Параметрическое уравнение прямой. Задача с тремя точками

Параметрические уравнения прямой элементарно получаются из канонического уравнения этой прямой, имеющей вид . Примем за параметр величину, на которую можно умножить левую и правую части канонического уравнения.

Так как один из знаменателей обязательно отличен от нуля, а соответствующий числитель может принимать какие угодно значения, то областью изменения параметра является вся ось вещественных чисел: .

Мы получим или окончательно

Уравнения (1) и есть искомые параметрические уравнения прямой. Эти уравнения допускают механическую интерпретацию. Если считать, что параметр - это время, отсчитываемое от некоторого начального момента, то параметрические уравнения определяют закон движения материальной точки по прямой линии с постоянной скоростью (такое движение происходит по инерции).

Пример 1. Составить на плоскости параметрические уравнения прямой, проходящей через точку и имеющей направляющий вектор .

Решение. Подставляем данные точки и направляющего вектора в (1) и получаем:

Часто в задачах требуется преобразовать параметрические уравнения прямой в другие виды уравнений, а из уравнений других видов получить параметрические уравнения прямой. Разберём несколько таких примеров. Для преобразования параметрических уравнений прямой в общее уравнение прямой сначала следует привести их к каноническому виду, а затем из канонического уравнения получить общее уравнение прямой

Пример 2. Записать уравнение прямой

в общем виде.

Решение. Сначала приводим параметрические уравнения прямой к каноническому уравнению:

Дальнейшими преобразованиями приводим уравнение к общему виду:

Несколько более сложно преобразование общего уравнения в параметрические уравнения прямой, но и для этого действия можно составить чёткий алгоритм. Сначала можно преобразовать общее уравнение в уравнение с угловым коэффициентом и найти из него координаты какой-либо точки, принадлежащей прямой, придавая одной из координат произвольное значение. Когда известны координаты точки и направляющего вектора (из общего уравнения), можно записать параметрические уравнения прямой.

Пример 3. Записать уравнение прямой в виде параметрических уравнений.

Решение. Приводим общее уравнение прямой в уравнение с угловым коэффициентом:

Находим координаты некоторой точки, принадлежащей прямой. Придадим одной из координат точки произвольное значение

Из уравнения прямой с угловым коэффициентом получаем другую координату точки:

Таким образом, нам известны точка и направляющий вектор . Подставляем их данные в (1) и получаем искомые параметрические уравнения прямой:

Пример 4. Найти угловой коэффициент прямой, заданной параметрическими уравнениями

Решение. Параметрические уравнения прямой сначала следует преобразовать в каноническое, затем в общее и, наконец, в уравнение с угловым коэффициентом.

Таким образом, угловой коэффициент заданной прямой:

Пример 5. Составить параметрические уравнения прямой, проходящей через точку и перпендикулярной прямой

Пусть l - некоторая прямая пространства. Как и в планиметрии, любой вектор

а =/= 0, коллинеарный прямой l , называется направляющим вектором этой прямой.

Положение прямой в пространстве полностью определяется заданием направляющего вектора и точки, принадлежащей прямой.

Пусть прямая l с направляющим вектором а проходит через точку M 0 , а М - произвольная точка пространства. Очевидно, что точка М (рис. 197) принадлежит прямой l тогда и только тогда, когда вектор \(\overrightarrow{M_0 M}\) коллинеарен вектору а , т. е.

\(\overrightarrow{M_0 M}\) = ta , t \(\in \) R . (1)

Если точки М и M 0 заданы своими радиус-векторами r и r 0 (рис. 198) относительно некоторой точки О пространства, то \(\overrightarrow{M_0 M}\) = r - r 0 , и уравнение (1) принимает вид

r = r 0 + ta , t \(\in \) R . (2)

Уравнения (1) и (2) называются векторно-параметрическими уравнениями прямой. Переменная t в векторно-параметрических уравнениях прямой называется параметром .

Пусть точка M 0 прямой l и направляющий вектор а заданы своими координатами:

M 0 (х 0 ; у 0 , z 0), а = (а 1 ; а 2 ; а 3).

Тогда, если (х; у; z ) - координаты произвольной точки М прямой l , то

\(\overrightarrow{M_0 M} \) = (х - х 0 ; у - у 0 ; z - z 0)

и векторное уравнение (1) равносильно следующим трем уравнениям:

х - х 0 = 1 , у - у 0 = 2 , z - z 0 = 3

$$ \begin{cases} x = x_0 + ta_1 \\ y = y_0 + ta_2 \\ z = z_0 + ta_3, \;\;t\in R\end{cases} (3)$$

Уравнения (3) называются параметрическими уравнениями прямой в пространстве.

