Основные операции над матрицами (сложение, умножение, транспонирование) и их свойства. Матрицы, действия над матрицами. Обратная матрица. Ранг матрицы Матрицы действия над ними например

Матрицей размерности называется прямоугольная таблица, состоящая изэлементов, расположенных вm строках и n столбцах.

Элементы матрицы (первый индексi − номер строки, второй индекс j − номер столбца) могут быть числами, функциями и т. п. Матрицы обозначают заглавными буквами латинского алфавита.

Матрица называется квадратной , если у нее число строк равно числу столбцов (m = n ). В этом случае число n называется порядком матрицы, а сама матрица называется матрицей n -го порядка.

Элементы с одинаковыми индексами образуютглавную диагональ квадратной матрицы, а элементы (т.е. имеющие сумму индексов, равнуюn +1) − побочную диагональ .

Единичной матрицей называется квадратная матрица, все элементы главной диагонали которой равны 1, а остальные элементы равны 0. Она обозначается буквой Е .

Нулевая матрица − это матрица, все элементы которой равны 0. Нулевая матрица может быть любого размера.

К числу линейных операций над матрицами относятся:

1) сложение матриц;

2) умножение матриц на число.

Операция сложения матриц определена только для матриц одинаковой размерности.

Суммой двух матриц А и В называется матрица С , все элементы которой равны суммам соответствующих элементов матриц А и В :

.

Произведением матрицы А на число k называется матрица В , все элементы которой равны соответствующим элементам данной матрицы А , умноженным на число k :

Операция умножения матриц вводится для матриц, удовлетворяющих условию: число столбцов первой матрицы равно числу строк второй.

Произведением матрицы А размерности на матрицу В размерности называется матрицаС размерности , элементi -ой строки и j -го столбца которой равен сумме произведений элементов i -ой строки матрицы А на соответствующие элементы j -го столбца матрицы В :

Произведение матриц (в отличие от произведения действительных чисел) не подчиняется переместительному закону, т.е. в общем случае А В В А .

1.2. Определители. Свойства определителей

Понятие определителя вводится только для квадратных матриц.

Определителем матрицы 2-го порядка называется число, вычисляемое по следующему правилу

.

Определителем матрицы 3-го порядка называется число, вычисляемое по следующему правилу:

Первое из слагаемых со знаком «+» представляет собой произведение элементов, расположенных на главной диагонали матрицы (). Остальные два содержат элементы, расположенные в вершинах треугольников с основанием, параллельным главной диагонали (и). Со знаком «-» входят произведения элементов побочной диагонали () и элементов, образующих треугольники с основаниями, параллельными этой диагонали (и).

Это правило вычисления определителя 3-го порядка называется правилом треугольников (или правилом Саррюса).

Свойства определителей рассмотрим на примере определителей 3-го порядка.

1. При замене всех строк определителя на столбцы с теми же номерами, что и строки, определитель своего значения не меняет, т.е. строки и столбцы определителя равноправны

.

2. При перестановке двух строк (столбцов) определитель меняет свой знак.

3. Если все элементы некоторой строки (столбца) нули, то определитель равен 0.

4. Общий множитель всех элементов строки (столбца) можно вынести за знак определителя.

5. Определитель, содержащий две одинаковые строки (столбца), равен 0.

6. Определитель, содержащий две пропорциональные строки (столбца), равен нулю.

7. Если каждый элемент некоторого столбца (строки) определителя представляет сумму двух слагаемых, то определитель равен сумме двух определителей, в одном из которых в том же столбце (строке) стоят первые слагаемые, а в другом − вторые. Остальные элементы у обоих определителей одинаковые. Так,

.

8. Определитель не изменится, если к элементам какого-либо его столбца (строки) прибавить соответствующие элементы другого столбца (строки), умноженные на одно и то же число.

Следующее свойство определителя связано с понятиями минора и алгебраического дополнения.

Минором элемента определителя называется определитель, полученный из данного вычеркиванием той строки и того столбца, на пересечении которых этот элемент расположен.

