Отрасли биологии ее связи с другими науками. Биология как наука. Связь биологии с другими науками. Место и задачи биологии и подготовке врача. Новая биология. Значение биологии для медицины

План работы:

1. Понятие о биологии, её связь с другими науками………………..2

14. Особенности строения растительной клетки……………………7

30. Проникновение питательных веществ в клетку. Понятие о тургоре, плазмолизе, плазмоплизе микроорганизмов……………...13

45. Антибиотики и ингибирующие вещества. Пути попадания и влияния их на качество молока. Меры предотвращения попадания их в молоко……………………………………………………………15

50. Микрофлора растений и кормов………………………………...18

66. Охарактеризовать возбудителей туберкулёза и бруцеллёза…..22

1. Понятие о биологии, её связь с другими науками.

Наука - это сфера исследовательской деятельности, направленная на получение новых знаний о предметах и явлениях. Наука включает знания о предмете изучения, ее основная задача - полнее и глубже познать его. Главная функция науки - исследование. Предметом исследования методики обучения биологии являются теория и практика обучения, воспитания и развития учащихся по данному предмету.

Методика обучения биологии как любая наука познает объективные законы процессов и явлений, которые она изучает. Выявление их общих закономерностей позволяет ей объяснить и предсказать ход событий и действовать целенаправленно.

Основными признаками науки, как правило, являются цели, предмет ее изучения, методы познания и формы выражения знаний (в виде фундаментальных научных положений, принципов, законов, закономерностей, теорий и фактов, терминов). Имеют значение также история становления и развития науки, имена ученых, обогативших ее своими открытиями.

Цели, стоящие перед методикой обучения биологии, лежат в русле общих педагогических целей и задач. Поэтому данная методика - особая область педагогики, обусловленная спецификой предмета исследования.

Методика обучения биологии базируется на общих педагогических положениях применительно к изучению биологического материала. Вместе с тем она интегрирует специальные (естественно-научные и биологические), психолого-педагогические, мировоззренческие, культурологические и другие профессионально-педагогические знания, умения и отношения.

Методика обучения биологии определяет цели образования, содержание учебного предмета "Биология" и принципы его отбора.

Цели образования наряду с содержанием, процессом и результатом образования являются важным элементом любой педагогической системы. Образование учитывает как социальные цели, так и цели личности. Социальные цели определяются потребностями развивающегося общества. Личностные цели учитывают индивидуальные способности, интересы, потребности в образовании, самообразовании.

Уровень образованности, т. е. овладение биологическими знаниями, умениями и навыками, способствующими активному и полноценному включению в учебную, трудовую, общественную деятельность;

Уровень воспитанности, характеризующий систему мировоззренческих взглядов, убеждений, отношение к окружающему миру, природе, обществу, личности;

Уровень развития, определяющий способности, потребность в саморазвитии и совершенствовании физических и умственных качеств. Цель общего среднего биологического образования определяется с учетом названных ценностей и таких факторов, как:

Целостность человеческой личности;

Прогностичность, т. е. ориентация целей биологического образования на современные и будущие биологические и образовательные ценности. Таким образом общее среднее биологическое образование становится более открытым для обновления и корректировки;

Преемственность в системе непрерывного образования.

Методика обучения биологии также отмечает, что одна из важнейших целей биологического образования - формирование научного мировоззрения, базирующегося на целостности и единстве природы, ее системном и уровневом построении, многообразии, единстве человека и природы. Кроме того, биология ориентирована на формирование знаний о структуре и функционировании биологических систем, об устойчивом развитии природы и общества в их взаимодействии.

Объект и предмет исследования - важнейшие понятия любой науки. Они представляют собой философские категории. Объект выражает содержание реальности, не зависящей от наблюдателя.

Предметами научного познания являются зафиксированные в опыте и включенные в процесс практической деятельности различные аспекты, свойства и отношения объекта. Объект исследования методики обучения биологии - учебно-воспитательный (образовательный) процесс, связанный с данным предметом. Предметом исследования методики являются цели и содержание образовательного процесса, методы, средства и формы обучения, воспитания и развития учащихся.

В развитии науки, ее практическом приложении и оценке достижений достаточно существенная роль принадлежит методам научного исследования. Они являются средством познания изучаемого предмета и способом достижения поставленной цели. Ведущие методы обучения биологии следующие: наблюдение, педагогический эксперимент, моделирование, прогнозирование, тестирование, качественный и количественный анализ педагогических достижений. Названные методы основаны на опыте, чувственном познании. Однако эмпирическое познание не является единственным источником достоверного знания. Выявить сущность предмета и явления, их внутренние связи помогают такие методы теоретического познания, как систематизация, интеграция, дифференциация, абстрагирование, идеализация, системный анализ, сравнение, обобщение.

Научно обоснована структура содержания методики обучения биологии. Она разделяется на общую и частные, или специальные, методики обучения: природоведению, по курсам "Растения. Бактерии. Грибы и Лишайники", по курсу "Животные", по курсам "Человек", "Общая биология".

Общая методика обучения биологии рассматривает основные вопросы всех биологических курсов: концепции биологического образования, цели, задачи, принципы, методы, средства, формы, модели реализации, содержание и структуры, этапность, непрерывность, историю становления и развития биологического образования в стране и мире; мировоззренческое, нравственное и экокультурное воспитание в процессе обучения; единство содержания и методов обучения; взаимосвязь между формами учебной работы; целостность и развитие всех элементов системы биологического образования, которая обеспечивает прочность и осознанность знаний, умений и навыков.

Частные методики исследуют специальные для каждого курса вопросы обучения в зависимости от содержания учебного материала и возраста учащихся.

Общая методика обучения биологии тесно связана со всеми частными биологическими методиками. Ее теоретические выводы базируются на частнометодических исследованиях. А они, в свою очередь, руководствуются общеметодическими положениями для каждого учебного курса. Таким образом, методика как наука едина, в ней неразрывно сочетаются общая и специальные части.

СВЯЗЬ МЕТОДИКИ ОБУЧЕНИЯ БИОЛОГИИ С ДРУГИМИ НАУКАМИ.

Методика обучения биологии, являясь педагогической наукой, неразрывно связана с дидактикой. Это раздел педагогики, изучающий закономерности усвоения знаний, умений и навыков и формирования убеждений учащихся. Дидактика разрабатывает теорию образования и принципы обучения, общие для всех предметов. Методика обучения биологии, давно сложившаяся как самостоятельная область педагогики, разрабатывает теоретические и практические проблемы содержания, форм, методов и средств обучения и воспитания, обусловленные спецификой биологии.

Следует отметить, что дидактика, с одной стороны, опирается в своем развитии на теорию и практику методики (не только биологии, но и других учебных предметов), а с другой - дает общие научные подходы к исследованиям в области методики, обеспечивая единство методологических принципов в исследовании процесса обучения.

Методика обучения биологии находится в тесной взаимосвязи с психологией, поскольку в своей основе опирается на возрастные особенности детей. Методика подчеркивает, что воспитывающее обучение может быть действенным только в том случае, если оно соответствует возрастному развитию учащихся.

Методика обучения биологии тесно связана с биологической наукой. Предмет "Биология" носит синтетический характер. Он отражает едва ли не все основные области биологии: ботанику, зоологию, физиологию растений, животных и человека, цитологию, генетику, экологию, эволюционное учение, происхождение жизни, антропогенез и пр. Для правильного научного объяснения природных явлений, распознавания растений, грибов, животных в природе, их определения, препарирования и экспериментирования необходима хорошая теоретическая и практическая подготовка.

Цель биологической науки - получить новые знания о природе путем исследования. Цель предмета "Биология" - дать знания учащимся (факты, закономерности), добытые биологической наукой.

Методика обучения биологии тесно связана с философией. Она способствует развитию самопознания человека, пониманию места и роли научных открытий в системе общего развития человеческой культуры, позволяет связать разрозненные фрагменты знаний в единую научную картину мира. Философия является теоретической основой методики, вооружает ее научным подходом к многообразным аспектам обучения, воспитания и развития.

Связь методики с философией тем более важна, поскольку изучение основ науки биологии о всевозможных проявлениях живой материи на разных уровнях ее организации ставит целью формирование и развитие материалистического мировоззрения. Эту важную задачу методика обучения биологии решает постепенно, от курса к курсу, с расширением и углублением биологических знаний, подводя учащихся к пониманию природных явлений, движения и развития материи, окружающего мира.

14. Особенности строения растительной клетки.

В растительной клетке есть ядро и все органоиды, свойственные в животной клетке: эндоплазматическая сеть, рибосомы, митохондрии, аппарат Гольджи. Вместе с тем она отличается от животной клетки следующими особенностями строения:

1) прочной клеточной стенкой значительной толщины;

2) особыми органоидами - пластидами, в которых происходит первичный синтез органических веществ из минеральных за счет энергии света - фотосинтез;

3) paзвитой системой вакуолей, в значительной мере обусловливающих осмотические свойства клеток.

Растительная клетка, как и животная, окружена цитоплазматической мембраной, но, кроме нее, ограничена толстой состоящей из целлюлозы клеточной стенкой. Наличие клеточной стенки - специфическая Особенность растений. Она определила малую подвижность растений. Вследствие этого питание и дыхание организма стали зависеть от поверхности тела, контактирующей с окружающей средой, что привело в процессе эволюции к большей расчлененности тела, гораздо более выраженной, чем у животных. Клеточная стенка имеет поры, через которые каналы эндоплаэматической сети соседних клеток сообщаются друг с другом.

Преобладание синтетических процессов над процессами освобождения энергии - одна из наиболее характерных особенностей обмена веществ растительных организмов. Первичный синтез углеводов из неорганических веществ осуществляется в пластидах.

Различают три вида пластид:

1) лейкопласты - бесцветные пластиды, в которых из моносахаридов и дисахаридов синтезируется крахмал (есть лейкопласты, запасающие белки или жиры);

2) хлоропласты - зеленые пластиды, содержащие пигмент хлорофилл, где осуществляется фотосинтез - процесс образования органических молекул из неорганических за счет энергии света,

3) хромопласты, включающие различные пигменты из группы каротиноидов, обусловливающих яркую окраску цветков и плодов. Пластиды могут превращаться друг в друга. Они содержат ДНК и РНК, и увеличение их количества осуществляется делением надвое.

Вакуоли окружены мембраной и рецэвиваются из эндоплазматичеокой сети. Вакуоли содержат в растворенном виде белки, углеводы, низкомолекулярные продукты синтеза, витамины, различные соли. Осмотическое давление, создаваемое растворенными в вакуолярном соке веществами, приводит к тому, что в клетку поступает вода, которая обусловливает тургор - напряженное состояние клеточной стенки. Толстые упругие стенки Цитология (от цито... и...логия) – это наука о клетке. Изучает строение и функции клеток, их связи и отношения в органах и тканях у многоклеточных организмов, а также одноклеточные организмы. Исследуя клетку как важнейшую структурную единицу живого, цитология занимает центральное положение в ряду биологических дисциплин; она тесно связана с гистологией, анатомией растений, физиологией, генетикой, биохимией, микробиологией и др. Изучение клеточного строения организмов было начато микроскопистами 17 в. (Р. Гук, М. Мальпиги, А. Левенгук); в 19 в. была создана единая для всего органического мира клеточная теория (Т. Шванн, 1839). В 20 в. быстрому прогрессу цитологии способствовали новые методы (электронная микроскопия, изотопные индикаторы, культивирование клеток и др.).

В результате работы многих исследователей была создана современная клеточная теория.

Клетка - основная единица строения, функционирования и развития всех живых организмов;

Клетки всех одноклеточных и многоклеточных организмов сходны (гомологичны) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ;

Размножение клеток происходит путем их деления, каждая новая клетка образуется в результате деления исходной (материнской) клетки;

В сложных многоклеточных организмах клетки специализированы по выполняемым ими функциям и образуют ткани; из тканей состоят органы, которые тесно взаимосвязаны и подчинены нервной и гуморальной регуляциям.

Клеточная теория – одно из важнейших обобщений современной биологии.

Все живые существа на Земле, за исключением вирусов, построены из клеток.

Клетка – это элементарная целостная живая система. Необходимо отметить, что клетка животного организма и клетка растения не одинаковы по своему строению.

В растительной клетке есть пластиды, оболочка (которая придает прочность и форму клетки), вакуоли с клеточным соком.

Клетки, несмотря на свои малые размеры, устроены очень сложно. Исследования, проводящиеся в течение многих десятилетий, позволяют воспроизвести достаточно полную картину строения клетки.

Клеточная мембрана – ультрамикроскопическая плёнка, состоящая из двух мономолекулярных слоев белка и расположенного между ними бимолекулярного слоя липидов.

Функции плазматической мембраны клетки:

Барьерная,

Связь с окружающей средой (транспорт веществ),

Связь между клетками тканей в многоклеточных организмах,

защитная.

Цитоплазма – это полужидкая среда клетки, в которой располагаются органоиды клетки. Цитоплазма состоит из воды и белков. Она способна двигаться со скоростью до 7 см/час.

Движение цитоплазмы внутри клетки называют циклозом. Различают круговой и сетчатый циклоз.

В клетке выделяют органоиды. Органоиды – это постоянные клеточные структуры, каждые из которых выполняют свои функции. Среди них выделяют:

Цитоплазматический матрикс,

Эндоплазматическая сеть,

Клеточный центр,

Рибосомы,

Аппарат Гольджи,

Митохондрии,

Пластиды,

Лизосомы,

1. Цитоплазматический матрикс.

Цитоплазматический матрикс представляет собой основную и наиболее важную часть клетки, её истинную внутреннюю среду.

Компоненты цитоплазматического матрикса осуществляют процессы биосинтеза в клетке и содержат ферменты, необходимые для продуцирования энергии.

2. Эндоплазматическая сеть.

Вся внутренняя зона цитоплазмы заполнена многочисленными мелкими каналами и полостями, стенки которых представляют собой мембраны, сходные по своей структуре с плазматической мембраной. Эти каналы ветвятся, соединяются друг с другом и образуют сеть, получившую название эндоплазматической сети. ЭС неоднородна по своему строению. Известны два ее типа - гранулярная и гладкая.

3. Клеточное ядро.