Задача 1. Написать параметрические уравнения прямой, проходящей через точку

M 0 (-3; 2; 4) и имеющей направляющий вектор а = (2; -5; 3).

В данном случае х 0 = -3, у 0 = 2, z 0 = 4; а 1 = 2; а 2 = -5; а 3 = 3. Подставив эти значения в формулы (3), получим параметрические уравнения данной прямой

$$ \begin{cases} x = -3 - 2t \\ y = 2 - 5t \\ z = 4 + 3t, \;\;t\in R\end{cases} $$

Исключим параметр t из уравнений (3). Это можно сделать, так как а =/= 0, и поэтому одна из координат вектора а заведомо отлична от нуля.

Пусть сначала все координаты отличны от нуля. Тогда

$$ t=\frac{x-x_0}{a_1},\;\;t=\frac{y-y_0}{a_2},\;\;t=\frac{z-z_0}{a_3} $$

и, следовательно,

$$ \frac{x-x_0}{a_1}=\frac{y-y_0}{a_2}=\frac{z-z_0}{a_3} \;\; (4)$$

Эти уравнения называются каноническими уравнениями прямой .

Заметим, что уравнения (4) образуют систему двух уравнений с тремя переменными х, у и z.

Если в уравнениях (3) одна из координат вектора а , например а 1 равна нулю, то, исключив параметр t , снова получим систему двух уравнений с тремя переменными х, у и z :

\(x=x_0, \;\; \frac{y-y_0}{a_2}=\frac{z-z_0}{a_3}\)

Эти уравнения также называются каноническими уравнениями прямой. Для единообразия их также условно записывают в виде (4)

\(\frac{x-x_0}{0}=\frac{y-y_0}{a_2}=\frac{z-z_0}{a_3}\)

считая, что если знаменатель равен нулю, то равен нулю и соответствующий числитель. Эти уравнения являются уравнениями прямой, проходящей через точку M 0 (х 0 ; у 0 , z 0) параллельно координатной плоскости yOz , так как этой плоскости параллелен ее направляющий вектор (0; а 2 ; а 3).

Наконец, если в уравнениях (3) две координаты вектора а , например а 1 и а 2 равны нулю, то эти уравнения принимают вид

х = х 0 , y = у 0 , z = z 0 + ta 3 , t \(\in \) R .

Это уравнения прямой, проходящей через точку M 0 (х 0 ; у 0 ; z 0) параллельно оси Oz . Для такой прямой х = х 0 , y = у 0 , a z - любое число. И в этом случае для единообразия уравнения прямой можно записывать (с той же оговоркой) в виде (4)

\(\frac{x-x_0}{0}=\frac{y-y_0}{0}=\frac{z-z_0}{a_3}\)

Таким образом, для любой прямой пространства можно написать канонические уравнения (4), и, наоборот, любое уравнение вида (4) при условии, что хотя бы один из коэффициентов а 1 , а 2 , а 3 не равен нулю, задает некоторую прямую пространства.

Задача 2. Написать канонические уравнения прямой, проходящей через точку M 0 (- 1; 1, 7) параллельно вектору а = (1; 2; 3).

Уравнения (4) в данном случае записываются слeдующим образом:

\(\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-7}{3}\)

Выведем уравнения прямой, проходящей через две данные точки M 1 (х 1 ; у 1 ; z 1) и

M 2 (х 2 ; у 2 ; z 2). Очевидно, что за направляющий вектор этой прямой можно взять вектор a = (х 2 - х 1 ; у 2 - у 1 ; z 2 - z 1), а за точку М 0 , через которую проходит прямая, например, точку M 1 . Тогда уравнения (4) запишутся так:

\(\frac{x-x_1}{x_2 - x_1}=\frac{y-y_1}{y_2 - y_1}=\frac{z-z_1}{z_2 - z_1}\) (5)

Это и есть уравнения прямой, проходящей через две точки M 1 (х 1 ; у 1 ; z 1) и

M 2 (х 2 ; у 2 ; z 2).

Задача 3. Написать уравнения прямой, проходящей через точки M 1 (-4; 1; -3) и M 2 (-5; 0; 3).

В данном случае х 1 = -4, у 1 = 1, z 1 = -3, х 2 = -5, у 2 = 0, z 2 = 3. Подставив эти значения в формулы (5), получим

\(\frac{x+4}{-1}=\frac{y-1}{-1}=\frac{z+3}{6}\)

Задача 4. Написать уравнения прямой, проходящей через точки M 1 (3; -2; 1) и

M 2 (5; -2; 1 / 2).