Например, минором элемента определителя называется определитель .

Алгебраическим дополнением элементаопределителя называется его минор, умноженный на, гдеi − номер строки, j − номер столбца, на пересечении которых находится элемент . Алгебраическое дополнение обычно обозначается. Для элементаопределителя 3-го порядка алгебраическое дополнение

9. Определитель равен сумме произведений элементов какой-либо строки (столбца) на соответствующие им алгебраические дополнения.

Например, определитель можно разложить по элементам первой строки

,

или второго столбца

Свойства определителей применяются для их вычисления.

Определение. Матрицей называется множество чисел, которое составляет прямоугольную таблицу, состоящее изmстрок иnстолбцов

коротко матрицу обозначают так:

где элементы данной матрицы,i– номер строки,j– номер столбца.

Если в матрице число строк равно числу столбцов (m = n ), то матрица называетсяквадратной n -го порядка, а в противном случае –прямоугольной.

Если m = 1 и n > 1, то получаем однострочную матрицу

которая называется вектор-строкой , если, жеm >1 иn =1, то получаем одностолбцовую матрицу

которая называется вектор-столбцом .

Квадратная матрица, у которой все элементы, кроме элементов главной диагонали, равны нулю, называется диагональной.

Диагональная матрица, у которой элементы главной диагонали равны единице, называется единично, обозначаетсяE .

Матрица, полученная из данной заменой ее строки столбцом с тем же номером, называется транспонированной к данной. Обозначается.

Две матрицы иравны, если равны между собой элементы, стоящие на одинаковых местах, то есть если

при всех i иj (при этом число строк (столбцов) матрицA иB должно быть одинаковым).

1°. Суммой двух матрицA =(a ij ) иB =(b ij ) с одинаковым количествомm строк иn столбцов называется матрицаC =(c ij ), элементы которой определяются равенством

Сумму матриц обозначают C =A +B .

Пример.

2 0 . Произведением матрицыA =(a ij ) на числоλ называется матрица, у которой каждый элемент равен произведению соответствующего элемента матрицыA на числоλ :

λA =λ (a ij )=(λa ij ), (i =1,2…,m ; j =1,2…,n).

Пример.

3 0 . Произведением матрицыA =(a ij ), имеющейm строк иk столбцов, на матрицуB =(b ij ), имеющейk строк иn столбцов, называется матрицаC =(c ij ), имеющаяm строк иn столбцов, у которой элементc ij равен сумме произведений элементовi -ой строки матрицыA иj -го столбца матрицыB , то есть

При этом число столбцов матрицы A должно быть равно числу строк матрицыB . В противном случае произведение не определено. Произведение матриц обозначается A*B =C.

Пример.

Для произведения матриц не выполняется равенство между матрицами A * B иB * A , в общем случае одна из них может быть не определена.

Умножение квадратной матрицы любого порядка на соответствующую единичную матрицу не меняет матрицу.

Пример. Пусть,, тогда согласно правилу умножения матриц имеем

,

откуда заключаем, что

Определители и их свойства.

Пусть дана квадратная матрица третьего порядка:

Определение. Определителем третьего порядка, соответствующим матрице (1), называется число, обозначаемое символом

и определяемое равенством

Чтобы запомнить, какие произведения в правой части равенства (2) берутся со знаком "+", а какие со знаком "-", полезно использовать следующее правило треугольников.

Пример.

Сформулируем основные свойства для определителей третьего порядка, хотя они присущи определителям любого порядка.

1. Величина определителя не изменится, если его строки и столбцы поменять местами, т. е.

2. Перестановка двух столбцов или двух строк определителя равносильна умножению его на -1.

3. Если определитель имеет два одинаковых столбца или две одинаковые строки, то он равен нулю.

4. Умножение всех элементов одного столбца или одной строки определителя на любое числоλ равносильно умножению определителя на это числоλ .

5. Если все элементы некоторого столбца или некоторой строки определителя равны нулю, то и сам определитель равен нулю.

