится к быстрым процедурам. В связи с появлением быстродействующих ЭВМ вычислительные преимущества R по сравнению с S становятся все менее важными, но остаются преимущества, связанные с простотой вычисления R и возможностью для неспециалистов применять эту статистику. Так, размах практически совсем вытеснил S из систем контроля качества, в которых выборки малых объемов берутся через короткие интервалы времени и по средним значениям и размахам строятся контрольные карты.

Следует отметить, что размах можно использовать для распознавания больших неправдоподобных ошибок в вычислениях S для выборок из любой генеральной совокупности. Это следует из ограниченности отношения S/R .

Слайд 9

Подводя итог рассмотренным оценкам, необходимо сделать вывод, что имеются причины, чтобы не обрабатывать все данные одинаково. Прежде чем приступить к обработке наблюдений, необходимо проверить однородность выборки и, если она неоднородна, то разделить на слои. Наличие резко выделяющихся наблюдений также нарушает однородность выборки. В этом случае один из подходов базируется на обнаружении и удалении этих выделяющихся данных.

Удаление резко выделяющихся наблюдений обеспечивает безопасность оценки, однако обеспечивает эффективность только в случае определения четкой границы между удаленными и не удаленными данными. К явным резко выделяющимся данным примыкает зона «сомнительных» данных (рис. 1), которые не всегда можно распознать. Здесь легко допустить неправильные удаления и необоснованные сохранения, полной эффективности ожидать не приходится даже в идеале после удаления. Эти трудности можно преодолеть, применяя робастные методы оценивания. Робастные алгоритмы обеспечивают безопасность и эффективность оценивания при наличии резко выделяющихся и сомнительных данных.

Рис. 1. Плотность распределения. Разбиение данных на три группы.

Слайд 10

О качестве результатов Цель исследования – дать ответ на вопрос: можно полученные результаты применять на практике. Пригодность полученных результатов можно оценить методами перепроверок. Наиболее часто используются методики простой и двойной перепроверок.

Простая перепроверка. Проверка полученной модели проводится на данных, отличных от тех, по которым рассчитаны параметры модели. В этом случае можно выборку наблюдений делить на две (или больше) части. Одну часть используют для обработки, а другую – для проверки. После этого части можно менять местами, что может дать несколько больше информации, хотя здесь имеются определенные трудности, вытекающие из-за связи между двумя оценками качества модели.

Такую перепроверку можно осуществить и для многократного деления данных, например, можно выборку разделить на 10 равных частей. На любых 9 из них провести оценку модели, а на оставшейся одной части осуществить проверку. После этого повторить процедуру 9 раз, беря каждый раз новые 9 частей. В ряде случаев процедуру усложняют. Расчет осуществляют по всем данным без одного наблюдения, а проверку – на отброшенном значении. Расчеты повторяют для каждого из наблюдений выборки. Не следует обольщаться результатами простой проверки, так как контрольная выборка всегда будет больше похожа на рабочую, чем на выборку объектов, для которой будут использоваться результаты исследований.

Двойная перепроверка. Производится проверка на данных отличных, как от тех, по которым строилась модель, так и от тех, которые были использованы для расчета параметров модели. Медики такой метод проверки называют «дважды слепым». «Свежие данные» для перепроверки можно собирать после выбора модели и расчета параметров. Если получение таких данных невозможно, то можно обратиться к архивным данным при условии, что они оставались неизвестными, пока строилась модель и рассчитывались параметры этой модели. При двойной перепроверке важно, чтобы данные, используемые для проверки, являлись отличными от тех, по которым проводились оценки. Можно использовать данные разных лет, если они могут быть отнесены к одному времени, или данные других исследователей.

Слайд 11

Неоднородные выборки

Стандартные методы оценивания любой статистики выборочных данных построены на предположении, что выборка взята из однородной совокупности с простой структурой закона распределения. Между тем на практике выборки часто формируются под влиянием различных причин и условий, и они могут быть представлены в виде объединения некоторого множества однородных выборок, каждая из которых имеет простую структуру. Например, нельзя считать однородными доходы богатых и других граждан государства, так как они имеют различную экономическую основу; объекты различной стоимости, отличающиеся по народнохозяйственным последствиям . Примерами могут служить неоднородные последовательности динамических моделей в задачах анализа вибраций в машиностроении; сейсмограмм в геофизике; кардиограмм с нарушениями частоты биения сердца.