После подстановки координат точек M 1 и M 2 в уравнения (5) получим

\(\frac{x-3}{2}=\frac{y+2}{0}=\frac{z-1}{-\frac{1}{2}}\)

Одним из подпунктов темы «Уравнение прямой на плоскости» является вопрос составления параметрических уравнений прямой на плоскости в прямоугольной системе координат. В статье ниже рассматривается принцип составления подобных уравнений при определенных известных данных. Покажем, как от параметрических уравнений переходить к уравнениям иного вида; разберем решение типовых задач.

Конкретная прямая может быть определена, если задать точку, которая принадлежит этой прямой, и направляющий вектор прямой.

Допустим, нам задана прямоугольная система координат O x y . А также заданы прямая а с указанием лежащей на ней точки М 1 (x 1 , y 1) и направляющий вектор заданной прямой a → = (a x , a y) . Дадим описание заданной прямой a , используя уравнения.

Используем произвольную точку М (x , y) и получим вектор М 1 М → ; вычислим его координаты по координатам точек начала и конца: M 1 M → = (x - x 1 , y - y 1) . Опишем полученное: прямая задана множеством точек М (x , y) , проходит через точку М 1 (x 1 , y 1) и имеет направляющий вектор a → = (a x , a y) . Указанное множество задает прямую только тогда, когда векторы M 1 M → = (x - x 1 , y - y 1) и a → = (a x , a y) являются коллинеарными.

Существует необходимое и достаточное условие коллинеарности векторов, которое в данном случае для векторов M 1 M → = (x - x 1 , y - y 1) и a → = (a x , a y) возможно записать в виде уравнения:

M 1 M → = λ · a → , где λ – некоторое действительное число.

Определение 1

Уравнение M 1 M → = λ · a → называют векторно-параметрическим уравнением прямой.

В координатной форме оно имеет вид:

M 1 M → = λ · a → ⇔ x - x 1 = λ · a x y - y 1 = λ · a y ⇔ x = x 1 + a x · λ y = y 1 + a y · λ

Уравнения полученной системы x = x 1 + a x · λ y = y 1 + a y · λ носят название параметрических уравнений прямой на плоскости в прямоугольной системе координат. Суть названия в следующем: координаты всех точек прямой возможно определить по параметрическим уравнениям на плоскости вида x = x 1 + a x · λ y = y 1 + a y · λ при переборе всех действительных значений параметра λ

Согласно вышесказанному, параметрические уравнения прямой на плоскости x = x 1 + a x · λ y = y 1 + a y · λ определяют прямую линию, которая задана в прямоугольной системе координат, проходит через точку М 1 (x 1 , y 1) и имеет направляющий вектор a → = (a x , a y) . Следовательно, если заданы координаты некоторой точки прямой и координаты ее направляющего вектора, то возможно сразу записать параметрические уравнения заданной прямой.

Пример 1

Необходимо составить параметрические уравнения прямой на плоскости в прямоугольной системе координат, если заданы принадлежащая ей точка М 1 (2 , 3) и ее направляющий вектор a → = (3 , 1) .

Решение

На основе исходных данных получим: x 1 = 2 , y 1 = 3 , a x = 3 , a y = 1 . Параметрические уравнения будут иметь вид:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x = 2 + 3 · λ y = 3 + 1 · λ ⇔ x = 2 + 3 · λ y = 3 + λ

Наглядно проиллюстрируем:

Ответ: x = 2 + 3 · λ y = 3 + λ

Необходимо отметить: если вектор a → = (a x , a y) служит направляющим вектором прямой а, а точки М 1 (x 1 , y 1) и М 2 (x 2 , y 2) принадлежат этой прямой, то ее возможно определить, задав параметрическими уравнениями вида: x = x 1 + a x · λ y = y 1 + a y · λ , а также и таким вариантом: x = x 2 + a x · λ y = y 2 + a y · λ .

К примеру, нам заданы направляющий вектор прямой a → = (2 , - 1) , а также точки М 1 (1 , - 2) и М 2 (3 , - 3) , принадлежащие этой прямой. Тогда прямую определяют параметрические уравнения: x = 1 + 2 · λ y = - 2 - λ или x = 3 + 2 · λ y = - 3 - λ .

Следует обратить внимание и на такой факт: если a → = (a x , a y) - направляющий вектор прямой a , то ее направляющим векторомбудет и любой из векторов μ · a → = (μ · a x , μ · a y) , где μ ϵ R , μ ≠ 0 .

Таким образом, прямая а на плоскости в прямоугольной системе координат может быть определена параметрическими уравнениями: x = x 1 + μ · a x · λ y = y 1 + μ · a y · λ при любом значении μ , отличном от нуля.