6. Если элементы двух столбцов или двух строк определителя пропорциональны, то определитель равен нулю.

7. Если каждый элементn -го столбца (n -ой строки) определителя представляет собой сумму двух слагаемых, то определитель может быть представлен в виде суммы двух определителей, из которых один вn -ом столбце (n -ой строке) содержит первые из упомянутых слагаемых, а другой - вторые; элементы, стоящие на остальных местах, у всех трех определителей одни и те же.

Например,

8 0 . Если к элементам некоторого столбца (строки) определителя прибавить соответствующие элементы другого столбца (строки), умноженные на любой общий множитель, то величина определителя не изменится.

Например,

Минором некоторого элемента определителя называется определитель, получаемый из данного определителя вычеркиванием строки и столбца, на пересечении которых расположен этот элемент.

Например, минором элемента а 1 определителяΔ является определитель 2-го порядка

Алгебраическим дополнением некоторого элемента определителя называется минор этого элемента, умноженный на (-1) p , гдер - сумма номеров строки и столбца, на пересечении которых расположен этот элемент.

Если, например, элемент а 2 находятся на пересечении 1-го столбца и 2-ой строки, то для негор =1+2=3 и алгебраическим дополнением является

9 0 . Определитель равен сумме произведений элементов какого–либо столбца или строки на их алгебраические дополнения.

10 0 . Сумма произведений элементов какого–либо столбца или какой–либо строки определителя на алгебраические дополнения соответствующих элементов другого столбца или другой строки равны нулю.

Возникает вопрос, можно ли для квадратной матрицы А подобрать некоторую матрицу, такую что умножив на нее матрицу А в результате получить единичную матрицу Е , такую матрицу называют обратной к матрице А.

Определение. Матрицаназывается обратной квадратной матрицеA, если.

Определение. Квадратная матрица называется невырожденной, если ее определитель отличен от нуля. В противном случае квадратная матрица называется вырожденной.

Всякая невырожденная матрица имеет обратную.

Элементарными преобразованиями матриц являются:

    перестановка местами двух параллельных рядов матрицы;

    умножение всех элементов матрицы на число, отличное от нуля;

    прибавление ко всем элементами ряда матрицы соответствующих элементов параллельного ряда, умноженных на одно и то же число.

Матрица В , полученная из матрицыА с помощью элементарных преобразований, называетсяэквивалентной матрицей.

Для невырожденной квадратной матрицы

третьего порядка обратная матрица А -1 может быть вычислена по следующей формуле

здесь Δ - определитель матрицы А ,A ij – алгебраические дополнения элементовa ij матрицыА.

Элемент строки матрицы называется крайним , если он отличен от нуля, а все элементы строки, находящиеся левее него, равны нулю. Матрица называетсяступенчатой , если крайний элемент каждой строки находится правее крайнего элемента предыдущей строки. Например:

Не ступенчатая; - ступенчатая.

Матрицей называется прямоугольная таблица, заполненная некоторыми математическими объектами. По большей части мы будем рассматривать матрицы с элементами из некоторого поля, хотя многие предложения сохраняют силу, если в качестве элементов матриц рассматривать элементы ассоциативного (не обязательно коммутативного) кольца.

Чаще всего элементы матрицы обозначаются одной буквой двумя индексами, указывающими «адрес» элемента - первый йндекс дает номер строки, содержащей элемент, второй - номер столбца. Таким образом, матрица (размеров ) записывается в форме

Матрицы, вставленные из чисел, естественно возникают при рассмотрении систем линейных уравнений

Входные данные для этой задачи - это множество коэффициентов, естественно составляющих матрицу

и совокупность свободных членов, образующих матрицу , умеющую лишь один столбец. Искомым является набор значений неизвестных, который, как оказывается, удобно представлять тоже в виде матрицы состоящей из одного столбца.