Клеточное ядро- это важнейшая часть клетки. Оно есть почти во всех клетках многоклеточных организмов. Клетки организмов, которые содержат ядро называют эукариотами. Клеточное ядро содержит ДНК- вещество наследственности, в котором зашифрованы все свойства клетки.

В структуре ядра выделяют: ядерную оболочку, нуклеоплазму, ядрышко, хроматин.

Клеточное ядро выполняет 2 функции: хранение наследственной информации и регуляция обмена веществ в клетке.

4. Хромосомы

Хромосома состоит из двух хроматид и после деления ядра становится однохроматидной. К началу следующего деления у каждой хромосомы достраивается вторая хроматида. Хромосомы имеют первичную перетяжку, на которой расположена центромера; перетяжка делит хромосому на два плеча одинаковой или разной длины.

Хроматиновые структуры - носители ДНК. ДНК состоит из участков - генов, несущих наследственную информацию и передающихся от предков к потомкам через половые клетки. В хромосомах синтезируются ДНК, РНК, что служит необходимым фактором передачи наследственной информации при делении клеток и построении молекул белка.

4. Клеточный центр.

Клеточный центр состоит из двух центриолей (дочерняя, материнская). Каждая имеет цилиндрическую форму, стенки образованы девятью триплетами трубочек, а в середине находится однородное вещество. Центриоли расположены перпендикулярно друг к другу. Функция клеточного центра - участие в делении клеток животных и низших растений.

5. Рибосомы

Рибосомы – ультрамикроскопические органеллы округлой или грибовидной формы, состоящие из двух частей - субчастиц. Они не имеют мембранного строения и состоят из белка и РНК. Субчастицы образуются в ядрышке. \

Рибосомы - универсальные органеллы всех клеток животных и растений. Находятся в цитоплазме в свободном состоянии или на мембранах эндоплазматической сети; кроме того, содержатся в митохондриях и хлоропластах.

6. Митохондрии

Митохондрии - микроскопические органеллы, имеющие двухмембранное строение. Внешняя мембрана гладкая, внутренняя - образует различной формы выросты - кристы. В матриксе митохондрии (полужидком веществе) находятся ферменты, рибосомы, ДНК, РНК. Число митохондрий в одной клетке от единиц до нескольких тысяч.

7. Аппарат Гольджи.

В клетках растений и простейших аппарат Гольджи представлен отдельными тельцами серповидной или палочковидной формы. В состав аппарата Гольджи входят: полости, ограниченные мембранами и расположенные группами (по 5-10), а также крупные и мелкие пузырьки, расположенные на концах полостей. Все эти элементы составляют единый комплекс.

Функции: 1) накопление и транспорт веществ, химическая модернизация,

2) образование лизосом,

3) синтез липидов и углеводов на стенках мембран.

8. Пластиды.

Пластиды - это энергетические станции растительной клетки. Они могут превращаться из одного вида в другой. Выделяют несколько видов пластидов: хлоропласты, хромопласты, лейкопласты.

9. Лизосомы.

Лизосомы - микроскопические одномембранные органеллы округлой формы Их число зависит от жизнедеятельности клетки и ее физиологического состояния. Лизосома - это пищеварительная вакуоль, внутри которой находятся растворяющие ферменты. В случае голодания клетки перевариваются некоторые органоиды.

В случае разрушения мембраны лизосомы, клетка переваривает сама себя.

Питание животной и растительной клетки происходит по-разному.

Крупные молекулы белков и полисахаридов проникают в клетку путем фагоцитоза (от греч. фагос - пожирающий и китос - сосуд, клетка), а капли жидкости - путем пиноцитоза (от греч. пино - пью и китос).

Фагоцитоз – это способ питания животных клеток, при котором в клетку попадают питательные вещества.

Пиноцитоз – это универсальный способ питания (и для животных, и для растительных клеток), при котором в клетку попадают питательные вещества в растворённом виде.

В микроскопической клетке содержится несколько тысяч веществ, которые участвуют в разнообразных химических реакциях. Химические процессы, протекающие в клетке, – одно из основных условий ее жизни, развития и функционирования. Все клетки животных и растительных организмов, а также микроорганизмов сходны по химическому составу, что свидетельствует о единстве органического мира.

Из 109 элементов периодической системы Менделеева в клетках обнаружено значительное их большинство. В клетке содержатся и макроэлементы, и микроэлементы.

В заключении сделаем основные выводы:

Клетка - элементарная единица жизни, основа строения, жизнедеятельности, размножения и индивидуального развития всех организмов. Вне клетки нет жизни (исключение - вирусы).

Большинство клеток устроено одинаково: покрыто наружной оболочкой - клеточной мембраной и наполнено жидкостью - цитоплазмой. Цитоплазма содержит многообразные структуры - органелы (ядро, митохондрии, лизосомы и т.д.), которые осуществляют разнообразные процессы.

Клетка происходит только от клетки.

Каждая клетка выполняет собственную функцию и взаимодействует с другими клетками, обеспечивая жизнедеятельность организма.

В клетке нет каких-нибудь особенных элементов, характерных только для живой природы. Это указывает на связь и единство живой и неживой природы.

30. Проникновение питательных веществ в клетку. Понятие о тургоре, плазмолизе, плазмоптизе микроорганизмов.

Механизм питания. Поступление в бактериальную клетку питательных веществ представляет собой сложный физико-химический процесс, которому способствует ряд факторов: разница в концентрации веществ, величина молекул, их растворимость в воде или липидах, рН среды, проницаемость клеточных мембран и т. д. В проникновении питательных веществ в клетку различают четыре возможных механизма.

Наиболее простой способ - пассивная диффузия, при которой поступление вещества в клетку происходит из-за различия градиента концентрации (раз-ницы концентрации по обе стороны цитоплазматической мембраны). Решающее значение имеет величина молекулы. Очевидно, п мембране есть участки, через которые и возможно проникновение веществ небольших размеров. Одним из таких соединений является вода.

Большинство питательных веществ попадает в бактериальную клетку против градиента концентрации, поэтому в таком процессе должны принимать участие ферменты и может расходоваться энергия. Одним из таких механизмов является облегченная диффузия, которая происходит при большей концентрации вещества вне клетки, чем внутри. Облегченная диффузия - процесс специфический и осуществляется особыми мембранными белками, переносчиками, получившими название пермеаз, так как они выполняют функцию ферментов и обладают специфичностью. Они связывают молекулу вещества, переносят в неизмененном виде к внутренней поверхности цитоплазматической мембраны и высвобождают в цитоплазму. Так как перемещение вещества происходит от более высокой концентрации к более низкой, этот процесс протекает без затраты энергии.

Третий возможный механизм транспорта веществ поучил название активного переноса. Этот прессе наблюдается при низких концентрациях субстрата в окружающей среде и перенос растворенных веществ также в неизмененном виде осуществляется против градиента концентрации. В активном переносе веществ участвуют пермеазы. Поскольку концентрация вещества в клетке может в несколько тысяч раз превышать ее во внешней среде, активный перенос обязательно сопровождается затратой энергии. Расходуется аденозинтри-фосфат (АТФ), накапливаемый бактериальной клеткой при окислительно-восстановительных процессах.

И, наконец, при четвертом возможном механизме переноса питательных веществ наблюдается транслокация радикалов - активный перенос химически измененных молекул, которые в целом виде не способны проходить через мембрану. В переносе радикалов участвуют пермеазы.

Выход веществ из бактериальной клетки осуществляется или в виде пассивной диффузии (например, воды), или в процессе облегченной диффузии с участием пермеаз.

Для питания почвенных микроорганизмов небходима органика. Есть два пути поступления органики в почву - корневые выделения растений с послеуборочными остатками и внесение органики в почву извне, ввиде компоста, навоза, сидератов и т.п.

Тургор (от позднелат. turgor вздутие, наполнение), внутреннее гидростатическое давление в живой клетке, вызывающее напряжение клеточной оболочки. У животных тургор клеток обычно невысок, у растительных клеток тургорное давление поддерживает листья и стебли (у травянистых растений) в вертикальном положении, придает растениям прочность и устойчивость. Тургор показатель оводненности и состояния водного режима растений. Снижением тургора сопровождаются процессы автолиза, увядания и старения клеток.

Если клетка находится в гипертоническом растворе, концентрация которого больше концентрации клеточного сока, то скорость диффузии воды из клеточного сока будет превышать скорость диффузии воды в клетку из окружающего раствора. Вследствие выхода воды из клетки объем клеточного сока сокращается, тургор уменьшается. Уменьшение объема клеточной вакуоли сопровождается отделением цитоплазмы от оболочки - происходит плазмолиз.

Плазмолиз (от греч. plasmas вылепленное, оформленное и...лиз), в биологии отделение протопласта от оболочки под действием на клетку гипертонического раствора. Плазмолиз характерен главным образом для клеток растений, имеющих прочную целлюлозную оболочку. Клетки животных в гипертоническом растворе сжимаются.

Плазмоптиз (плазмо- + греч. ptisis дробление) -- набухание микробных

клеток и разрушение их оболочек в гипотоническом растворе.

45. Антибиотики и ингибирующие вещества. Пути попадания и влияния их на качество молока. Меры предотвращения попадания их в молоко.

Антибиотики – являются продуктом жизнедеятельности различных микроорганизмов. Антибиотики оказывают ингибирующее действие на размножение других микробов и потому применяются для лечения различных инфекционных заболеваний. Группа антибиотиков блокирующая синтез нуклеиновых кислот (ДНК и РНК) используется в качестве иммунодепрессантов, так как параллельно с угнетением размножения бактерий, тормозит пролиферацию (размножение) клеток иммунной системы. Представителями этой группы препаратов являются Актиномицин

Особое внимание должно быть уделено мероприятиям по предупреждению попадания антибиотиков в продукты животноводства. В молоко антибиотики могут попасть при лечении животных, а также при скармливании лактирующим коровам концентрированных и других кормов, предназначенных для свиней, или отходов биологической промышленности, содержащих мицелий и другие антибиотики. По-видимому, нельзя абсолютно исключать и возможность преднамеренного добавления антибиотиков в молоко в целях снижения бактериальной контаминации сборного молока.

Для выявления ингибирующих веществ в молоке пользуются несколькими методами. Самым простым, доступным и менее трудоемким является биологический. Сущность метода заключается в подавлении роста чувствительного к ингибирующим веществам молочнокислого стрептококка, например Str. thermo-philus, добавленного в исследуемую пробу молока, содержащего ингибирующее вещество. Результат реакции регистрируется по цвету столбика молока, в которое вносится индикатор. Исходный цвет свидетельствует о положительной реакции, т. е. о наличии ингибирующего вещества. Однако молоко в своем составе содержит так называемые естественные ингибирующие вещества, такие, как лактоферрин, пропердин, лизоцимы и многие другие, которые также подавляют рост молочнокислых бактерий и в частности Str. thermophilus. Поэтому хотя предполагается, что большинство естественных ингибирующих веществ должны разрушаться в момент прогревания пробы в течение 10 мин при 85°С, биологический метод не является специфическим и требуются дополнительные исследования для установления вида добавленного химического вещества или антибиотика. По этой причине до настоящего времени не единого биологического метода, с помощью которого можно было бы выявить ингибирующие вещества в

Проблема загрязнения молока ингибирующими веществами, в том числе антибиотиками, приобретает с каждым годом все большее значение.

К ингибирующим веществам относятся антибиотики, сульфаниламиды, нитрофураны, нитраты, консервирующие (формалин, перекись водорода), нейтрализующие (сода, гидроокись натрия, аммиак), моющие и дезинфицирующие средства и др.

Особую опасность для людей и серьезную проблему для молочной промышленности представляет наличие остаточных количеств антибиотиков, поскольку они могут нарушить производственный процесс, ингибируя заквасочную микрофлору. Это приводит к серьезным финансовым потерям. Но наиболее опасны последствия попадания остатков антибиотиков в организм человека.

Опасность для здоровья человека и животных представляют также пестициды, используемые для защиты растений от вредителей. Молоко, содержащее остаточные их количества, не принимается для переработки. По своему специфическому действию пестициды различаются между собой. Хлорсодержащие инсектициды обладают устойчивостью и липолитическими свойствами, и поэтому их присутствие особенно опасно в пищевых продуктах. Органические эфиры фосфорной кислоты и карбаматы не накапливаются в продуктах питания и не представляют интереса для гигиены молока. Гербициды и фунгициды, как правило, мало устойчивы. Их остатки в молоке до сих пор не обнаружены, поэтому определять их содержание нецелесообразно.

На проявление ингибирующих свойств молока влияют самые различные факторы. Возможными источниками попадания ингибиторов в молоко являются: нарушения в браковке молока при лечении животных; санитарная обработка доильного и молочного оборудования; использование некачественных кормов; попадание ряда химических веществ с кормом.

На ингибирующие свойства молока могут влиять кормление коров и качество кормов. Следует строго соблюдать дозировку химических реагентов при консервировании силоса. На ингибирующие свойства молока может оказать влияние наличие повышенного содержания нитратов или нитритов в кормах.

С целью предотвращения попадания остаточных количеств моющих, моющее-дезинфицирующих и дезинфицирующих средств в молоко и возможного их влияния на результаты определения ингибирующих веществ санитарную обработку доильного и молочного оборудования необходимо проводить строго в соответствии с санитарными правилами. В случае появления положительных реакций на присутствие остаточных количеств санитарных средств на поверхности доильного и молочного оборудования

необходимо провести его повторное ополаскивание водой.

Один из путей, способствующих попаданию антибиотиков и других лекарственных препаратов в молоко, - их внутримышечное введение. Наличие антибиотиков и сульфаниламидов чаще всего наблюдается в том случае, когда коров лечат от маститов.

С учетом специфики воздействия различных ингибирующих веществ как на здоровье людей и животных, так и на технологические свойства молока решение рассматриваемой проблемы во многом зависит от разработки и внедрения высокоэффективных, обладающих высокой специфичностью методов его контроля на присутствие ингибирующих веществ. Мало установить их наличие, важно определить не только тип, но и конкретное вещество, вызвавшее проявление ингибирующих свойств молока. Это позволяет проанализировать ситуацию с целью выяснения возможного источника попадания данного вещества в него.