Допустим, прямая а задана параметрическими уравнениями x = 3 + 2 · λ y = - 2 - 5 · λ . Тогда a → = (2 , - 5) - направляющий векторэтой прямой. А также любой из векторов μ · a → = (μ · 2 , μ · - 5) = 2 μ , - 5 μ , μ ∈ R , μ ≠ 0 станет направляющим вектором для заданной прямой. Для наглядности рассмотрим конкретный вектор - 2 · a → = (- 4 , 10) , ему соответствует значение μ = - 2 . В таком случае заданную прямую можно также определить параметрическими уравнениями x = 3 - 4 · λ y = - 2 + 10 · λ .

Переход от параметрических уравнений прямой на плоскости к прочим уравнениям заданной прямой и обратно

В решении некоторых задач применение параметрических уравнений является не самым оптимальным вариантом, тогда возникает необходимость перевода параметрических уравнений прямой в уравнения прямой другого вида. Рассмотрим, как же это сделать.

Параметрическим уравнениям прямой вида x = x 1 + a x · λ y = y 1 + a y · λ будет соответствовать каноническое уравнение прямой на плоскости x - x 1 a x = y - y 1 a y .

Разрешим каждое из параметрических уравнений относительно параметра λ , приравняем правые части полученных равенств и получим каноническое уравнение заданной прямой:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ λ = x - x 1 a x λ = y - y 1 a y ⇔ x - x 1 a x = y - y 1 a y

При этом не должно смущать, если a x или a y будут равны нулю.

Пример 2

Необходимо осуществить переход от параметрических уравнений прямой x = 3 y = - 2 - 4 · λ к каноническому уравнению.

Решение

Запишем заданные параметрические уравнения в следующем виде: x = 3 + 0 · λ y = - 2 - 4 · λ

Выразим параметр λ в каждом из уравнений: x = 3 + 0 · λ y = - 2 - 4 · λ ⇔ λ = x - 3 0 λ = y + 2 - 4

Приравняем правые части системы уравнений и получим требуемое каноническое уравнение прямой на плоскости:

x - 3 0 = y + 2 - 4

Ответ: x - 3 0 = y + 2 - 4

В случае, когда необходимо записать уравнение прямой вида A x + B y + C = 0 , при этом заданы параметрические уравнения прямой на плоскости, необходимо сначала осуществить переход к каноническому уравнению, а затем к общему уравнению прямой. Запишем всю последовательность действий:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ λ = x - x 1 a x λ = y - y 1 a y ⇔ x - x 1 a x = y - y 1 a y ⇔ ⇔ a y · (x - x 1) = a x · (y - y 1) ⇔ A x + B y + C = 0

Пример 3

Необходимо записать общее уравнение прямой, если заданы определяющие ее параметрические уравнения: x = - 1 + 2 · λ y = - 3 · λ

Решение

Для начала осуществим переход к каноническому уравнению:

x = - 1 + 2 · λ y = - 3 · λ ⇔ λ = x + 1 2 λ = y - 3 ⇔ x + 1 2 = y - 3

Полученная пропорция идентична равенству - 3 · (x + 1) = 2 · y . Раскроем скобки и получим общее уравнение прямой: - 3 · x + 1 = 2 · y ⇔ 3 x + 2 y + 3 = 0 .

Ответ: 3 x + 2 y + 3 = 0

Следуя вышеуказанной логике действий, для получения уравнения прямой с угловым коэффициентом, уравнения прямой в отрезках или нормального уравнения прямой необходимо получить общее уравнение прямой, а от него осуществлять дальнейший переход.

Теперь рассмотрим обратное действие: запись параметрических уравнений прямой при другом заданном виде уравнений этой прямой.

Самый простой переход: от канонического уравнения к параметрическим. Пусть задано каноническое уравнение вида: x - x 1 a x = y - y 1 a y . Каждое из отношений этого равенства примем равным параметру λ:

x - x 1 a x = y - y 1 a y = λ ⇔ λ = x - x 1 a x λ = y - y 1 a y

Разрешим полученные уравнения относительно переменных x и y:

x = x 1 + a x · λ y = y 1 + a y · λ

Пример 4

Необходимо записать параметрические уравнения прямой, если известно каноническое уравнение прямой на плоскости: x - 2 5 = y - 2 2

Решение

Приравняем части известного уравнения к параметру λ: x - 2 5 = y - 2 2 = λ . Из полученного равенства получим параметрические уравнения прямой: x - 2 5 = y - 2 2 = λ ⇔ λ = x - 2 5 λ = y - 2 5 ⇔ x = 2 + 5 · λ y = 2 + 2 · λ

Ответ: x = 2 + 5 · λ y = 2 + 2 · λ

Когда необходимо осуществить переход к параметрическим уравнениям от заданного общего уравнения прямой, уравнения прямой с угловым коэффициентом или уравнения прямой в отрезках, необходимо исходное уравнение привести к каноническому, а после осуществлять переход к параметрическим уравнениям.