Природа неоднородности может быть различной. Например, возможны объединения из совокупностей с различными средними и дисперсиями или с одинаковыми средними, но с различными дисперсиями. Важный класс неоднородных выборок образуют также выборки, содержащие одно или несколько неправдоподобно больших или малых измерений . Обработка неоднородных

Пусть наблюдения состоят из трех однородных слоев, каждый из которых можно описать простой одномерной регрессией. Эти зависимости показаны на рис. 2, где прямые – линии регрессий каждой совокупности. Если обработать объединенную выборку этих совокупностей, то получим регрессионную зависимость, изображенную на рис. 2 пунктирной прямой. Очевидно, что регрессия по объединенным данным лишена всякого смысла.

Для определения однородности выборки необходим подробный содержательный анализ исследуемой совокупности. Этот анализ должен базироваться на существенном не случайном признаке, по которому исходная совокупность может быть представлена в виде объединения нескольких однородных совокупностей. Например, налоговые декларации можно разбить на группы по объемам доходов; учреждения – по числу служащих; фермы – по общей площади земель и валовым доходам. При разделении выборки на слои требуется ответить на вопросы, по какому признаку лучше производить расслоение, как определить границы между слоями, сколько должно быть слоев.

Слайд 12

Разделение неоднородной совокупности на однородные

Пусть выборка изучаемой совокупности x 1 , …, x n , содержит элементы двух независимых случайных величин с плотностями распределений f(x,q 1) и f(x,q 2). Обозначим через А – множество элементов выборки, принадлежащих к первой случайной величине, В – множество элементов выборки из второй совокупности. Требуется найти оценки 1 , 2 неизвестных параметров q 1 , q 2 и множества А и В. Для оценки этих четырех неизвестных используем метод максимума правдоподобия. Неизвестные q 1 , q 2 и А и В найдем из условия покоординатной максимизации функции правдоподобия

На каждом шаге максимизируется величина функции правдоподобия по одному из неизвестных . 1) < f(x i , 2),. Если f(x i , 1) = f(x i , 2), то оба варианта одинаково правдоподобны, что для непрерывных распределений является маловероятным событием. Далее берем следующий элемент и относим его в то или иное множество. Полученные множества сравниваем с множествами на предыдущем шаге. Если они отличаются, то переходим к шагу 2, в противном случае алгоритм останавливается, и задача считается решенной.

Недостатком алгоритма является то, что он останавливается на первом локальном максимуме функции правдоподобия. Частично этого недостаток можно избежать, решая задачу при различных начальных разбиениях на подмножества А и В. Если конечные результаты для нескольких начальных условий различны, то берется то решение, для которого значение функции правдоподобия больше. Отсюда следует, что приведенный алгоритм применим и для выборок, содержащих более двух слоев.

Статистическая совокупность — множество единиц, обладающих массовостью, типичностью, качественной однородностью и наличием вариации.

Статистическая совокупность состоит из материально существующих объектов (Работники, предприятия, страны, регионы), является объектом .

Единица совокупности — каждая конкретная единица статистической совокупности.

Одна и та же статистическая совокупность может быть однородна по одному признаку и неоднородна по другому.

Качественная однородность — сходство всех единиц совокупности по какому-либо признаку и несходство по всем остальным.

В статистической совокупности отличия одной единицы совокупности от другой чаще имеют количественную природу. Количественные изменения значений признака разных единиц совокупности называются вариацией.

Вариация признака — количественное изменение признака (для количественного признака) при переходе от одной единицы совокупности к другой.

Признак — это свойство, характерная черта или иная особенность единиц, объектов и явлений, которая может быть наблюдаема или измерена. Признаки делятся на количественные и качественные. Многообразие и изменчивость величины признака у отдельных единиц совокупности называется вариацией .