В настоящее время в стране действуют ГОСТы на методы определения ингибирующих веществ в молоке. В частности, на молочных предприятиях представляется возможным определить присутствие в нем соды, аммиака, перекиси водорода.

Другим важным условием обеспечения безопасности молока, в том числе по его ингибирующим свойствам, является контроль качества исключительно в независимых испытательных лабораториях. В связи с этим назрела необходимость создания государственной нормативной базы, включающей систему расчетов за молоко-сырье между сельскими товаропроизводителями и заводами-покупателями на основе измерений качества молока такими лабораториями.

50. Микрофлора растений и кормов.

Эпифитная микрофлора.

На поверхностных частях растений постоянно присутствует разнообразная микрофлора, называемая эпифитной. На стеблях, листьях, цветах, плодах наиболее часто встречаются следующие неспоровые виды микроорганизмов: Bact, herbicola составляет 40% всей эпифитной микрофлоры, Ps. fluorescens - 40%, молочнокислые бактерии - 10 %, им подобные - 2 %, дрожжи, плесневые грибы, целлюлозные, маслянокислые, термофильные бактерии-

После скашивания и потери сопротивляемости растений, а также в силу механического повреждения их тканей эпифитная и прежде всего гнилостная микрофлора, интенсивно размножаясь, проникает в толщу растительных тканей и вызывает их разложение. Именно поэтому продукцию растениеводства (зерно, грубые и сочные корма) от разрушительного действия эпифитной микрофлоры предохраняют различными методами консервирования.

Известно, что в растениях имеется связанная вода, входящая в состав их химических веществ и свободная - капельно-жидкая. Микроорганизмы могут размножаться в растительной массе только при наличии в ней свободной воды. Одним из наиболее распространенных и доступных методов удаления из продуктов растениеводства свободной воды и, следовательно, их консервирования является высушивание и силосование.

Сушка зерна и сена предусматривает удаление из них свободной воды. Поэтому микроорганизмы на них размножаться не могут до тех пор, пока эти продукты будут сухими.

В свежескошенной неперестоявшей траве воды содержится 70 - 80 %, в высушенном сене только 12-16 %, оставшаяся влага находится в связанном состоянии с органическими веществами и микроорганизмами не используется. Во время сушки сена теряется около 10 % органических веществ, главным образом при разложении белков и сахаров. Особенно большие потери питательных веществ, витаминов и минеральных соединений происходят в высушенном сене, находящемся в прокосах (валках), когда часто идут дожди. Дождевая дистиллированная вода вымывает их до 50 %. Значительные потери сухого вещества происходят в зерне при его самосогревании. Этот процесс обусловлен термогенезом, то есть созданием тепла микроорганизмами. Возникает он потому, что термофильные бактерии используют для своей жизни только 5 - 10 % энергии потребляемых ими питательных веществ, а остальная выделяется в окружающую их среду - зерно, сено.

Силосование кормов. При выращивании кормовых культур (кукурузы, сорго и др.) с одного гектара удается получить в зеленой массе значительно больше кормовых единиц, чем в зерне. По крахмальному эквиваленту питательность зеленой массы при сушке может снизиться до 50 %, а при силосовании только до 20 %. При силосовании не теряются мелкие листья растений, обладающие высокой питательностью, а при высушивании они опадают. Закладку силоса можно производить и при переменной погоде. Хороший силос является сочным, витаминным, молокогонным кормом.

Сущность силосования состоит в том, что в заложенной в емкости измельченной зеленой массе интенсивно размножаются молочнокислые микробы, разлагающие сахара с образованием молочной кислоты, накапливающейся до 1,5-2,5 % к массе силоса. Одновременно размножаются уксуснокислые бактерии, превращающие спирт и другие углеводы в уксусную кислоту; ее накапливается 0,4-0,6 % к массе силоса. Молочная и уксусная кислоты являются сильным ядом для гнилостных микробов, поэтому размножение их прекращается.

Силос сохраняется в хорошем состоянии до трех лет, пока в нем содержится не менее 2 % молочной и уксусной кислот, а рН составляет 4-4,2. Если размножение молочнокислых и уксусных бактерий ослабевает, то концентрация кислот снижается. В это время одновременно начинают размножаться дрожжи, плесени, маслянокислые и гнилостные бактерии и силос портится. Таким образом, получение хорошего силоса зависит прежде всего от наличия в зеленой массе сахароз и интенсивности развития молочнокислых бактерий.

В процессе созревания силоса различают три микробиологические фазы, характеризующиеся специфическим видовым составом микрофлоры.

Первая фаза характеризуется размножением смешанной микрофлоры с некоторым преобладанием гнилостных аэробных неспоровых бактерий - кишечной палочки, псевдомонас, молочнокислых микробов, дрожжей. Спороносные гнилостные и маслянокислые бактерии размножаются медленно и не преобладают над молочнокислыми. Основной средой для развития смешанной микрофлоры в этой стадии является растительный сок, выделяющийся из тканей растений и заполняющий пространство между измельченной растительной массой. Это способствует созданию анаэробных условий в силосе, что угнетает развитие гнилостных бактерий и благоприятствует размножению молочнокислых микробов. Первая фаза при плотной укладке силоса, то есть в анаэробных условиях, продолжается всего 1-3 дня, при рыхлой укладке в аэробных условиях она более продолжительна и длится 1-2 недели. За это время силос разогревается благодаря интенсивным аэробным микробиологическим процессам. Вторая фаза созревания силоса характеризуется бурным размножением молочнокислых микробов, причем вначале развиваются преимущественно кокковые формы, которые затем сменяются молочнокислыми бактериями.

Благодаря накоплению молочной кислоты прекращается развитие всех гнилостных и маслянокислых микроорганизмов, при этом вегетативные их формы погибают, остаются лишь спороносные (в форме спор). При полном соблюдении технологии закладки силоса в этой фазе размножаются гомоферментативные молочнокислые бактерии, образующие з сахаров только молочную кислоту. При нарушении технологии закладки силоса, когда в нем. содержится воздух, развивается микрофлора гетероферментативного брожения, в результате чего образуются нежелательные летучие кислоты - масляная, уксусная и др. Длительность второй фазы - от двух недель до трех месяцев.

Третья фаза характеризуется постепенным отмиранием в силосе молочнокислых микробов из-за высокой концентрации молочной кислоты (2,5 %). В это время созревание силоса завершается, условным показателем пригодности его к скармливанию считается кислотность силосной массы, снижающаяся до рН 4,2 - 4,5 (рис. 37). В аэробных условиях начинают размножаться плесени и дрожжи, которые расщепляют молочную кислоту, этим пользуются маслянокислые и гнилостные бактерии, прорастающие из спор, в результате силос плесневеет и загнивает.

Пороки силоса микробного происхождения. При несоблюдении надлежащих условий закладки и хранения силоса в нем возникают определенные пороки.

Гниение силоса, сопровождающееся значительным самосогреванием, отмечают при рыхлой его укладке и недостаточном уплотнении. Бурному развитию гнилостных и термофильных микробов способствует находящийся в силосе воздух. В результате разложения белка силос приобретает гнилостный, аммиачный запах и становится непригодным

приобретает гнилостный, аммиачный запах и к скармливанию. Гниение силоса происходит в первой микробиологической фазе, когда задерживается развитие молочнокислых микробов и накопление молочной кислоты, подавляющей гнилостных бактерий. Чтобы прекратить развитие последних, необходимо рН в силосе снизить до 4,2-4,5. Гниение силоса вызывают Er. herbicola, E. coli, Ps. aerogenes. P. vulgaris, B. subtilis, Ps. fluorescens, а также плесневые грибы.

Прогоркание силоса обусловлено накоплением в нем масляной кислоты, обладающей резким горьким вкусом и неприятным запахом. В хорошем силосе масляная кислота отсутствует, в силосе среднего качества ее обнаруживают до 0,2%, а в непригодном к скармливанию - до I %.

Возбудители маслянокислого брожения способны превращать молочную в масляную кислоту, а также вызывать гнилостный распад белков, что усугубляет их отрицательное действие на качество силоса. Мас-лянокислое брожение проявляется при медленном развитии молочнокислых бактерий и недостаточном накоплении молочной кислоты, при рН выше 4,7. При быстром же накоплении молочной кислоты в силосе до 2 % и рН 4-4,2 маслянокислого брожения не происходит.

Основные возбудители маслянокислого брожения в силосе: Ps. fluo-rescens, Cl. pasteurianum, Cl. felsineum.

Перекисание силоса наблюдается при энергичном размножении в нем уксуснокислых, а также гнилостных бактерий, способных продуцировать уксусную кислоту. Уксуснокислые бактерии особенно интенсивно размножаются при наличии в силосе этилового спирта, накапливаемого дрожжами спиртового брожения. Дрожжи и уксуснокислые бактерии - аэробы, поэтому значительное содержание уксусной кислоты в силосе и, следовательно, его перекисание отмечают при наличии в силосе воздуха.

Плесневение силоса происходит при наличии в силосе воздуха, что благоприятствует интенсивному развитию плесеней и дрожжей. Эти микроорганизмы всегда обнаруживают на растениях, поэтому при благоприятных условиях начинается их быстрое размножение.

Ризосферная и эпифитная микрофлора могут играть и негативную роль. Корнеплоды нередко поражают гнилью (черный – Alternaria radicina, серый –Botrutus cinirea, картофельный – Phitophtora infenstans). К порче силоса приводит чрезмерная деятельность возбудителей маслянокислого брожения. На вегетирующих растениях размножаются спорынья (claviceps purpurae), вызывающая заболевание эрготизм. Грибы вызывают токсикозы. Возбудитель ботулизма (Cl. вotulinum), попадая в корм с почвой и фикалиями, вызывает тяжелый токсикоз, нередко с летальным исходом. Многие грибы (Aspergillus, Penicillum, Mucor, Fusarium, Stachybotrus) заселяют корма, размножаясь при благоприятных условиях, и вызывают у животных острые или хронические токсикозы, чаще сопровождающиеся неспецифическими симптомами.

Микробиологические препараты используются в рационах животных и птиц. Ферменты улучшают усвоение корма. На микробиологической основе получают витамины, аминокислоты. Возможно использование бактериального белка. Кормовые дрожжи представляют собой хороший белково-витаминный корм. В дрожжах содержится легкопереваримый белок, провитамин D (зргостерин), а также витамины А, В, Е. Размножаются дрожжи очень быстро, поэтому в промышленных условиях удается получать большое количество дрожжевой массы при культивировании их на патоке или осахаренной клетчатке. В настоящее время в нашей стране сухие кормовые дрожжи готовят в большом коли честве. Для их изготовления используется культура кормовых дрожжей.

66. Охарактеризовать возбудителей туберкулёза и бруцеллёза.

Бруцеллез заболевание, которое поражает не только крупный рогатый скот, но и свиней, крыс и других животных. Возбудителями являются бактерии рода Brucella. Это мелкие, неподвижные кокковидные бактерии, грамотрицательные, не образуют спор, аэробы. Содержат эндотоксин. Крайние границы роста 6-45 0 С, температурный оптимум – 37 0 С. При нагревании до 60-65 0 С эти бактерии погибают через 20-30 минут, при кипячении – через несколько секунд. Бруцеллы характеризуются высокой жизнеспособностью: в молочных продуктах (брынзе, сыре, масле) они сохраняются в течение нескольких месяцев. Инкубационный период –1-3 недели и более. Молоко из очагов этой инфекции пастеризуют при повышенной температуре (при 70 0 С в течение 30 минут), кипятят 5 минут или стерилизуют.

Бруцеллез – хроническая болезнь животных. Выявляется в молоке кольцевой пробой, основанной на обнаружении соответствующих антител. В хозяйствах, неблагополучных по бруцеллезу, запрещается вывоз молока оздоравливаемого стада в необеззараженном

виде.Такое молоко пастеризуют и либо вывозят на молокозавод, либо используют внутри хозяйства. Молоко коров, положительно реагирующих на

бруцеллез, кипятят и используют на внутрихозяйственные нужды.

Туберкулез вызывают микобактерии рода Mycobacterium, относящиеся к актиномицетам. Форма клеток изменчива: палочки прямые, ветвистые и изогнутые. Аэробы, неподвижны, спор не образуют, но благодаря высокому содержанию миколовой кислоты и липидов, устойчивы к воздействию кислот, щелочей, спирта, к высушиванию, нагреванию. Сохраняются в молочных продуктах длительное время (в сыре –2 месяца, в масле – до 3 месяцев). Чувствительны к воздействию солнечного света, ультрафиолетовых лучей, высокой температуре: при 70 0 С погибают через 10 минут, при 100 0 С – через 10 секунд. Туберкулез отличает от других инфекций длительный инкубационный период – от нескольких недель до нескольких лет. В целях профилактики этой инфекции не разрешено использовать в пищу молоко от больных животных.

Туберкулез – хроническое заболевание животных. Выделяясь с молоком,

микобактерии туберкулеза, имеющие восковый налет, способны долго со-

храняться во внешней среде. Молоко из неблагополучного по туберкулезу хозяйства пастеризуют непосредственно на ферме при температуре 85 0С в течение 30 мин.

или при температуре 90 0С в течение 5 мин. Обеззараженное таким спосо-

бом молоко, полученное от животных оздоравливаемых групп, отправля-

ется на молокозавод, где его повторно пастеризуют и принимают вторым

сортом. Молоко животных, положительно реагирующих на туберкулин,

обеззараживают кипячением, после чего используют при откорме молод-

няка. Молоко, полученное от животных с клиническими признаками ту-

беркулеза, используют в рационе откормочных животных после 10-

минутного кипячения. Молоко уничтожается при туберкулезе вымени.

План работы:

1. Понятие о биологии, её связь с другими науками………………..2

14. Особенности строения растительной клетки……………………7

30. Проникновение питательных веществ в клетку. Понятие о тургоре, плазмолизе, плазмоплизе микроорганизмов……………...13

45. Антибиотики и ингибирующие вещества. Пути попадания и влияния их на качество молока. Меры предотвращения попадания их в молоко……………………………………………………………15

50. Микрофлора растений и кормов………………………………...18

66. Охарактеризовать возбудителей туберкулёза и бруцеллёза…..22

1. Понятие о биологии, её связь с другими науками.