Важную роль играют так называемые диагональные матрицы. Под этим названием подразумеваются квадратные матрицы, имеющие все элементы равными нулю, кроме элементов главной диагонали, т. е. элементов в позициях

Диагональная матрица D с диагональными элементами обозначается

Матрица, составленная из элементов, находящихся на пересечениях нескольких выбранных строк матрицы А и нескольких выбранных столбцов, называется субматрицей для матрицы А. Если - номера выбранных строк и - номера выбранных столбцов, то соответствующая субматрица есть

В частности, строки и столбцы матрицы можно рассматривать как ее субматрицы.

Матрицы связаны естественным образом с линейной подстановкой (линейным преобразованием) переменных. Под этим названием понимается переход от исходной системы переменных к другой, новой, связанных по формулам

Линейная подстановка переменных задается посредством матрицы коэффициентов

Среди систем линейных уравнений наибольшее значение имеют системы, в которых число уравнений равно числу неизвестных. Среди линейных подстановок переменных основную роль играют подстановки, в которых число исходных и новых переменных одинаково. В этих ситуациях матрица коэффициентов оказывается квадратной, т. е. имеющей одинаковое число строк и столбцов; это число называется порядком квадратной матрицы.

Вместо того чтобы говорить «матрица, состоящая из одной строки», и «матрица, состоящая из одного столбца», говорят короче: строка, столбец.


Лекция 1. «Матрицы и основные действия над ними. Определители

Определение. Матрицей размера m n , где m - число строк, n - число столбцов, называется таблица чисел, расположенных в определенном порядке. Эти числа называются элементами матрицы. Место каждого элемента однозначно определяется номером строки и столбца, на пересечении которых он находится. Элементы матрицы обозначаются a ij , где i - номер строки, а j - номер столбца.

А =

Основные действия над матрицами.

Матрица может состоять как из одной строки, так и из одного столбца. Вообще говоря, матрица может состоять даже из одного элемента.

Определение. Если число столбцов матрицы равно числу строк (m=n), то матрица называется квадратной .

Определение. Матрица вида:

= E ,

называется единичной матрицей .

Определение. Если a mn = a nm , то матрица называется симметрической .

Пример.
- симметрическая матрица

Определение. Квадратная матрица вида
называется диагональной матрицей.

Сложение и вычитание матриц сводится к соответствующим операциям над их элементами. Самым главным свойством этих операций является то, что они определены только для матриц одинакового размера . Таким образом, возможно определить операции сложения и вычитания матриц:

Определение. Суммой (разностью) матриц является матрица, элементами которой являются соответственно сумма (разность) элементов исходных матриц.


c ij = a ij b ij

С = А + В = В + А.

Операция умножения (деления) матрицы любого размера на произвольное число сводится к умножению (делению) каждого элемента матрицы на это число.

(А+В) =  А   В А( ) =  А   А

Пример. Даны матрицы А =
; B =
, найти 2А + В.

2А =
, 2А + В =
.

Операция умножения матриц .

Определение: Произведением матриц называется матрица, элементы которой могут быть вычислены по следующим формулам:

A B = C ;
.

Из приведенного определения видно, что операция умножения матриц определена только для матриц, число столбцов первой из которых равно числу строк второй.

Свойства операции умножения матриц.

1)Умножение матриц не коммутативно , т.е. АВ  ВА даже если определены оба произведения. Однако, если для каких – либо матриц соотношение АВ=ВА выполняется, то такие матрицы называются перестановочными.

Самым характерным примером может служить матрица, которая является перестановочной с любой другой матрицей того же размера.

Перестановочными могут быть только квадратные матрицы одного и того же порядка.

А Е = Е А = А

Очевидно, что для любых матриц выполняются следующее свойство:

A O = O ; O A = O ,

где О – нулевая матрица.

2) Операция перемножения матриц ассоциативна, т.е. если определены произведения АВ и (АВ)С, то определены ВС и А(ВС), и выполняется равенство:

(АВ)С=А(ВС).

3) Операция умножения матриц дистрибутивна по отношению к сложению, т.е. если имеют смысл выражения А(В+С) и (А+В)С, то соответственно:

А(В + С) = АВ + АС

(А + В)С = АС + ВС.