Атрибутивные (качественные) признаки не поддаются числовому выражению (состав населения по полу). Количественные признаки имеют числовое выражение (состав населения по возрасту).

Показатель — это обобщающая количественно качественная характеристика какого-либо свойства единиц или совокупности в целом в конкретных условиях времени и места.

Система показателей — это совокупность показателей всесторонне отражающих изучаемое явление.

Например, изучается зарплата:
  • Признак — оплата труда
  • Статистическая совокупность — все работники
  • Единица совокупности — каждый работник
  • Качественная однородность — начисленная зарплата
  • Вариация признака — ряд цифр

Генеральная совокупность и выборка из нее

Основу составляет множество данных, полученных в результате измерения одного или нескольких признаков. Реально наблюдаемая совокупность объектов, статистически представленная рядом наблюдений случайной величины , является выборкой , а гипотетически существующая (домысливаемая) — генеральной совокупностью . Генеральная совокупность может быть конечной (число наблюдений N = const ) или бесконечной (N = ∞ ), а выборка из генеральной совокупности — это всегда результат ограниченного ряда наблюдений. Число наблюдений , образующих выборку, называется объемом выборки . Если объем выборки достаточно велик (n → ∞ ) выборка считается большой , в противном случае она называется выборкой ограниченного объема . Выборка считается малой , если при измерении одномерной случайной величины объем выборки не превышает 30 (n <= 30 ), а при измерении одновременно нескольких (k ) признаков в многомерном пространстве отношение n к k не превышает 10 (n/k < 10) . Выборка образует вариационный ряд , если ее члены являются порядковыми статистиками , т. е. выборочные значения случайной величины Х упорядочены по возрастанию (ранжированы), значения же признака называются вариантами .

Пример . Практически одна и та же случайно отобранная совокупность объектов — коммерческих банков одного административного округа Москвы, может рассматриваться как выборка из генеральной совокупности всех коммерческих банков этого округа, и как выборка из генеральной совокупности всех коммерческих банков Москвы, а также как выборка из коммерческих банков страны и т.д.

Основные способы организации выборки

Достоверность статистических выводов и содержательная интерпретация результатов зависит от репрезентативности выборки, т.е. полноты и адекватности представления свойств генеральной совокупности, по отношению к которой эту выборку можно считать представительной. Изучение статистических свойств совокупности можно организовать двумя способами: с помощью сплошного и несплошного . Сплошное наблюдение предусматривает обследование всех единиц изучаемой совокупности , а несплошное (выборочное) наблюдение — только его части.

Существуют пять основных способов организации выборочного наблюдения:

1. простой случайный отбор , при котором объектов случайно извлекаются из генеральной совокупности объектов (например с помощью таблицы или датчика случайных чисел), причем каждая из возможных выборок имеют равную вероятность. Такие выборки называются собственно-случайными ;

2. простой отбор с помощью регулярной процедуры осуществляется с помощью механической составляющей (например, даты, дня недели, номера квартиры, буквы алфавита и др.) и полученные таким способом выборки называются механическими ;

3. стратифицированный отбор заключается в том, что генеральная совокупность объема подразделяется на подсовокупности или слои (страты) объема так что . Страты представляют собой однородные объекты с точки зрения статистических характеристик (например, население делится на страты по возрастным группам или социальной принадлежности; предприятия — по отраслям). В этом случае выборки называются стратифицированными (иначе, расслоенными, типическими, районированными );

4. методы серийного отбора используются для формирования серийных или гнездовых выборок . Они удобны в том случае, если необходимо обследовать сразу "блок" или серию объектов (например, партию товара, продукцию определенной серии или население при территориально-административном делении страны). Отбор серий можно осуществить собственно-случайным или механическим способом. При этом проводится сплошное обследование определенной партии товара, или целой территориальной единицы (жилого дома или квартала);

5. комбинированный (ступенчатый) отбор может сочетать в себе сразу несколько способов отбора (например, стратифицированный и случайный или случайный и механический); такая выборка называется комбинированной .