Наука - это сфера исследовательской деятельности, направленная на получение новых знаний о предметах и явлениях. Наука включает знания о предмете изучения, ее основная задача - полнее и глубже познать его. Главная функция науки - исследование. Предметом исследования методики обучения биологии являются теория и практика обучения, воспитания и развития учащихся по данному предмету.

Методика обучения биологии как любая наука познает объективные законы процессов и явлений, которые она изучает. Выявление их общих закономерностей позволяет ей объяснить и предсказать ход событий и действовать целенаправленно.

Основными признаками науки, как правило, являются цели, предмет ее изучения, методы познания и формы выражения знаний (в виде фундаментальных научных положений, принципов, законов, закономерностей, теорий и фактов, терминов). Имеют значение также история становления и развития науки, имена ученых, обогативших ее своими открытиями.

Цели, стоящие перед методикой обучения биологии, лежат в русле общих педагогических целей и задач. Поэтому данная методика - особая область педагогики, обусловленная спецификой предмета исследования.

Методика обучения биологии базируется на общих педагогических положениях применительно к изучению биологического материала. Вместе с тем она интегрирует специальные (естественно-научные и биологические), психолого-педагогические, мировоззренческие, культурологические и другие профессионально-педагогические знания, умения и отношения.

Методика обучения биологии определяет цели образования, содержание учебного предмета «Биология» и принципы его отбора.

Цели образования наряду с содержанием, процессом и результатом образования являются важным элементом любой педагогической системы. Образование учитывает как социальные цели, так и цели личности. Социальные цели определяются потребностями развивающегося общества. Личностные цели учитывают индивидуальные способности, интересы, потребности в образовании, самообразовании.

Уровень образованности, т. е. овладение биологическими знаниями, умениями и навыками, способствующими активному и полноценному включению в учебную, трудовую, общественную деятельность;

Уровень воспитанности, характеризующий систему мировоззренческих взглядов, убеждений, отношение к окружающему миру, природе, обществу, личности;

Уровень развития, определяющий способности, потребность в саморазвитии и совершенствовании физических и умственных качеств. Цель общего среднего биологического образования определяется с учетом названных ценностей и таких факторов, как:

Целостность человеческой личности;

Прогностичность, т. е. ориентация целей биологического образования на современные и будущие биологические и образовательные ценности. Таким образом общее среднее биологическое образование становится более открытым для обновления и корректировки;

Преемственность в системе непрерывного образования.

Методика обучения биологии также отмечает, что одна из важнейших целей биологического образования - формирование научного мировоззрения, базирующегося на целостности и единстве природы, ее системном и уровневом построении, многообразии, единстве человека и природы. Кроме того, биология ориентирована на формирование знаний о структуре и функционировании биологических систем, об устойчивом развитии природы и общества в их взаимодействии.

Объект и предмет исследования - важнейшие понятия любой науки. Они представляют собой философские категории. Объект выражает содержание реальности, не зависящей от наблюдателя.

Предметами научного познания являются зафиксированные в опыте и включенные в процесс практической деятельности различные аспекты, свойства и отношения объекта. Объект исследования методики обучения биологии - учебно-воспитательный (образовательный) процесс, связанный с данным предметом. Предметом исследования методики являются цели и содержание образовательного процесса, методы, средства и формы обучения, воспитания и развития учащихся.

В развитии науки, ее практическом приложении и оценке достижений достаточно существенная роль принадлежит методам научного исследования. Они являются средством познания изучаемого предмета и способом достижения поставленной цели. Ведущие методы обучения биологии следующие: наблюдение, педагогический эксперимент, моделирование, прогнозирование, тестирование, качественный и количественный анализ педагогических достижений. Названные методы основаны на опыте, чувственном познании. Однако эмпирическое познание не является единственным источником достоверного знания. Выявить сущность предмета и явления, их внутренние связи помогают такие методы теоретического познания, как систематизация, интеграция, дифференциация, абстрагирование, идеализация, системный анализ, сравнение, обобщение.

Научно обоснована структура содержания методики обучения биологии. Она разделяется на общую и частные, или специальные, методики обучения: природоведению, по курсам «Растения. Бактерии. Грибы и Лишайники», по курсу «Животные», по курсам «Человек», «Общая биология».

Общая методика обучения биологии рассматривает основные вопросы всех биологических курсов: концепции биологического образования, цели, задачи, принципы, методы, средства, формы, модели реализации, содержание и структуры, этапность, непрерывность, историю становления и развития биологического образования в стране и мире; мировоззренческое, нравственное и экокультурное воспитание в процессе обучения; единство содержания и методов обучения; взаимосвязь между формами учебной работы; целостность и развитие всех элементов системы биологического образования, которая обеспечивает прочность и осознанность знаний, умений и навыков.

Частные методики исследуют специальные для каждого курса вопросы обучения в зависимости от содержания учебного материала и возраста учащихся.

Общая методика обучения биологии тесно связана со всеми частными биологическими методиками. Ее теоретические выводы базируются на частнометодических исследованиях. А они, в свою очередь, руководствуются общеметодическими положениями для каждого учебного курса. Таким образом, методика как наука едина, в ней неразрывно сочетаются общая и специальные части.

СВЯЗЬ МЕТОДИКИ ОБУЧЕНИЯ БИОЛОГИИ С ДРУГИМИ НАУКАМИ.

Методика обучения биологии, являясь педагогической наукой, неразрывно связана с дидактикой. Это раздел педагогики, изучающий закономерности усвоения знаний, умений и навыков и формирования убеждений учащихся. Дидактика разрабатывает теорию образования и принципы обучения, общие для всех предметов. Методика обучения биологии, давно сложившаяся как самостоятельная область педагогики, разрабатывает теоретические и практические проблемы содержания, форм, методов и средств обучения и воспитания, обусловленные спецификой биологии.

Следует отметить, что дидактика, с одной стороны, опирается в своем развитии на теорию и практику методики (не только биологии, но и других учебных предметов), а с другой - дает общие научные подходы к исследованиям в области методики, обеспечивая единство методологических принципов в исследовании процесса обучения.

Методика обучения биологии находится в тесной взаимосвязи с психологией, поскольку в своей основе опирается на возрастные особенности детей. Методика подчеркивает, что воспитывающее обучение может быть действенным только в том случае, если оно соответствует возрастному развитию учащихся.

Методика обучения биологии тесно связана с биологической наукой. Предмет «Биология» носит синтетический характер. Он отражает едва ли не все основные области биологии: ботанику, зоологию, физиологию растений, животных и человека, цитологию, генетику, экологию, эволюционное учение, происхождение жизни, антропогенез и пр. Для правильного научного объяснения природных явлений, распознавания растений, грибов, животных в природе, их определения, препарирования и экспериментирования необходима хорошая теоретическая и практическая подготовка.

Цель биологической науки - получить новые знания о природе путем исследования. Цель предмета «Биология» - дать знания учащимся (факты, закономерности), добытые биологической наукой.

Методика обучения биологии тесно связана с философией. Она способствует развитию самопознания человека, пониманию места и роли научных открытий в системе общего развития человеческой культуры, позволяет связать разрозненные фрагменты знаний в единую научную картину мира. Философия является теоретической основой методики, вооружает ее научным подходом к многообразным аспектам обучения, воспитания и развития.

Связь методики с философией тем более важна, поскольку изучение основ науки биологии о всевозможных проявлениях живой материи на разных уровнях ее организации ставит целью формирование и развитие материалистического мировоззрения. Эту важную задачу методика обучения биологии решает постепенно, от курса к курсу, с расширением и углублением биологических знаний, подводя учащихся к пониманию природных явлений, движения и развития материи, окружающего мира.

14. Особенности строения растительной клетки.

В растительной клетке есть ядро и все органоиды, свойственные в животной клетке: эндоплазматическая сеть, рибосомы, митохондрии, аппарат Гольджи. Вместе с тем она отличается от животной клетки следующими особенностями строения:

1) прочной клеточной стенкой значительной толщины;

2) особыми органоидами - пластидами, в которых происходит первичный синтез органических веществ из минеральных за счет энергии света - фотосинтез;

3) paзвитой системой вакуолей, в значительной мере обусловливающих осмотические свойства клеток.

Растительная клетка, как и животная, окружена цитоплазматической мембраной, но, кроме нее, ограничена толстой состоящей из целлюлозы клеточной стенкой. Наличие клеточной стенки - специфическая Особенность растений. Она определила малую подвижность растений. Вследствие этого питание и дыхание организма стали зависеть от поверхности тела, контактирующей с окружающей средой, что привело в процессе эволюции к большей расчлененности тела, гораздо более выраженной, чем у животных. Клеточная стенка имеет поры, через которые каналы эндоплаэматической сети соседних клеток сообщаются друг с другом.

Преобладание синтетических процессов над процессами освобождения энергии - одна из наиболее характерных особенностей обмена веществ растительных организмов. Первичный синтез углеводов из неорганических веществ осуществляется в пластидах.

Различают три вида пластид:

1) лейкопласты - бесцветные пластиды, в которых из моносахаридов и дисахаридов синтезируется крахмал (есть лейкопласты, запасающие белки или жиры);

2) хлоропласты - зеленые пластиды, содержащие пигмент хлорофилл, где осуществляется фотосинтез - процесс образования органических молекул из неорганических за счет энергии света,

3) хромопласты, включающие различные пигменты из группы каротиноидов, обусловливающих яркую окраску цветков и плодов. Пластиды могут превращаться друг в друга. Они содержат ДНК и РНК, и увеличение их количества осуществляется делением надвое.

Вакуоли окружены мембраной и рецэвиваются из эндоплазматичеокой сети. Вакуоли содержат в растворенном виде белки, углеводы, низкомолекулярные продукты синтеза, витамины, различные соли. Осмотическое давление, создаваемое растворенными в вакуолярном соке веществами, приводит к тому, что в клетку поступает вода, которая обусловливает тургор - напряженное состояние клеточной стенки. Толстые упругие стенки Цитология (от цито… и… логия) – это наука о клетке. Изучает строение и функции клеток, их связи и отношения в органах и тканях у многоклеточных организмов, а также одноклеточные организмы. Исследуя клетку как важнейшую структурную единицу живого, цитология занимает центральное положение в ряду биологических дисциплин; она тесно связана с гистологией, анатомией растений, физиологией, генетикой, биохимией, микробиологией и др. Изучение клеточного строения организмов было начато микроскопистами 17 в. (Р. Гук, М. Мальпиги, А. Левенгук); в 19 в. была создана единая для всего органического мира клеточная теория (Т. Шванн, 1839). В 20 в. быстрому прогрессу цитологии способствовали новые методы (электронная микроскопия, изотопные индикаторы, культивирование клеток и др.).

В результате работы многих исследователей была создана современная клеточная теория.

Клетка - основная единица строения, функционирования и развития всех живых организмов;

Клетки всех одноклеточных и многоклеточных организмов сходны (гомологичны) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ;

Размножение клеток происходит путем их деления, каждая новая клетка образуется в результате деления исходной (материнской) клетки;

В сложных многоклеточных организмах клетки специализированы по выполняемым ими функциям и образуют ткани; из тканей состоят органы, которые тесно взаимосвязаны и подчинены нервной и гуморальной регуляциям.

Клеточная теория – одно из важнейших обобщений современной биологии.

Все живые существа на Земле, за исключением вирусов, построены из клеток.

Клетка – это элементарная целостная живая система. Необходимо отметить, что клетка животного организма и клетка растения не одинаковы по своему строению.

В растительной клетке есть пластиды, оболочка (которая придает прочность и форму клетки), вакуоли с клеточным соком.

Клетки, несмотря на свои малые размеры, устроены очень сложно. Исследования, проводящиеся в течение многих десятилетий, позволяют воспроизвести достаточно полную картину строения клетки.

Клеточная мембрана – ультрамикроскопическая плёнка, состоящая из двух мономолекулярных слоев белка и расположенного между ними бимолекулярного слоя липидов.

Функции плазматической мембраны клетки:

Барьерная,

Связь с окружающей средой (транспорт веществ),

Связь между клетками тканей в многоклеточных организмах,

защитная.

Цитоплазма – это полужидкая среда клетки, в которой располагаются органоиды клетки. Цитоплазма состоит из воды и белков. Она способна двигаться со скоростью до 7 см/час.

Движение цитоплазмы внутри клетки называют циклозом. Различают круговой и сетчатый циклоз.

В клетке выделяют органоиды. Органоиды – это постоянные клеточные структуры, каждые из которых выполняют свои функции. Среди них выделяют:

Цитоплазматический матрикс,

Эндоплазматическая сеть,

Клеточный центр,

Рибосомы,

Аппарат Гольджи,

Митохондрии,

Пластиды,

Лизосомы,

1. Цитоплазматический матрикс.

Цитоплазматический матрикс представляет собой основную и наиболее важную часть клетки, её истинную внутреннюю среду.

Компоненты цитоплазматического матрикса осуществляют процессы биосинтеза в клетке и содержат ферменты, необходимые для продуцирования энергии.

2. Эндоплазматическая сеть.

Вся внутренняя зона цитоплазмы заполнена многочисленными мелкими каналами и полостями, стенки которых представляют собой мембраны, сходные по своей структуре с плазматической мембраной. Эти каналы ветвятся, соединяются друг с другом и образуют сеть, получившую название эндоплазматической сети. ЭС неоднородна по своему строению. Известны два ее типа - гранулярная и гладкая.

3. Клеточное ядро.

Клеточное ядро- это важнейшая часть клетки. Оно есть почти во всех клетках многоклеточных организмов. Клетки организмов, которые содержат ядро называют эукариотами. Клеточное ядро содержит ДНК- вещество наследственности, в котором зашифрованы все свойства клетки.

В структуре ядра выделяют: ядерную оболочку, нуклеоплазму, ядрышко, хроматин.

Клеточное ядро выполняет 2 функции: хранение наследственной информации и регуляция обмена веществ в клетке.