4) Если произведение АВ определено, то для любого числа  верно соотношение:

(AB ) = (A ) B = A (B ).

5) Если определено произведение АВ, то определено произведение В Т А Т и выполняется равенство:

(АВ) Т = В Т А Т, где

индексом Т обозначается транспонированная матрица.

6) Заметим также, что для любых квадратных матриц det (AB) = detA  detB.

Что такое det будет рассмотрено ниже.

Определение . Матрицу В называют транспонированной матрицей А, а переход от А к В транспонированием , если элементы каждой строки матрицы А записать в том же порядке в столбцы матрицы В.

А =
; В = А Т =
;

другими словами, b ji = a ij .

В качестве следствия из предыдущего свойства (5) можно записать, что:

(ABC ) T = C T B T A T ,

при условии, что определено произведение матриц АВС.

Пример. Даны матрицы А =
, В = , С =
и число
 = 2. Найти А Т В+  С.

A T =
; A T B =
=
=
;

C =
; А Т В+  С =
+
=
.

Пример. Найти произведение матриц А = и В =
.

АВ = 
=
.

ВА =
 = 2  1 + 4  4 + 1  3 = 2 + 16 + 3 = 21.

Пример. Найти произведение матриц А=
, В =

АВ =

=
=
.

Определители (детерминанты).

Определение. Определителем квадратной матрицы А=
называется число, которое может быть вычислено по элементам матрицы по формуле:

det A =
, где (1)

М – детерминант матрицы, полученной из исходной вычеркиванием первой строки и k – го столбца. Следует обратить внимание на то, что определители имеют только квадратные матрицы, т.е. матрицы, у которых число строк равно числу столбцов.

Формула (1) позволяет вычислить определитель матрицы по первой строке, также справедлива формула вычисления определителя по первому столбцу:

det A =
(2)

Вообще говоря, определитель может вычисляться по любой строке или столбцу матрицы, т.е. справедлива формула:

detA =
, i = 1,2,…,n . (3)

Очевидно, что различные матрицы могут иметь одинаковые определители.

Определитель единичной матрицы равен 1.

Для указанной матрицы А число М 1к называется дополнительным минором элемента матрицы a 1 k . Таким образом, можно заключить, что каждый элемент матрицы имеет свой дополнительный минор. Дополнительные миноры существуют только в квадратных матрицах.

Определение. Дополнительный минор произвольного элемента квадратной матрицы a ij равен определителю матрицы, полученной из исходной вычеркиванием i -ой строки и j -го столбца.

Свойство1. Важным свойством определителей является следующее соотношение:

det A = det A T ;

Свойство 2. det (A B) = det A det B.

Свойство 3. det (AB ) = detA detB

Свойство 4. Если в квадратной матрице поменять местами какие-либо две строки (или столбца), то определитель матрицы изменит знак, не изменившись по абсолютной величине.

Свойство 5. При умножении столбца (или строки) матрицы на число ее определитель умножается на это число.

Свойство 6. Если в матрице А строки или столбцы линейно зависимы, то ее определитель равен нулю.

Определение: Столбцы (строки) матрицы называются линейно зависимыми , если существует их линейная комбинация, равная нулю, имеющая нетривиальные (не равные нулю) решения.

Свойство 7. Если матрица содержит нулевой столбец или нулевую строку, то ее определитель равен нулю. (Данное утверждение очевидно, т.к. считать определитель можно именно по нулевой строке или столбцу.)

Свойство 8. Определитель матрицы не изменится, если к элементам одной из его строк(столбца) прибавить(вычесть) элементы другой строки(столбца), умноженные на какое-либо число, не равное нулю.

Свойство 9. Если для элементов какой- либо строки или столбца матрицы верно соотношение: d = d 1 d 2 , e = e 1 e 2 , f = det (AB).

1-й способ: det A = 4 – 6 = -2; det B = 15 – 2 = 13; det (AB) = det A  det B = -26.