Виды отбора

По виду различаются индивидуальный, групповой и комбинированный отбор. При индивидуальном отборе в выборочную совокупность отбираются отдельные единицы генеральной совокупности, при групповом отборе — качественно однородные группы (серии) единиц, а комбинированный отбор предполагает сочетание первого и второго видов.

По методу отбора различают повторную и бесповторную выборку.

Бесповторным называется отбор, при котором попавшая в выборку единица не возвращается в исходную совокупность и в дальнейшем выборе не участвует; при этом численность единиц генеральной совокупности N сокращается в процессе отбора. При повторном отборе попавшая в выборку единица после регистрации возвращается в генеральную совокупность и таким образом сохраняет равную возможность наряду с другими единицами быть использованной в дальнейшей процедуре отбора; при этом численность единиц генеральной совокупности N остается неизменной (метод в социально-экономических исследованиях применяется редко). Однако, при большом N (N → ∞) формулы для бесповторного отбора приближаются к аналогичным для повторного отбора и практически чаще используются последние (N = const ).

Основные характеристики параметров генеральной и выборочной совокупности

В основе статистических выводов проведенного исследования лежит распределение случайной величины , наблюдаемые же значения (х 1 , х 2 , … , х n) называются реализациями случайной величины Х (n — объем выборки). Распределение случайной величины в генеральной совокупности носит теоретический, идеальный характер, а ее выборочный аналог является эмпирическим распределением. Некоторые теоретические распределения заданы аналитически, т.е. их параметры определяют значение функции распределения в каждой точке пространства возможных значений случайной величины . Для выборки же функцию распределения определить трудно, а иногда невозможно, поэтому параметры оценивают по эмпирическим данным, а затем их подставляют в аналитическое выражение, описывающее теоретическое распределение. При этом предположение (или гипотеза ) о виде распределения может быть как статистически верным, так и ошибочным. Но в любом случае восстановленное по выборке эмпирическое распределение лишь грубо характеризует истинное. Важнейшими параметрами распределений являются математическое ожидание и дисперсия .

По своей природе распределения бывают непрерывными и дискретными . Наиболее известным непрерывным распределением является нормальное . Выборочными аналогами параметров идля него являются: среднее значение и эмпирическая дисперсия . Среди дискретных в социально-экономических исследованиях наиболее часто применяется альтернативное (дихотомическое) распределение. Параметр математического ожидания этого распределения выражает относительную величину (или долю ) единиц совокупности, которые обладают изучаемым признаком (она обозначена буквой ); доля совокупности, не обладающая этим признаком, обозначается буквой q (q = 1 — p) . Дисперсия же альтернативного распределения также имеет эмпирический аналог .

В зависимости от вида распределения и от способа отбора единиц совокупности по-разному вычисляются характеристики параметров распределения. Основные из них для теоретического и эмпирического распределений приведены в табл. 1.

Долей выборки k n называется отношение числа единиц выборочной совокупности к числу единиц генеральной совокупности:

k n = n/N .

Выборочная доля w — это отношение единиц, обладающих изучаемым признаком x к объему выборки n :

w = n n /n .

Пример. В партии товара, содержащей 1000 ед., при 5% выборке доля выборки k n в абсолютной величине составляет 50 ед. (n = N*0,05); если же в этой выборке обнаружено 2 бракованных изделия, то выборочная доля брака w составит 0,04 (w = 2/50 = 0,04 или 4%).

Так как выборочная совокупность отлична от генеральной, то возникают ошибки выборки .

Таблица 1. Основные параметры генеральной и выборочной совокупностей

Ошибки выборки

При любом (сплошном и выборочном) могут встретиться ошибки двух видов: регистрации и репрезентативности. Ошибки регистрации могут иметь случайный и систематический характер. Случайные ошибки складываются из множества различных неконтролируемых причин, носят непреднамеренный характер и обычно по совокупности уравновешивают друг друга (например, изменения показателей прибора при температурных колебаниях в помещении).

Систематические ошибки тенденциозны, так как нарушают правила отбора объектов в выборку (например, отклонения в измерениях при изменении настройки измерительного прибора).