4. Хромосомы

Хромосома состоит из двух хроматид и после деления ядра становится однохроматидной. К началу следующего деления у каждой хромосомы достраивается вторая хроматида. Хромосомы имеют первичную перетяжку, на которой расположена центромера; перетяжка делит хромосому на два плеча одинаковой или разной длины.

Хроматиновые структуры - носители ДНК. ДНК состоит из участков - генов, несущих наследственную информацию и передающихся от предков к потомкам через половые клетки. В хромосомах синтезируются ДНК, РНК, что служит необходимым фактором передачи наследственной информации при делении клеток и построении молекул белка.

4. Клеточный центр.

Клеточный центр состоит из двух центриолей (дочерняя, материнская). Каждая имеет цилиндрическую форму, стенки образованы девятью триплетами трубочек, а в середине находится однородное вещество. Центриоли расположены перпендикулярно друг к другу. Функция клеточного центра - участие в делении клеток животных и низших растений.

5. Рибосомы

Рибосомы – ультрамикроскопические органеллы округлой или грибовидной формы, состоящие из двух частей - субчастиц. Они не имеют мембранного строения и состоят из белка и РНК. Субчастицы образуются в ядрышке. \

Рибосомы - универсальные органеллы всех клеток животных и растений. Находятся в цитоплазме в свободном состоянии или на мембранах эндоплазматической сети; кроме того, содержатся в митохондриях и хлоропластах.

6. Митохондрии

Митохондрии - микроскопические органеллы, имеющие двухмембранное строение. Внешняя мембрана гладкая, внутренняя - образует различной формы выросты - кристы. В матриксе митохондрии (полужидком веществе) находятся ферменты, рибосомы, ДНК, РНК. Число митохондрий в одной клетке от единиц до нескольких тысяч.

7. Аппарат Гольджи.

В клетках растений и простейших аппарат Гольджи представлен отдельными тельцами серповидной или палочковидной формы. В состав аппарата Гольджи входят: полости, ограниченные мембранами и расположенные группами (по 5-10), а также крупные и мелкие пузырьки, расположенные на концах полостей. Все эти элементы составляют единый комплекс.

Функции: 1) накопление и транспорт веществ, химическая модернизация,

2) образование лизосом,

3) синтез липидов и углеводов на стенках мембран.

8. Пластиды.

Пластиды - это энергетические станции растительной клетки. Они могут превращаться из одного вида в другой. Выделяют несколько видов пластидов: хлоропласты, хромопласты, лейкопласты.

9. Лизосомы.

Лизосомы - микроскопические одномембранные органеллы округлой формы Их число зависит от жизнедеятельности клетки и ее физиологического состояния. Лизосома - это пищеварительная вакуоль, внутри которой находятся растворяющие ферменты. В случае голодания клетки перевариваются некоторые органоиды.

В случае разрушения мембраны лизосомы, клетка переваривает сама себя.

Питание животной и растительной клетки происходит по-разному.

Крупные молекулы белков и полисахаридов проникают в клетку путем фагоцитоза (от греч. фагос - пожирающий и китос - сосуд, клетка), а капли жидкости - путем пиноцитоза (от греч. пино - пью и китос).

Фагоцитоз – это способ питания животных клеток, при котором в клетку попадают питательные вещества.

Пиноцитоз – это универсальный способ питания (и для животных, и для растительных клеток), при котором в клетку попадают питательные вещества в растворённом виде.

В микроскопической клетке содержится несколько тысяч веществ, которые участвуют в разнообразных химических реакциях. Химические процессы, протекающие в клетке, – одно из основных условий ее жизни, развития и функционирования. Все клетки животных и растительных организмов, а также микроорганизмов сходны по химическому составу, что свидетельствует о единстве органического мира.

Из 109 элементов периодической системы Менделеева в клетках обнаружено значительное их большинство. В клетке содержатся и макроэлементы, и микроэлементы.

В заключении сделаем основные выводы:

Клетка - элементарная единица жизни, основа строения, жизнедеятельности, размножения и индивидуального развития всех организмов. Вне клетки нет жизни (исключение - вирусы).

Большинство клеток устроено одинаково: покрыто наружной оболочкой - клеточной мембраной и наполнено жидкостью - цитоплазмой. Цитоплазма содержит многообразные структуры - органелы (ядро, митохондрии, лизосомы и т.д.), которые осуществляют разнообразные процессы.

Клетка происходит только от клетки.

Каждая клетка выполняет собственную функцию и взаимодействует с другими клетками, обеспечивая жизнедеятельность организма.

В клетке нет каких-нибудь особенных элементов, характерных только для живой природы. Это указывает на связь и единство живой и неживой природы.

30. Проникновение питательных веществ в клетку. Понятие о тургоре, плазмолизе, плазмоптизе микроорганизмов.

Механизм питания. Поступление в бактериальную клетку питательных веществ представляет собой сложный физико-химический процесс, которому способствует ряд факторов: разница в концентрации веществ, величина молекул, их растворимость в воде или липидах, рН среды, проницаемость клеточных мембран и т. д. В проникновении питательных веществ в клетку различают четыре возможных механизма.

Наиболее простой способ - пассивная диффузия, при которой поступление вещества в клетку происходит из-за различия градиента концентрации (раз-ницы концентрации по обе стороны цитоплазматической мембраны). Решающее значение имеет величина молекулы. Очевидно, п мембране есть участки, через которые и возможно проникновение веществ небольших размеров. Одним из таких соединений является вода.

Большинство питательных веществ попадает в бактериальную клетку против градиента концентрации, поэтому в таком процессе должны принимать участие ферменты и может расходоваться энергия. Одним из таких механизмов является облегченная диффузия, которая происходит при большей концентрации вещества вне клетки, чем внутри. Облегченная диффузия - процесс специфический и осуществляется особыми мембранными белками, переносчиками, получившими название пермеаз, так как они выполняют функцию ферментов и обладают специфичностью. Они связывают молекулу вещества, переносят в неизмененном виде к внутренней поверхности цитоплазматической мембраны и высвобождают в цитоплазму. Так как перемещение вещества происходит от более высокой концентрации к более низкой, этот процесс протекает без затраты энергии.

Третий возможный механизм транспорта веществ поучил название активного переноса. Этот прессе наблюдается при низких концентрациях субстрата в окружающей среде и перенос растворенных веществ также в неизмененном виде осуществляется против градиента концентрации. В активном переносе веществ участвуют пермеазы. Поскольку концентрация вещества в клетке может в несколько тысяч раз превышать ее во внешней среде, активный перенос обязательно сопровождается затратой энергии. Расходуется аденозинтри-фосфат (АТФ), накапливаемый бактериальной клеткой при окислительно-восстановительных процессах.

И, наконец, при четвертом возможном механизме переноса питательных веществ наблюдается транслокация радикалов - активный перенос химически измененных молекул, которые в целом виде не способны проходить через мембрану. В переносе радикалов участвуют пермеазы.

Выход веществ из бактериальной клетки осуществляется или в виде пассивной диффузии (например, воды), или в процессе облегченной диффузии с участием пермеаз.

Для питания почвенных микроорганизмов небходима органика. Есть два пути поступления органики в почву - корневые выделения растений с послеуборочными остатками и внесение органики в почву извне, ввиде компоста, навоза, сидератов и т.п.

Тургор (от позднелат. turgor вздутие, наполнение), внутреннее гидростатическое давление в живой клетке, вызывающее напряжение клеточной оболочки. У животных тургор клеток обычно невысок, у растительных клеток тургорное давление поддерживает листья и стебли (у травянистых растений) в вертикальном положении, придает растениям прочность и устойчивость. Тургор показатель оводненности и состояния водного режима растений. Снижением тургора сопровождаются процессы автолиза, увядания и старения клеток.

Если клетка находится в гипертоническом растворе, концентрация которого больше концентрации клеточного сока, то скорость диффузии воды из клеточного сока будет превышать скорость диффузии воды в клетку из окружающего раствора. Вследствие выхода воды из клетки объем клеточного сока сокращается, тургор уменьшается. Уменьшение объема клеточной вакуоли сопровождается отделением цитоплазмы от оболочки - происходит плазмолиз.

Плазмолиз (от греч. plasmas вылепленное, оформленное и… лиз), в биологии отделение протопласта от оболочки под действием на клетку гипертонического раствора. Плазмолиз характерен главным образом для клеток растений, имеющих прочную целлюлозную оболочку. Клетки животных в гипертоническом растворе сжимаются.

Плазмоптиз (плазмо- + греч. ptisis дробление) - набухание микробных

клеток и разрушение их оболочек в гипотоническом растворе.

45. Антибиотики и ингибирующие вещества. Пути попадания и влияния их на качество молока. Меры предотвращения попадания их в молоко.

Антибиотики – являются продуктом жизнедеятельности различных микроорганизмов. Антибиотики оказывают ингибирующее действие на размножение других микробов и потому применяются для лечения различных инфекционных заболеваний. Группа антибиотиков блокирующая синтез нуклеиновых кислот (ДНК и РНК) используется в качестве иммунодепрессантов, так как параллельно с угнетением размножения бактерий, тормозит пролиферацию (размножение) клеток иммунной системы. Представителями этой группы препаратов являются Актиномицин

Особое внимание должно быть уделено мероприятиям по предупреждению попадания антибиотиков в продукты животноводства. В молоко антибиотики могут попасть при лечении животных, а также при скармливании лактирующим коровам концентрированных и других кормов, предназначенных для свиней, или отходов биологической промышленности, содержащих мицелий и другие антибиотики. По-видимому, нельзя абсолютно исключать и возможность преднамеренного добавления антибиотиков в молоко в целях снижения бактериальной контаминации сборного молока.

Для выявления ингибирующих веществ в молоке пользуются несколькими методами. Самым простым, доступным и менее трудоемким является биологический. Сущность метода заключается в подавлении роста чувствительного к ингибирующим веществам молочнокислого стрептококка, например Str. thermo-philus, добавленного в исследуемую пробу молока, содержащего ингибирующее вещество. Результат реакции регистрируется по цвету столбика молока, в которое вносится индикатор. Исходный цвет свидетельствует о положительной реакции, т. е. о наличии ингибирующего вещества. Однако молоко в своем составе содержит так называемые естественные ингибирующие вещества, такие, как лактоферрин, пропердин, лизоцимы и многие другие, которые также подавляют рост молочнокислых бактерий и в частности Str. thermophilus. Поэтому хотя предполагается, что большинство естественных ингибирующих веществ должны разрушаться в момент прогревания пробы в течение 10 мин при 85°С, биологический метод не является специфическим и требуются дополнительные исследования для установления вида добавленного химического вещества или антибиотика. По этой причине до настоящего времени не единого биологического метода, с помощью которого можно было бы выявить ингибирующие вещества в

Проблема загрязнения молока ингибирующими веществами, в том числе антибиотиками, приобретает с каждым годом все большее значение.

К ингибирующим веществам относятся антибиотики, сульфаниламиды, нитрофураны, нитраты, консервирующие (формалин, перекись водорода), нейтрализующие (сода, гидроокись натрия, аммиак), моющие и дезинфицирующие средства и др.

Особую опасность для людей и серьезную проблему для молочной промышленности представляет наличие остаточных количеств антибиотиков, поскольку они могут нарушить производственный процесс, ингибируя заквасочную микрофлору. Это приводит к серьезным финансовым потерям. Но наиболее опасны последствия попадания остатков антибиотиков в организм человека.

Опасность для здоровья человека и животных представляют также пестициды, используемые для защиты растений от вредителей. Молоко, содержащее остаточные их количества, не принимается для переработки. По своему специфическому действию пестициды различаются между собой. Хлорсодержащие инсектициды обладают устойчивостью и липолитическими свойствами, и поэтому их присутствие особенно опасно в пищевых продуктах. Органические эфиры фосфорной кислоты и карбаматы не накапливаются в продуктах питания и не представляют интереса для гигиены молока. Гербициды и фунгициды, как правило, мало устойчивы. Их остатки в молоке до сих пор не обнаружены, поэтому определять их содержание нецелесообразно.

На проявление ингибирующих свойств молока влияют самые различные факторы. Возможными источниками попадания ингибиторов в молоко являются: нарушения в браковке молока при лечении животных; санитарная обработка доильного и молочного оборудования; использование некачественных кормов; попадание ряда химических веществ с кормом.

На ингибирующие свойства молока могут влиять кормление коров и качество кормов. Следует строго соблюдать дозировку химических реагентов при консервировании силоса. На ингибирующие свойства молока может оказать влияние наличие повышенного содержания нитратов или нитритов в кормах.

С целью предотвращения попадания остаточных количеств моющих, моющее-дезинфицирующих и дезинфицирующих средств в молоко и возможного их влияния на результаты определения ингибирующих веществ санитарную обработку доильного и молочного оборудования необходимо проводить строго в соответствии с санитарными правилами. В случае появления положительных реакций на присутствие остаточных количеств санитарных средств на поверхности доильного и молочного оборудования

необходимо провести его повторное ополаскивание водой.

Один из путей, способствующих попаданию антибиотиков и других лекарственных препаратов в молоко, - их внутримышечное введение. Наличие антибиотиков и сульфаниламидов чаще всего наблюдается в том случае, когда коров лечат от маститов.

С учетом специфики воздействия различных ингибирующих веществ как на здоровье людей и животных, так и на технологические свойства молока решение рассматриваемой проблемы во многом зависит от разработки и внедрения высокоэффективных, обладающих высокой специфичностью методов его контроля на присутствие ингибирующих веществ. Мало установить их наличие, важно определить не только тип, но и конкретное вещество, вызвавшее проявление ингибирующих свойств молока. Это позволяет проанализировать ситуацию с целью выяснения возможного источника попадания данного вещества в него.

В настоящее время в стране действуют ГОСТы на методы определения ингибирующих веществ в молоке. В частности, на молочных предприятиях представляется возможным определить присутствие в нем соды, аммиака, перекиси водорода.

Другим важным условием обеспечения безопасности молока, в том числе по его ингибирующим свойствам, является контроль качества исключительно в независимых испытательных лабораториях. В связи с этим назрела необходимость создания государственной нормативной базы, включающей систему расчетов за молоко-сырье между сельскими товаропроизводителями и заводами-покупателями на основе измерений качества молока такими лабораториями.

50. Микрофлора растений и кормов.