2- й способ: AB =
, det (AB ) = 7 18 - 8 19 = 126 –

152 = -26.

1-й курс, высшая математика, изучаем матрицы и основные действия над ними. Здесь мы систематизируем основные операции, которые можно проводить с матрицами. С чего начать знакомство с матрицами? Конечно, с самого простого - определений, основных понятий и простейших операций. Заверяем, матрицы поймут все, кто уделит им хотя бы немного времени!

Определение матрицы

Матрица – это прямоугольная таблица элементов. Ну а если простым языком – таблица чисел.

Обычно матрицы обозначаются прописными латинскими буквами. Например, матрица A , матрица B и так далее. Матрицы могут быть разного размера: прямоугольные, квадратные, также есть матрицы-строки и матрицы-столбцы, называемые векторами. Размер матрицы определяется количеством строк и столбцов. Например, запишем прямоугольную матрицу размера m на n , где m – количество строк, а n – количество столбцов.

Элементы, для которых i=j (a11, a22, .. ) образуют главную диагональ матрицы, и называются диагональными.

Что можно делать с матрицами? Складывать/вычитать , умножать на число , умножать между собой , транспонировать . Теперь обо всех этих основных операциях над матрицами по порядку.

Операции сложения и вычитания матриц

Сразу предупредим, что можно складывать только матрицы одинакового размера. В результате получится матрица того же размера. Складывать (или вычитать) матрицы просто – достаточно только сложить их соответствующие элементы . Приведем пример. Выполним сложение двух матриц A и В размером два на два.

Вычитание выполняется по аналогии, только с противоположным знаком.

На произвольное число можно умножить любую матрицу. Чтобы сделать это, нужно умножить на это число каждый ее элемент. Например, умножим матрицу A из первого примера на число 5:

Операция умножения матриц

Перемножить между собой удастся не все матрицы. Например, у нас есть две матрицы - A и B. Их можно умножить друг на друга только в том случае, если число столбцов матрицы А равно числу строк матрицы В. При этом каждый элемент получившейся матрицы, стоящий в i-ой строке и j-м столбце, будет равен сумме произведений соответствующих элементов в i-й строке первого множителя и j-м столбце второго . Чтобы понять этот алгоритм, запишем, как умножаются две квадратные матрицы:

И пример с реальными числами. Умножим матрицы:

Операция транспонирования матрицы

Транспонирование матрицы – это операция, когда соответствующие строки и столбцы меняются местами. Например, транспонируем матрицу A из первого примера:

Определитель матрицы

Определитель, о же детерминант – одно из основных понятий линейной алгебры. Когда-то люди придумали линейные уравнения, а за ними пришлось выдумать и определитель. В итоге, разбираться со всем этим предстоит вам, так что, последний рывок!

Определитель – это численная характеристика квадратной матрицы, которая нужна для решения многих задач.
Чтобы посчитать определитель самой простой квадратной матрицы, нужно вычислить разность произведений элементов главной и побочной диагоналей.

Определитель матрицы первого порядка, то есть состоящей из одного элемента, равен этому элементу.

А если матрица три на три? Тут уже посложнее, но справиться можно.

Для такой матрицы значение определителя равно сумме произведений элементов главной диагонали и произведений элементов лежащих на треугольниках с гранью параллельной главной диагонали, от которой вычитается произведение элементов побочной диагонали и произведение элементов лежащих на треугольниках с гранью параллельной побочной диагонали.

К счастью, вычислять определители матриц больших размеров на практике приходится редко.

Здесь мы рассмотрели основные операции над матрицами. Конечно, в реальной жизни можно ни разу так и не встретить даже намека на матричную систему уравнений или же наоборот - столкнуться с гораздо более сложными случаями, когда придется действительно поломать голову. Именно для таких случаев и существует профессиональный студенческий сервис . Обращайтесь за помощью, получайте качественное и подробное решение, наслаждайтесь успехами в учебе и свободным временем.

Поделиться