Пример. Для оценки социального положения населения в городе предусмотрено обследовать 25% семей. Если при этом выбор каждой четвертой квартиры основан на ее номере, то существует опасность отобрать все квартиры только одного типа (например, однокомнатные), что обеспечит систематическую ошибку и исказит результаты; выбор же номера квартиры по жребию более предпочтителен, так как ошибка будет случайной.

Ошибки репрезентативности присущи только выборочному наблюдению, их невозможно избежать и они возникают в результате того, что выборочная совокупность не полностью воспроизводит генеральную. Значения показателей, получаемых по выборке, отличаются от показателей этих же величин в генеральной совокупности (или получаемых при сплошном наблюдении).

Ошибка выборочного наблюдения есть разность между значением параметра в генеральной совокупности и ее выборочным значением. Для среднего значения количественного признака она равна: , а для доли (альтернативного признака) — .

Ошибки выборки свойственны только выборочным наблюдениям. Чем больше эти ошибки, тем больше эмпирическое распределение отличается от теоретического. Параметры эмпирического распределения и являются случайными величинами, следовательно, ошибки выборки также являются случайными величинами, могут принимать для разных выборок разные значения и поэтому принято вычислять среднюю ошибку .

Средняя ошибка выборки есть величина , выражающая среднее квадратическое отклонение выборочной средней от математического ожидания. Эта величина при соблюдении принципа случайного отбора зависит прежде всего от объема выборки и от степени варьирования признака: чем больше и чем меньше вариация признака (следовательно, и значение ), тем меньше величина средней ошибки выборки . Соотношение между дисперсиями генеральной и выборочной совокупностей выражается формулой:

т.е. при достаточно больших можно считать, что . Средняя ошибка выборки показывает возможные отклонения параметра выборочной совокупности от параметра генеральной. В табл. 2 приведены выражения для вычисления средней ошибки выборки при разных методах организации наблюдения.

Таблица 2. Средняя ошибка (m) выборочных средней и доли для разных видов выборки

Где - средняя из внутригрупповых выборочных дисперсий для непрерывного признака;

Средняя из внутригрупповых дисперсий доли;

— число отобранных серий, — общее число серий;

,

где — средняя -й серии;

— общая средняя по всей выборочной совокупности для непрерывного признака;

,

где — доля признака в -й серии;

— общая доля признака по всей выборочной совокупности.

Однако о величине средней ошибки можно судить лишь с определенной, вероятностью Р (Р ≤ 1). Ляпунов А.М. доказал, что распределение выборочных средних , a следовательно, и их отклонений от генеральной средней, при достаточно большом числе приближенно подчиняется нормальному закону распределения при условии, что генеральная совокупность обладает конечной средней и ограниченной дисперсией.

Математически это утверждение для средней выражается в виде:

а для доли выражение (1) примет вид:

где - есть предельная ошибка выборки , которая кратна величине средней ошибки выборки , а коэффициент кратности — есть критерий Стьюдента ("коэффициент доверия"), предложенный У.С. Госсетом (псевдоним "Student"); значения для разного объема выборки хранятся в специальной таблице.

Значения функции Ф(t) при некоторых значениях t равны:

Следовательно, выражение (3) может быть прочитано так: с вероятностью Р = 0,683 (68,3%) можно утверждать, что разность между выборочной и генеральной средней не превысит одной величины средней ошибки m (t = 1) , с вероятностью Р = 0,954 (95,4%) — что она не превысит величины двух средних ошибок m (t = 2) , с вероятностью Р = 0,997 (99,7%) — не превысит трех значений m (t = 3) . Таким образом, вероятность того, что эта разность превысит трехкратную величину средней ошибки определяет уровень ошибки и составляет не более 0,3% .

В табл. 3 приведены формулы для вычисления предельной ошибки выборки.

Таблица 3. Предельная ошибка (D) выборки для средней и доли (р) для разных видов выборочного наблюдения

Распространение выборочных результатов на генеральную совокупность

Конечной целью выборочного наблюдения является характеристика генеральной совокупности. При малых объемах выборки эмпирические оценки параметров ( и ) могут существенно отклоняться от их истинных значений ( и ). Поэтому возникает необходимость установить границы, в пределах которых для выборочных значений параметров ( и ) лежат истинные значения ( и ).