Эпифитная микрофлора.

На поверхностных частях растений постоянно присутствует разнообразная микрофлора, называемая эпифитной. На стеблях, листьях, цветах, плодах наиболее часто встречаются следующие неспоровые виды микроорганизмов: Bact, herbicola составляет 40% всей эпифитной микрофлоры, Ps. fluorescens - 40%, молочнокислые бактерии - 10 %, им подобные - 2 %, дрожжи, плесневые грибы, целлюлозные, маслянокислые, термофильные бактерии-

После скашивания и потери сопротивляемости растений, а также в силу механического повреждения их тканей эпифитная и прежде всего гнилостная микрофлора, интенсивно размножаясь, проникает в толщу растительных тканей и вызывает их разложение. Именно поэтому продукцию растениеводства (зерно, грубые и сочные корма) от разрушительного действия эпифитной микрофлоры предохраняют различными методами консервирования.

Известно, что в растениях имеется связанная вода, входящая в состав их химических веществ и свободная - капельно-жидкая. Микроорганизмы могут размножаться в растительной массе только при наличии в ней свободной воды. Одним из наиболее распространенных и доступных методов удаления из продуктов растениеводства свободной воды и, следовательно, их консервирования является высушивание и силосование.

Сушка зерна и сена предусматривает удаление из них свободной воды. Поэтому микроорганизмы на них размножаться не могут до тех пор, пока эти продукты будут сухими.

В свежескошенной неперестоявшей траве воды содержится 70 - 80 %, в высушенном сене только 12-16 %, оставшаяся влага находится в связанном состоянии с органическими веществами и микроорганизмами не используется. Во время сушки сена теряется около 10 % органических веществ, главным образом при разложении белков и сахаров. Особенно большие потери питательных веществ, витаминов и минеральных соединений происходят в высушенном сене, находящемся в прокосах (валках), когда часто идут дожди. Дождевая дистиллированная вода вымывает их до 50 %. Значительные потери сухого вещества происходят в зерне при его самосогревании. Этот процесс обусловлен термогенезом, то есть созданием тепла микроорганизмами. Возникает он потому, что термофильные бактерии используют для своей жизни только 5 - 10 % энергии потребляемых ими питательных веществ, а остальная выделяется в окружающую их среду - зерно, сено.

Силосование кормов. При выращивании кормовых культур (кукурузы, сорго и др.) с одного гектара удается получить в зеленой массе значительно больше кормовых единиц, чем в зерне. По крахмальному эквиваленту питательность зеленой массы при сушке может снизиться до 50 %, а при силосовании только до 20 %. При силосовании не теряются мелкие листья растений, обладающие высокой питательностью, а при высушивании они опадают. Закладку силоса можно производить и при переменной погоде. Хороший силос является сочным, витаминным, молокогонным кормом.

Сущность силосования состоит в том, что в заложенной в емкости измельченной зеленой массе интенсивно размножаются молочнокислые микробы, разлагающие сахара с образованием молочной кислоты, накапливающейся до 1,5-2,5 % к массе силоса. Одновременно размножаются уксуснокислые бактерии, превращающие спирт и другие углеводы в уксусную кислоту; ее накапливается 0,4-0,6 % к массе силоса. Молочная и уксусная кислоты являются сильным ядом для гнилостных микробов, поэтому размножение их прекращается.

Силос сохраняется в хорошем состоянии до трех лет, пока в нем содержится не менее 2 % молочной и уксусной кислот, а рН составляет 4-4,2. Если размножение молочнокислых и уксусных бактерий ослабевает, то концентрация кислот снижается. В это время одновременно начинают размножаться дрожжи, плесени, маслянокислые и гнилостные бактерии и силос портится. Таким образом, получение хорошего силоса зависит прежде всего от наличия в зеленой массе сахароз и интенсивности развития молочнокислых бактерий.

В процессе созревания силоса различают три микробиологические фазы, характеризующиеся специфическим видовым составом микрофлоры.

Первая фаза характеризуется размножением смешанной микрофлоры с некоторым преобладанием гнилостных аэробных неспоровых бактерий - кишечной палочки, псевдомонас, молочнокислых микробов, дрожжей. Спороносные гнилостные и маслянокислые бактерии размножаются медленно и не преобладают над молочнокислыми. Основной средой для развития смешанной микрофлоры в этой стадии является растительный сок, выделяющийся из тканей растений и заполняющий пространство между измельченной растительной массой. Это способствует созданию анаэробных условий в силосе, что угнетает развитие гнилостных бактерий и благоприятствует размножению молочнокислых микробов. Первая фаза при плотной укладке силоса, то есть в анаэробных условиях, продолжается всего 1-3 дня, при рыхлой укладке в аэробных условиях она более продолжительна и длится 1-2 недели. За это время силос разогревается благодаря интенсивным аэробным микробиологическим процессам. Вторая фаза созревания силоса характеризуется бурным размножением молочнокислых микробов, причем вначале развиваются преимущественно кокковые формы, которые затем сменяются молочнокислыми бактериями.

Благодаря накоплению молочной кислоты прекращается развитие всех гнилостных и маслянокислых микроорганизмов, при этом вегетативные их формы погибают, остаются лишь спороносные (в форме спор). При полном соблюдении технологии закладки силоса в этой фазе размножаются гомоферментативные молочнокислые бактерии, образующие з сахаров только молочную кислоту. При нарушении технологии закладки силоса, когда в нем. содержится воздух, развивается микрофлора гетероферментативного брожения, в результате чего образуются нежелательные летучие кислоты - масляная, уксусная и др. Длительность второй фазы - от двух недель до трех месяцев.

Третья фаза характеризуется постепенным отмиранием в силосе молочнокислых микробов из-за высокой концентрации молочной кислоты (2,5 %). В это время созревание силоса завершается, условным показателем пригодности его к скармливанию считается кислотность силосной массы, снижающаяся до рН 4,2 - 4,5 (рис. 37). В аэробных условиях начинают размножаться плесени и дрожжи, которые расщепляют молочную кислоту, этим пользуются маслянокислые и гнилостные бактерии, прорастающие из спор, в результате силос плесневеет и загнивает.

Пороки силоса микробного происхождения. При несоблюдении надлежащих условий закладки и хранения силоса в нем возникают определенные пороки.

Гниение силоса, сопровождающееся значительным самосогреванием, отмечают при рыхлой его укладке и недостаточном уплотнении. Бурному развитию гнилостных и термофильных микробов способствует находящийся в силосе воздух. В результате разложения белка силос приобретает гнилостный, аммиачный запах и становится непригодным

приобретает гнилостный, аммиачный запах и к скармливанию. Гниение силоса происходит в первой микробиологической фазе, когда задерживается развитие молочнокислых микробов и накопление молочной кислоты, подавляющей гнилостных бактерий. Чтобы прекратить развитие последних, необходимо рН в силосе снизить до 4,2-4,5. Гниение силоса вызывают Er. herbicola, E. coli, Ps. aerogenes. P. vulgaris, B. subtilis, Ps. fluorescens, а также плесневые грибы.

Прогоркание силоса обусловлено накоплением в нем масляной кислоты, обладающей резким горьким вкусом и неприятным запахом. В хорошем силосе масляная кислота отсутствует, в силосе среднего качества ее обнаруживают до 0,2%, а в непригодном к скармливанию - до I %.

Возбудители маслянокислого брожения способны превращать молочную в масляную кислоту, а также вызывать гнилостный распад белков, что усугубляет их отрицательное действие на качество силоса. Мас-лянокислое брожение проявляется при медленном развитии молочнокислых бактерий и недостаточном накоплении молочной кислоты, при рН выше 4,7. При быстром же накоплении молочной кислоты в силосе до 2 % и рН 4-4,2 маслянокислого брожения не происходит.

Основные возбудители маслянокислого брожения в силосе: Ps. fluo-rescens, Cl. pasteurianum, Cl. felsineum.

Перекисание силоса наблюдается при энергичном размножении в нем уксуснокислых, а также гнилостных бактерий, способных продуцировать уксусную кислоту. Уксуснокислые бактерии особенно интенсивно размножаются при наличии в силосе этилового спирта, накапливаемого дрожжами спиртового брожения. Дрожжи и уксуснокислые бактерии - аэробы, поэтому значительное содержание уксусной кислоты в силосе и, следовательно, его перекисание отмечают при наличии в силосе воздуха.

Плесневение силоса происходит при наличии в силосе воздуха, что благоприятствует интенсивному развитию плесеней и дрожжей. Эти микроорганизмы всегда обнаруживают на растениях, поэтому при благоприятных условиях начинается их быстрое размножение.

Ризосферная и эпифитная микрофлора могут играть и негативную роль. Корнеплоды нередко поражают гнилью (черный – Alternaria radicina, серый –Botrutus cinirea, картофельный – Phitophtora infenstans). К порче силоса приводит чрезмерная деятельность возбудителей маслянокислого брожения. На вегетирующих растениях размножаются спорынья (claviceps purpurae), вызывающая заболевание эрготизм. Грибы вызывают токсикозы. Возбудитель ботулизма (Cl. вotulinum), попадая в корм с почвой и фикалиями, вызывает тяжелый токсикоз, нередко с летальным исходом. Многие грибы (Aspergillus, Penicillum, Mucor, Fusarium, Stachybotrus) заселяют корма, размножаясь при благоприятных условиях, и вызывают у животных острые или хронические токсикозы, чаще сопровождающиеся неспецифическими симптомами.

Микробиологические препараты используются в рационах животных и птиц. Ферменты улучшают усвоение корма. На микробиологической основе получают витамины, аминокислоты. Возможно использование бактериального белка. Кормовые дрожжи представляют собой хороший белково-витаминный корм. В дрожжах содержится легкопереваримый белок, провитамин D (зргостерин), а также витамины А, В, Е. Размножаются дрожжи очень быстро, поэтому в промышленных условиях удается получать большое количество дрожжевой массы при культивировании их на патоке или осахаренной клетчатке. В настоящее время в нашей стране сухие кормовые дрожжи готовят в большом коли честве. Для их изготовления используется культура кормовых дрожжей.

66. Охарактеризовать возбудителей туберкулёза и бруцеллёза.

Бруцеллез заболевание, которое поражает не только крупный рогатый скот, но и свиней, крыс и других животных. Возбудителями являются бактерии рода Brucella. Это мелкие, неподвижные кокковидные бактерии, грамотрицательные, не образуют спор, аэробы. Содержат эндотоксин. Крайние границы роста 6-450С, температурный оптимум – 370С. При нагревании до 60-650С эти бактерии погибают через 20-30 минут, при кипячении – через несколько секунд. Бруцеллы характеризуются высокой жизнеспособностью: в молочных продуктах (брынзе, сыре, масле) они сохраняются в течение нескольких месяцев. Инкубационный период –1-3 недели и более. Молоко из очагов этой инфекции пастеризуют при повышенной температуре (при 700 С в течение 30 минут), кипятят 5 минут или стерилизуют.

Бруцеллез – хроническая болезнь животных. Выявляется в молоке кольцевой пробой, основанной на обнаружении соответствующих антител. В хозяйствах, неблагополучных по бруцеллезу, запрещается вывоз молока оздоравливаемого стада в необеззараженном

виде.Такое молоко пастеризуют и либо вывозят на молокозавод, либо используют внутри хозяйства. Молоко коров, положительно реагирующих на

бруцеллез, кипятят и используют на внутрихозяйственные нужды.

Туберкулез вызывают микобактерии рода Mycobacterium, относящиеся к актиномицетам. Форма клеток изменчива: палочки прямые, ветвистые и изогнутые. Аэробы, неподвижны, спор не образуют, но благодаря высокому содержанию миколовой кислоты и липидов, устойчивы к воздействию кислот, щелочей, спирта, к высушиванию, нагреванию. Сохраняются в молочных продуктах длительное время (в сыре –2 месяца, в масле – до 3 месяцев). Чувствительны к воздействию солнечного света, ультрафиолетовых лучей, высокой температуре: при 700С погибают через 10 минут, при 1000С – через 10 секунд. Туберкулез отличает от других инфекций длительный инкубационный период – от нескольких недель до нескольких лет. В целях профилактики этой инфекции не разрешено использовать в пищу молоко от больных животных.

Туберкулез – хроническое заболевание животных. Выделяясь с молоком,

микобактерии туберкулеза, имеющие восковый налет, способны долго со-

храняться во внешней среде. Молоко из неблагополучного по туберкулезу хозяйства пастеризуют непосредственно на ферме при температуре 85 0С в течение 30 мин.

или при температуре 90 0С в течение 5 мин. Обеззараженное таким спосо-

бом молоко, полученное от животных оздоравливаемых групп, отправля-

ется на молокозавод, где его повторно пастеризуют и принимают вторым

сортом. Молоко животных, положительно реагирующих на туберкулин,

обеззараживают кипячением, после чего используют при откорме молод-

няка. Молоко, полученное от животных с клиническими признаками ту-

беркулеза, используют в рационе откормочных животных после 10-

минутного кипячения. Молоко уничтожается при туберкулезе вымени.

В связи с увеличением объема информации, подлежащего усвоению в период школьного обучения, и в связи с необходимостью подготовки всех учащихся к работе по самообразованию, особо важное значение приобретает изучение роли межпредметных связей в активизации познавательной деятельности обучающихся.

Скачать:


Предварительный просмотр:

Муниципальное бюджетное образовательное учреждение

«Шугаровская средняя общеобразовательная школа»

МЕЖПРЕДМЕТНЫЕ СВЯЗИ БИОЛОГИИ С ПРЕДМЕТАМИ ЕСТЕСТВЕННОНАУЧНОГО И ГУМАНИТАРНОГО ЦИКЛА

Выполнила учитель биологии и химии

МБОУ «Шугаровская СОШ»

Гущина Любовь Дмитриевна

ШУГАРОВО

2013

ВВЕДЕНИЕ ……………………………………………………………………….3

Глава 1. Межпредметные связи в обучении биологией, понятие о межпредметных связях……………………………………………………..5

§1.1. Функции межпредметных связей ……………………………………5

§1.2. Виды межпредметных связей ………………………………………...5

§1.3. Планирование и пути реализации межпредметных связей в обучении биологией ………………………………………………………….5

Глава 2. Межпредметные связи в курсе биологии……………………....8

ЗАКЛЮЧЕНИЕ…………………………………………………..12

ЛИТЕРАТУРА…………………………………………………….13

ВВЕДЕНИЕ

Видишь – вот нить. Незатейливая вещь,

Не так ли? А вот обычный узел.