Доверительным интервалом какого-либо параметра θгенеральной совокупности называется случайная область значений этого параметра, которая с вероятностью близкой к 1 (надежностью ) содержит истинное значение этого параметра.

Предельная ошибка выборки Δ позволяет определить предельные значения характеристик генеральной совокупности и их доверительные интервалы , которые равны:

Нижняя граница доверительного интервала получена путем вычитания предельной ошибки из выборочного среднего (доли), а верхняя — путем ее добавления.

Доверительный интервал для средней использует предельную ошибку выборки и для заданного уровня достоверности определяется по формуле:

Это означает, что с заданной вероятностью Р , которая называется доверительным уровнем и однозначно определяется значением t , можно утверждать, что истинное значение средней лежит в пределах от ,а истинное значение доли — в пределах от

При расчете доверительного интервала для трех стандартных доверительных уровней Р = 95%, Р = 99% и Р = 99,9% значение выбирается по . Приложения в зависимости от числа степеней свободы . Если объем выборки достаточно велик, то соответствующие этим вероятностям значения t равны: 1,96, 2,58 и 3,29 . Таким образом, предельная ошибка выборки позволяет определить предельные значения характеристик генеральной совокупности и их доверительные интервалы:

Распространение результатов выборочного наблюдения на генеральную совокупность в социально-экономических исследованиях имеет свои особенности, так как требует полноты представительности всех ее типов и групп. Основой для возможности такого распространения является расчет относительной ошибки :

где Δ % - относительная предельная ошибка выборки; , .

Существуют два основных метода распространения выборочного наблюдения на генеральную совокупность: прямой пересчет и способ коэффициентов .

Сущность прямого пересчета заключается в умножении выборочного среднего значения!!\overline{x} на объем генеральной совокупности .

Пример . Пусть среднее число детей ясельного возраста в городе оценено выборочным методом и составило человека. Если в городе 1000 молодых семей, то число необходимых мест в муниципальных детских яслях получают умножением этой средней на численность генеральной совокупности N = 1000, т.е. составит 1200 мест.

Способ коэффициентов целесообразно использовать в случае, когда выборочное наблюдение проводится с целью уточнения данных сплошного наблюдения.

При этом используют формулу:

где все переменные — это численность совокупности:

Необходимый объем выборки

Таблица 4. Необходимый объем (n) выборки для разных видов организации выборочного наблюдения

При планировании выборочного наблюдения с заранее заданным значением допустимой ошибки выборки необходимо правильно оценить требуемый объем выборки . Этот объем может быть определен на основе допустимой ошибки при выборочном наблюдении исходя из заданной вероятности , гарантирующей допустимую величину уровня ошибки (с учетом способа организации наблюдения). Формулы для определения необходимой численности выборки n легко получить непосредственно из формул предельной ошибки выборки. Так, из выражения для предельной ошибки:

непосредственно определяется объем выборки n :

Эта формула показывает, что с уменьшением предельной ошибки выборки Δ существенно увеличивается требуемый объем выборки , который пропорционален дисперсии и квадрату критерия Стьюдента .

Для конкретного способа организации наблюдения требуемый объем выборки вычисляется согласно формулам, приведенным в табл. 9.4.

Практические примеры расчета

Пример 1. Вычисление среднего значения и доверительного интервала для непрерывного количественного признака.

Для оценки скорости расчета с кредиторами в банке проведена случайная выборка 10 платежных документов. Их значения оказались равными (в днях): 10; 3; 15; 15; 22; 7; 8; 1; 19; 20.

Необходимо с вероятностью Р = 0,954 определить предельную ошибку Δ выборочной средней и доверительные пределы среднего времени расчетов.

Решение. Среднее значение вычисляется по формуле из табл. 9.1 для выборочной совокупности

Дисперсия вычисляется по формуле из табл. 9.1.

Средняя квадратическая погрешность дня.

Ошибка средней вычисляется по формуле:

т.е. среднее значение равно x ± m = 12,0 ± 2,3 дней .

Достоверность среднего составила

Предельную ошибку вычислим по формуле из табл. 9.3 для повторного отбора, так как численность генеральной совокупности неизвестна, и для Р = 0,954 уровня достоверности.

Таким образом, среднее значение равно `x ± D = `x ± 2m = 12,0 ± 4,6, т.е. его истинное значение лежит в пределах от 7,4 до16,6 дней.

Использование таблицы Стьюдента. Приложения позволяет заключить, что для n = 10 — 1 = 9 степеней свободы полученное значение достоверно с уровнем значимости a £ 0,001, т.е. полученное значение среднего достоверно отличается от 0.

Пример 2. Оценка вероятности (генеральной доли) р.

При механическом выборочном способе обследования социального положения 1000 семей выявлено, что доля малообеспеченных семей составила w = 0,3 (30%) (выборка была 2% , т.е. n/N = 0,02 ). Необходимо с уровнем достоверности р = 0,997 определить показатель р малообеспеченных семей во всем регионе.

Решение. По представленным значениям функции Ф(t) найдем для заданного уровня достоверности Р = 0,997 значение t = 3 (см. формулу 3). Предельную ошибку доли w определим по формуле из табл. 9.3 для бесповторного отбора (механическая выборка всегда является бесповторной):

Предельная относительная ошибка выборки в % составит:

Вероятность (генеральная доля) малообеспеченных семей в регионе составит р=w±Δ w , а доверительные пределы р вычисляются исходя из двойного неравенства:

w — Δ w ≤ p ≤ w — Δ w , т.е. истинное значение р лежит в пределах:

0,3 — 0,014 < p <0,3 + 0,014, а именно от 28,6% до 31,4%.

Таким образом, с вероятностью 0,997 можно утверждать, что доля малообеспеченных семей среди всех семей региона составляет от 28,6% до 31,4%.

Пример 3. Вычисление среднего значения и доверительного интервала для дискретного признака, заданного интервальным рядом.

В табл. 5. задано распределение заявок на изготовление заказов по срокам их выполнения предприятием.

Таблица 5. Распределение наблюдений по срокам появления

Решение. Средний срок выполнения заявок вычисляется по формуле:

Средний срок составит:

= (3*20 + 9*80 + 24*60 + 48*20 + 72*20)/200 = 23,1 мес.

Тот же ответ получим, если используем данные о р i из предпоследней колонки табл. 9.5, используя формулу:

Заметим, что середина интервала для последней градации находится путем искусственного ее дополнения шириной интервала предыдущей градации равной 60 — 36 = 24 мес.

Дисперсия вычисляется по формуле

где х i - середина интервального ряда.

Следовательно!!\sigma = \frac {20^2 + 14^2 + 1 + 25^2 + 49^2}{4}, а средняя квадратическая погрешность .

Ошибка средней вычисляется по формуле мес., т.е. среднее значение равно!!\overline{x} ± m = 23,1 ± 13,4.

Предельную ошибку вычислим по формуле из табл. 9.3 для повторного отбора, так как численность генеральной совокупности неизвестна, для 0,954 уровня достоверности:

Таким образом, среднее значение равно:

т.е. его истинное значение лежит в пределах от 0 до 50 мес.

Пример 4. Для определения скорости расчетов с кредиторами N = 500 предприятий корпорации в коммерческом банке необходимо провести выборочное исследование методом случайного бесповторного отбора. Определить необходимый объем выборки n, чтобы с вероятностью Р = 0,954 ошибка среднего значения выборки не превышала 3-х дней, если пробные оценки показали, что среднее квадратическое отклонение s составило 10 дней.

Решение . Для определения числа необходимых исследований n воспользуемся формулой для бесповторного отбора из табл. 9.4:

В ней значение t определяется из для уровня достоверности Р = 0,954. Оно равно 2. Среднее квадратическое значение s = 10, объем генеральной совокупности N = 500, а предельная ошибка среднего значения Δ x = 3. Подставляя эти значения в формулу, получим:

т.е. выборку достаточно составить из 41 предприятия, чтобы оценить требуемый параметр — скорость расчетов с кредиторами.

Поделиться