Ты ведь видел уже такие?

А теперь мы с тобой перевяжем нити узлами.

И получится сеть.

С ней мы можем ловить рыбу или сделать ограду,

Изготовить гамак или придумать что-нибудь еще.

Видишь, какая польза от того,

Что каждая нить теперь не просто сама по себе?...

Они поддерживают друг друга,

складываясь в нечто целое, в систему.

Анатолий Гин.

Одна из важнейших задач современного образования – показать ребятам единство окружающего мира. Для формирования целостной картины мира целесообразно использовать на уроках межпредметные связи, с помощью которых школьники учатся видеть сходные законы и закономерности в развитии тех или иных процессов и явлений.

Межпредметные связи помогают реализовать личностно-ориентированный подход в обучении и воспитании. Учитель имеет возможность опереться на определенный круг интересов и увлечений учащихся. При этом учитываются основные принципы современного образовательного процесса (принцип вариативности обучения, принцип интеграции, принцип целостности содержания образования, принцип систематичности, принцип развивающего обучения, принцип самостоятельности и творческой активности учащихся).

Осуществление межпредметных связей помогает формированию у учащихся цельного представления о явлениях природы и взаимосвязи между ними и поэтому делает знания практически более значимыми и применимыми, это помогает учащимся те знания и умения, которые они приобрели при изучении одних предметов, использовать при изучении других предметов, дает возможность применять их в конкретных ситуациях, при рассмотрении частных вопросов, как в учебной, так и во внеурочной деятельности, в будущей производственной, научной и общественной жизни выпускников средней школы.

Актуальность межпредметных связей заключается в том, что с помощью многосторонних межпредметных связей не только на качественно новом уровне решаются задачи обучения, развития и воспитания учащихся, но также закладывается фундамент для профессионального самоопределения учащихся средних общеобразовательных школ. Именно поэтому межпредметные связи являются важным условием и результатом комплексного подхода в обучении и воспитании школьников.

Глава 1. Межпредметные связи в обучении биологии.

§1.1. Функции межпредметных связей

Межпредметные связи выполняют в обучении биологии ряд функций.

Методологическая функция выражена в том, что только на их основе возможно формирование у учащихся диалектико-материалистических взглядов на природу, современных представлений о ее целостности и развитии, поскольку межпредметные связи способствуют отражению в обучении методологии современного естествознания, которое развивается по линии интеграции идей и методов с позиций системного подхода к познанию природы.

Образовательная функция межпредметных связей состоит в том, что с их помощью учитель биологии формирует такие качества знаний учащихся, как системность, глубина, осознанность, гибкость. Межпредметные связи выступают как средство развития биологических понятий, способствуют усвоению связей между ними и общими естественнонаучными понятиями.

Развивающая функция межпредметных связей определяется их ролью в развитии системного и творческого мышления учащихся, в формировании их познавательной активности, самостоятельности и интереса к познанию природы. Межпредметные связи помогают преодолеть предметную инертность мышления и расширяют кругозор учащихся.

Воспитывающая функция межпредметных связей выражена в их содействии всем направлениям воспитания школьников в обучении биологии, Учитель биологии, опираясь на связи с другими предметами, реализует комплексный подход к воспитанию.

Конструктивная функция межпредметных связей состоит в том, что с их помощью учитель биологии совершенствует содержание учебного материала, методы и формы организации обучения. Реализация межпредметных связей требует совместного планирования учителями предметов естественнонаучного цикла комплексных форм учебной и внеклассной работы, которые предполагают знания ими учебников и программ смежных предметов.

§1.2. Виды межпредметных связей в содержании обучения биологии

Совокупность функций межпредметных связей реализуется в процессе обучения тогда, когда учитель биологии осуществляет все многообразие их видов. Различают связи внутрицикловые (связи биологии с физикой, химией) и межцикловые (связи биологии с историей, трудовым обучением). Виды межпредметных связей делятся на группы, исходя из основных компонентов процесса обучения (содержания, методов, форм организации) : содержательно-информационные и организационно-методические .

Межпредметные связи на уровне фактов (фактические ) - это установление сходства фактов, использование общих фактов, изучаемых в курсах физики, химии, биологии, и их всестороннее рассмотрение с целью обобщения знаний об отдельных явлениях, процессах и объектах природы. Так, в обучении биологии и химии учителя могут использовать данные о химическом составе человеческого тела.

Понятийные межпредметные связи - это расширение и углубление признаков предметных понятий и формирование понятий, общих для родственных предметов (общепредметных). К общепредметным понятиям в курсах естественнонаучного цикла относятся понятия теории строения веществ - тело, вещество, состав, молекула, строение, свойство, а также общие понятия - явление, процесс, энергия и др. Эти понятия широко используются при изучении процессов ассимиляции и диссимиляции. При этом они углубляются, конкретизируются на биологическом материале и приобретают обобщенный, общенаучный характер.

Ряд общебиологических понятий отражает такие сложные процессы живой природы, которые невозможно раскрыть даже на первом этапе их введения без привлечения физико-химических понятий. Так, понятие фотосинтеза сложилось в науке в результате изучения этого процесса физиологией растений и пограничными науками - биофизикой и биохимией.

Теоретические межпредметные связи - это развитие основных положений общенаучных теорий и законов, изучаемых на уроках по родственным предметам, с целью усвоения учащимися целостной теории. Типичным примером служит теория строения вещества, которая представляет собой фундаментальную связь физики и химии, а ее следствия используются для объяснения биологических функций неорганических и органических веществ, их роли в жизни живых организмов.

§1.3. Планирование и пути реализации межпредметных связей в обучении биологии

Использование межпредметных связей - одна из наиболее сложных методических задач учителя биологии. Она требует знаний содержания программ и учебников по другим предметам. Реализация межпредметных связей в практике обучения предполагает сотрудничество учителя биологии с учителями химии, физики, географии; посещения открытых уроков, совместного планирования уроков и т.д. Учитель биологии с учетом общешкольного плана учебно-методической работы разрабатывает индивидуальный план реализации межпредметных связей в биологических курсах.

Методика творческой работы учителя включает ряд этапов:

1) изучение раздела "Межпредметные связи" по каждому биологическому курсу и опорных тем из программ и учебников других предметов, чтение дополнительной научной, научно-популярной и методической литературы;

2) поурочное планирование межпредметных связей с использованием курсовых и тематических планов;

3) разработка средств и методических приемов реализации межпредметных связей на конкретных уроках;

4) разработка методики подготовки и проведения комплексных форм организации обучения;

5) разработка приемов контроля и оценки результатов осуществления межпредметных связей в обучении.

Таким образом, чтобы формировать межпредметные связи в обучении биологии, необходимо ознакомиться с теоретической частью, хорошо ориентироваться в функциях и видах межпредметных связей и только тогда использовать данную методику.

ГЛАВА 2. МЕЖПРЕДМЕТНЫЕ СВЯЗИ В КУРСЕ БИОЛОГИИ

В современных условиях возникает необходимость формирования у школьников не частных, а обобщенных умений, обладающих свойством широкого переноса. Такие умения, будучи сформированными в процессе изучения какого-либо предмета, затем свободно используются учащимися при изучении других предметов и в практической деятельности.

В связи с увеличением объема информации, подлежащего усвоению в период школьного обучения, и в связи с необходимостью подготовки всех учащихся к работе по самообразованию особо важное значение приобретает изучение роли межпредметных связей в активизации познавательной деятельности учащихся. [ 6]

Попробуем рассмотреть несколько тем уроков, которые имеют связь с биологией, литературой, географией, искусством, музыкой.

1. Урок в 6 классе на тему: «Состав семян однодольных и двудольных растений»

Цель урока: изучить химический состав семян однодольных и двудольных растений.

Задачи:

а) общеобразовательные:

  • дать представление о необходимости минеральных и органических веществ для формирования и роста растения;
  • повторить особенности строения семян однодольных и двудольных растений;
  • углубить и расширить знания материала о химическом составе клетки;
  • проверить знания биологической терминологии;

б) развивающие:

Развивать умение работать с натуральными объектами, сравнивать их;

  • развивать умение работать с учебником;
  • уметь применять полученные знания на практике;
  • прививать навыки самостоятельной работы с дополнительной литературой;
  • содействовать развитию воли и настойчивости в учении;
  • формировать умения обобщать и делать выводы;
  • развивать логическое мышление, познавательный интерес к предмету;

в) воспитательные:

  • продолжить формирование научного мировоззрения;
  • научить приемам активного общения в ходе коллективного обсуждения и принятия решения;
  • Осуществлять экологическое, природоохранное воспитание на примере материала урока;
  • воспитывать культуру общения.

Изучение нового материала можно начать с загадок:

1. В малой хатке, в спаленке, спит ребенок маленький,
В кладовой еда лежит, как проснется будет сыт.

(семя с зародышем и питательными веществами)

2. Цветок – крылатка, а плод – лопатка
Плод зелен и молод. Но сладок, как солод.

(горох)

3. Даже в день укоса, кустик ниже проса,
Зато семя одно – ста просинкам равно

(бобы)

4. Из растений, чей портрет выбит на монете?
Чьих плодов нужнее нет на земной планете?

(пшеница)

При проведении лабораторной работы, выясняя химический состав семян, во время беседы о минеральных солях и воде, уместно рассказать об охрана почв: из почвы доступны корням растений только в виде растворов, поэтому важно сохранить влагу в почве.

«… Остановись! Одумайся!

Шепчут человеку леса.

Не оголяй землю.

Не превращай ее в пустыню.

Пощади! – вторит земля.

Ты вырубаешь деревья, это лишает меня влаги.

Я иссыхаю… Скоро я ничего не смогу родить: ни злака, ни цветка».

2. Урок по биологии в 6 классе на тему: «Оплодотворение и опыление у покрытосеменных растений» сопровождается музыкой Н. А. Римского – Корсакова – «Полет шмеля» из оперы «Сказка о царе Салтане».

Природы милое творенье,

Цветок, долины украшенье,

На миг взлелеянный весной,

Безвестен ты в степи глухой!

Скажи: зачем ты так алеешь,

Росой заискрясь, пламенеешь

И дышишь чем – то, как живым,

Благоуханным и святым?

Ты для кого в степи широкой,

Ты для кого от сел далеко?…

(Алексей Кольцов)

Межпредметные связи на уроке:

География – распространение растений на разных материках

Экология – охрана цветущих растений

Музыка – прослушивание музыки

Литература – стихотворения о цветах

3. Урок по биологии в 7 классе на тему: «Класс Костные рыбы».

Во время актуализации знаний, можно прочитать отрывок стихотворения Ф.И.Тютчева

«Иным достался от природы

Инстинкт пророчески – слепой –

Они им чуют, слышат воды»

Используются отрывки из сказок А.С. Пушкина о царе Салтане, о Золотой рыбке, стихотворение Валентина Берестова «Почему у лягушки нет хвоста», басня Крылова «Демьянова уха», картины Виктора Маторина «Пять хлебов и две рыбы», «Семь хлебов», В. Перова «Рыболов», картина Анри Матисса «Красные рыбки».

Во время проведения урока звучит музыка из кинофильма «Человек-амфибия», А Камиль Сен – Санса музыкальное произведение «Карнавал животных» -этюд «Аквариум».

4. Урок по биологии в 8 классе на тему: «Строение и работа сердца»

Новый материал начинается стихотворением Эдуардаса Межелайтиса «Что такое сердце?»
Что такое сердце? Камень твердый?
Яблоко с багрово - красной кожей?
Может быть, меж ребер и аортой
Бьется шар, на шар земной похожий?
Так или иначе, все земное
Умещается в его пределы,
Потому что нет ему покоя,
До всего ему есть дело.

Много произведений посвящено «сердцу», например: М. Горький – «Старуха Изергиль», в котором говорится о смелом сердце Данко, Вильгем Гауф – «Холодное сердце», Булгаков «Собачье сердце».

«Сердцу» посвящали свои произведения не только писатели и поэты, но и музыканты. Музыка не только может поднять настроение, взбодрить или успокоить, она способна лечить серьезные заболевания. Например,

сердечно-сосудистую систему приведет в норму «Свадебный марш» Мендельсона, «Ноктюрн ре-минор» Шопена и «Концерт ре-минор» для скрипки Баха.

В знак верности и любви к удивительному органу человеческому сердцу был поставлен памятник. Огромное сердце из красного гранита весом четыре тонны – символ жизни - украшает двор "Института сердца" в Перми. Открытие первого в России памятника человеческому сердцу состоялось 12 июня 2001 года. Гранитное изваяние представляет собой анатомически точную копию главного человеческого органа.

Таким образом, межпредметность - это современный принцип обучения, который влияет на отбор и структуру учебного материала целого ряда предметов, усиливая системность знаний учащихся, активизирует методы обучения, ориентирует на применение комплексных форм организации обучения, обеспечивая единство учебно-воспитательного процесса. И реализация межпредметных связей является важным средством повышения эффективности познавательной деятельности школьников, так как глубокое и разностороннее раскрытие содержания всех учебных предметов во взаимосвязи и взаимообусловленности способствует:

1.Более прочному системному усвоению учебной информации;

2.Формированию у обучающихся способностей оперативно использовать знания различных дисциплин в усвоении новых знаний;

3. Развитию ключевых компетенций у обучающихся.рровеоеннононроао

4.Широкому применению полученных знаний на практике.

5.Подготовке к итоговой аттестации.

ЗАКЛЮЧЕНИЕ

Межпредметные связи в обучении биологии рассматриваются как дидактический принцип и как условие, захватывая цели и задачи, содержание, методы, средства и формы обучения различным учебным предметам.

Межпредметные связи позволяют вычленить главные элементы содержания образования, предусмотреть развитие системообразующих идей, понятий, общенаучных приемов учебной деятельности, возможности комплексного применения знаний из различных предметов в трудовой деятельности учащихся.

Межпредметные связи влияют на состав и структуру учебных предметов. Каждый учебный предмет является источником тех или иных видов межпредметных связей. Поэтому возможно выделить те связи, которые учитываются в содержании биологии, и, наоборот, идущие от биологии в другие учебные предметы.

Формирование общей системы знаний учащихся о реальном мире, отражающих взаимосвязи различных форм движения материи - одна из основных образовательных функций межпредметных связей. Формирование цельного научного мировоззрения требует обязательного учета межпредметных связей. Комплексный подход в воспитании усилил воспитательные функции межпредметных связей курса биологии, содействуя тем самым раскрытию единства природы общества - человека.

В этих условиях укрепляются связи биологии как с предметами естественнонаучного, так и гуманитарного цикла; улучшаются навыки переноса знаний, их применение и разностороннее осмысление.

Таким образом, межпредметность - это современный принцип обучения, который влияет на отбор и структуру учебного материала целого ряда предметов, усиливая системность знаний учащихся, активизирует методы обучения, ориентирует на применение комплексных форм организации обучения, обеспечивая единство учебно-воспитательного процесса.

ЛИТЕРАТУРА

1. Всесвятский Б. В. Системный подход к биологическому образованию в средней школе. - М.: Просвещение, 1985.

2. Зверев И. Д., Мягкова А. Н. Общая методика преподавания биологии. - М.: Просвещение, 1985.

3. Ильченко В. Р. Перекрестки физики, химии и биологии. - М.: Просвещение, 1986.

4. Максимова В. Н., Груздева Н. В. Межпредметные связи в обучении биологии. - М.: Просвещение, 1987.

5. Максимова В. Н. Межпредметные связи в учебно-воспитательном процессе современной школы. -М.: Просвещение, 1986.

Задачи биологии

Они состоят в изучении закономерностей проявления жизни (строения и функции живых организмов и их сообществ, распространение, происхождение и развитие, связи друг с другом и неживой природой); раскрытии сущности жизни; систематизации многообразия живых организмов.

Связь биологии с другими науками

Биология тесно связана с фундаментальными науками (математикой, физикой, химией), естественными (геологией, географией, почвоведением), общественными (психологией, социологией), прикладными (биотехнологией, бионикой, растениеводством, охраной природы) и входит в комплекс естественных наук, т.е. наук о природе.

Предмет изучения биологии – все проявления жизни, а именно:

Строение и функции живых существ и их природных сообществ;

Распространение, происхождение и развитие новых существ и их сообществ;

Связи живых существ и их сообществ друг с другом и с неживой природой.

Задачи биологии состоят в изучении всех биологических закономерностей и раскрытии сущности жизни. При этом в биологии используется ряд методов, характерных для естественных наук. К основным методам биологии относятся:

Наблюдение, позволяющее описать биологическое явление;

Сравнение, дающее возможность найти закономерности, общие для разных явлений;

Эксперимент, в ходе которого исследователь искусственно создает ситуацию позволяющую выявить глубоко лежащие (скрытые) свойства биологических объектов;

Исторический метод, позволяющий на основе данных о современном мире живого и о его прошлом, раскрывать законы развития живой природы.

Многообразие живой природы настолько велико, что современная биология представляет собой комплекс биологических наук, значительно отличающихся одна от другой. При этом каждая имеет собственный предмет изучения, методы, цели и задачи.

Можно также говорить о трех направлениях биологии или трех образах биологии:

1. Традиционная или натуралистическая биология . Ее объектом изучения является живая природа в ее естественном состоянии и нерасчлененной целостности – «Храм природы», как называл ее Эразма Дарвина. Истоки традиционной биологии восходят к средним векам, хотя вполне естественно здесь вспомнить и работы Аристотеля, который рассматривал вопросы биологии, биологического прогресса, пытался систематизировать живые организма («лестница Природы»). Оформление биологии в самостоятельную науку – натуралистическую биологию приходится на 18-19 века. Первый этап натуралистической биологии ознаменовался созданием классификаций животных и растений. К ним относятся известная классификация К. Линнея (1707 – 1778), являющаяся традиционной систематизацией растительного мира, а также классификация Ж.-Б. Ламарка, применившего эволюционный подход к классифицированию растений и животных. Традиционная биология не утратила своего значения и в настоящее время. В качестве доказательства приводят положение экологии среди биологических наук а также во всем естествознании. Ее позиции и авторитет в настоящее время чрезвычайно высоки, а она в первую очередь основывается в принципах традиционной биологии, поскольку исследует взаимоотношений организмов между собой (биотические факторы) и со средой обитания (абиотические факторы).



2. Функционально-химическая биология, отражающая сближение биологии с точными физико-химическими науками. Особенность физико-химической биологии – широкое использование экспериментальных методов, которые позволяют исследовать живую материю на субмикроскопическом, надмолекулярном и молекулярном уровнях. Одним из важнейших разделов физико-химической биологии является молекулярная биология – наука изучающая структуру макромолекул, лежащих в основе живого вещества. Биологию нередко называют одной из лидирующих наук 21-го века.

К важнейшим экспериментальным методам, использующимся в физико-химической биологии, относятся метод меченых (радиоактивных) атомов, метолы рентгеноструктурного анализа и электронной микроскопии, методы фракционирования (например, разделение различных аминокислот), использование ЭВМ и др.

3. Эволюционная биология . Это направление биологии изучает закономерности исторического развития организмов. В настоящее время концепция эволюционизма стала, фактически, платформой, на которой происходит синтез разнородного и специализированного знания. В основе современной эволюционной биологии лежит теория Дарвина. Интересно и то, что Дарвину в свое время удалось выявить такие факты и закономерности, которые имеют универсальное значение, т.е. теория созданная им, приложима к объяснению явлений, происходящих не только в живой, но и неживой природе. В настоящее время эволюционный подход взят на вооружение всем естествознанием. Вместе с тем, эволюционная биология – самостоятельная область знания, с собственными проблемами, методами исследования и перспективой развития.

В настоящее время предпринимаются попытки синтеза этих трех направлений («образов») биологии и оформления самостоятельной дисциплины – теоретической биологии.

4. Теоретическая биология . Целью теоретической биологии является познание самых фундаментальных и общих принципов, законов и свойств, лежащих в основе живой материи. Здесь разные исследования выдвигают различные мнения по вопросу о том, что должно стать фундаментом теоретической биологии.

Э.С. Бауэр(1935г.) выдвинул в качестве основной характеристики жизни принцип устойчивой неравновесности живых систем.

Л. Берталанфи(1932г.) рассматривал биологические объекты как открытые системы, находящиеся в состоянии динамического равновесия.

Э. Щредингер (1945г.), Б.П. Астауров представляли создание теоретической биологии по образу теоретической физики.

С. Лем (1968г.) выдвинул кибернетическую интерпретацию жизни.

А.А. Малиновский (1960г.) предлагал в качестве основы теоретической биологии математические и системные методы.

Таким образом, задача построения теоретической биологии отличается чрезвычайной сложностью, комплексностью и многоплановостью. Создание такой теории – одна из важнейших задач современной науки. Вместе с тем ряд авторов подчеркивает, что основой теоретической биологии в любом случае служит развитие эволюционного подхода, и, таким образом, теоретическая биология может рассматриваться как дальнейшее развитие эволюционной биологии.

Медицина XXI века практически полностью основана на достижениях биологии. Группы ученых, которые занимаются такими как генетика, молекулярная биология, иммунология, биотехнология, вносят свой вклад в развитие современных методов борьбы с заболеваниями. Это и доказывает связь биологии с медициной.

Биология играет большую роль в развитии медицины

Современные биологические открытия позволяют человечеству выйти на принципиально новый уровень в развитии медицины. Например, японские ученые смогли выделить и размножить естественным путем стволовые клетки, полученные из тканей обычного среднестатистического мужчины. Подобные открытия, несомненно, могут повлиять на медицину будущего.

Экспериментальная биология и медицина тесно связаны. Из отраслей касается не только генетики, молекулярной биологии или биотехнологии, но и таких фундаментальных направлений как ботаника, физиология растений, зоология и, конечно же, анатомия и Глубокие исследования новых видов растений и животных могут дать толчок к открытию безвредных, природных способов борьбы с заболеваниями. Открытия в области анатомии и физиологии способны привести к качественному улучшению процесса лечения, реабилитации или проведения операций.

Проблемы медицины

Современный уровень медицины принципиально отличается от такового, существовавшего 20-30 лет назад. Уменьшилось число детской смертности, увеличился период продолжительности жизни. Но все же сегодня некоторые вопросы не под силу решить даже лучшим врачам.

Возможно, главной проблемой современной медицины является финансирование. Открытие новых препаратов, создание протезов, и тканей - все это требует фантастических затрат. Эта проблема касается и самих пациентов. Большинство сложных хирургических операций требует крупную сумму денег, а некоторые препараты забирают практически всю месячную зарплату. Развитие биологии и открытия во многих ее областях может привести к качественному скачку в медицине, которая станет дешевле, но вместе с тем и совершеннее.

Фундаментальная медицина и биология

Значение биологии в медицине нельзя переоценить: простейшие операции требуют высоких умений в области практической анатомии. Знать строение человека, функции органов, расположение каждого сосуда и нерва - все это является неотъемлемой частью обучения в любом медицинском университете.

Хирургия - это лишь одно из направлений современной медицины. Благодаря многочисленным открытиям в области биологии, человек может получить специализированное и профессиональное лечение. Врач-хирург с помощью новейшего оборудования способен провести высокоуровневые операции, в том числе трансплантации органов и тканей. Уже в 2009 годы была проведена первая операция по пересадке сердца и почки. Все это было достигнуто с помощью открытий ученых-биологов, поэтому роль биологии в медицине неоспорима.

Генетика в медицине

Большое значение биологии в медицине также связано с изучением наследственных заболеваний человека. Изучая передачу генов из поколения в поколение, ученые смогли открыть ряд генетических заболеваний. Сюда же относят и наиболее опасные из них: синдом Дауна, муковисцидоз, гемофилию.

Сегодня стало возможным предсказать появление генетических заболеваний у ребенка. Если некая пара хочет проанализировать, возможно ли появление подобных болезней у их детей, они могут обратиться в специальные клиники. Там, изучив генеалогическое древо родителей, могут высчитать процент появления отклонений у малыша.

Секвенирование генома человека

Прочитать геном человека - одна из важнейших задач современной биологии. Она была решена уже к 2008 году, однако свойства этого генома окончательно не изучены. Предполагается, что в будущем можно будет перейти на персональную медицину с использованием индивидуального паспорта генома человека. Почему так важно узнать генетическую последовательность?

Каждый человек - это индивидуальный организм. Препарат, который способен вылечить заболевание у одного человека, может вызвать побочное воздействие у другого. Сегодня врачи не могут точно предугадать, возникнут ли негативные последствия при воздействии того или иного антибиотика, лекарства. Если геном каждого человека полностью расшифруют, курс лечения будет подобран индивидуально для каждого пациента. Это не только повысит эффективность терапии, но и поможет избежать побочного воздействия препаратов.

Секвенирование генома бактерий, растений и животных уже сегодня приносит свои плоды. Современные ученые-биологи способны использовать гены других организмов в собственных целях. Здесь роль биологии в медицине обусловлена тем, что полезные для человека гены могут помочь при лечении множества заболеваний. Так, бактерии, синтезирующие природный инсулин, уже не выдумка. Более того, проводится в промышленных масштабах на специальных фабриках, где бактерии специально культивируются, а их штаммы используются для получения нужного гормона. В итоге человек, который болен сахарным диабетом, может поддерживать нормальную жизнедеятельность.

Биотехнологии - будущее медицины

Биотехнология - это молодая и вместе с тем одна из важнейших отраслей биологии. На современном этапе развития медицины уже открыто множество способов борьбы с заболеваниями. Среди них - антибиотики, лекарственные препараты животного и растительного происхождения, химические препараты, вакцины. Однако существует проблема, при которой с течением времени эффективность некоторых антибиотиков и лекарств уменьшается. Связано это с тем, что микроорганизмы, особенно постоянно мутируют, приспосабливаясь к новым методам борьбы с препаратами.

Биотехнологии в будущем позволят изменять структуру веществ, создавая новые виды медикаментов. К примеру, можно будет осуществить конформационное изменение молекулы пенициллина, в результате чего мы получим другое вещество с теми же свойствами.

Опухолевые заболевания - это острая проблема современной медицины. Борьба с раковыми клетками является целью первостепенной важности для ученых по всему миру. На сегодняшний день известны такие вещества, которые способны подавлять развитие опухоли. К ним относятся блеомицин и антрациклин. Однако главная проблема состоит в том, что использование таких препаратов может привести к нарушению и остановке работы сердца. Считается, что изменение строения блеомицина и антрациклина избавит от нежелательного воздействия на организм человека. Это только подтверждает большое значение биологии в медицине.

Использование стволовых клеток

Сегодня многие ученые считают, что стволовые клетки - это путь к вечной молодости. Связано это с их специфическими свойствами.

Стволовые клетки способны дифференцироваться абсолютно в любые клетки и ткани организма. Они могут дать начало клеткам крови, нервным клеткам, костным и мышечным клеткам. Зародыш человека полностью состоит из стволовых клеток, что объясняется необходимостью в постоянном делении и построении систем органов и тканей. С возрастом количество стволовых клеток в организме человека уменьшается, что является одной из причин старения.

При трансплантации органов и тканей существует проблема отторжения чужеродных клеток организмом. Это может привести порой к летальному исходу. Чтобы избежать подобной ситуации, ученые сделали попытку выращивания органов из стволовых клеток человека. Такой способ открывает огромные перспективы для трансплантологии, т. к. органы, синтезированные из клеток пациента, не будут отторгаться его организмом.

Биология в современной медицине

Качественное лечение заболеваний напрямую зависит от достижений в области биологии. Огромное значение биологии в медицине также объясняется тем, что современные отрасли науки направлены на совершенствование методов борьбы с болезнями человека. Уже в недалеком будущем человек сможет вылечиться от рака, СПИДа, диабета. Генетические заболевания можно будет обойти еще в младенчестве, а создание идеального человека уже не будет выдумкой.

Поделиться