Пример 5

Необходимо записать параметрические уравнения прямой при известном общем уравнении этой прямой: 4 x - 3 y - 3 = 0 .

Решение

Заданное общее уравнение преобразуем в уравнение канонического вида:

4 x - 3 y - 3 = 0 ⇔ 4 x = 3 y + 3 ⇔ ⇔ 4 x = 3 y + 1 3 ⇔ x 3 = y + 1 3 4

Приравняем обе части равенства к параметру λ и получим требуемые параметрические уравнения прямой:

x 3 = y + 1 3 4 = λ ⇔ x 3 = λ y + 1 3 4 = λ ⇔ x = 3 · λ y = - 1 3 + 4 · λ

Ответ: x = 3 · λ y = - 1 3 + 4 · λ

Примеры и задачи с параметрическими уравнениями прямой на плоскости

Рассмотрим чаще всего встречаемые типы задач с использованием параметрических уравнений прямой на плоскости в прямоугольной системе координат.

  1. В задачах первого типа заданы координаты точек, принадлежащих или нет прямой, описанной параметрическими уравнениями.

Решение таких задач опирается на следующий факт: числа (x , y) , определяемые из параметрических уравнений x = x 1 + a x · λ y = y 1 + a y · λ при некотором действительном значении λ , являются координатами точки, принадлежащей прямой, которая описывается этими параметрическими уравнениями.

Пример 6

Необходимо определить координаты точки, которая лежит на прямой, заданной параметрическими уравнениями x = 2 - 1 6 · λ y = - 1 + 2 · λ при λ = 3 .

Решение

Подставим в заданные параметрические уравнения известное значение λ = 3 и осуществим вычисление искомых координат: x = 2 - 1 6 · 3 y = - 1 + 2 · 3 ⇔ x = 1 1 2 y = 5

Ответ: 1 1 2 , 5

Также возможна следующая задача: пусть задана некоторая точка M 0 (x 0 , y 0) на плоскости в прямоугольной системе координат и нужно определить, принадлежит ли эта точка прямой, описываемой параметрическими уравнениями x = x 1 + a x · λ y = y 1 + a y · λ .

Чтобы решить подобную задачу, необходимо подставить координаты заданной точки в известные параметрические уравнения прямой. Если будет определено, что возможно такое значение параметра λ = λ 0 , при котором будут верными оба параметрических уравнения, тогда заданная точка является принадлежащей заданной прямой.

Пример 7

Заданы точки М 0 (4 , - 2) и N 0 (- 2 , 1) . Необходимо определить, являются ли они принадлежащими прямой, определенной параметрическими уравнениями x = 2 · λ y = - 1 - 1 2 · λ .

Решение

Подставим координаты точки М 0 (4 , - 2) в заданные параметрические уравнения:

4 = 2 · λ - 2 = - 1 - 1 2 · λ ⇔ λ = 2 λ = 2 ⇔ λ = 2

Делаем вывод, что точка М 0 принадлежит заданной прямой, т.к. соответствует значению λ = 2 .

2 = 2 · λ 1 = - 1 - 1 2 · λ ⇔ λ = - 1 λ = - 4

Очевидно, что не существует такого параметра λ , которому будет соответствовать точка N 0 . Другими словами, заданная прямая не проходит через точку N 0 (- 2 , 1) .

Ответ: точка М 0 принадлежит заданной прямой; точка N 0 не принадлежит заданной прямой.

  1. В задачах второго типа требуется составить параметрические уравнения прямой на плоскости в прямоугольной системе координат. Самый простой пример такой задачи (при известных координатах точки прямой и направляющего вектора) был рассмотрен выше. Теперь разберем примеры, в которых сначала нужно найти координаты направляющего вектора, а потом записать параметрические уравнения.
Пример 8

Задана точка M 1 1 2 , 2 3 . Необходимо составить параметрические уравнения прямой, проходящей через эту точку и параллельной прямой x 2 = y - 3 - 1 .

Решение

По условию задачи прямая, уравнение которой нам предстоит опередить, параллельна прямой x 2 = y - 3 - 1 . Тогда в качестве направляющего вектора прямой, проходящей через заданную точку, возможно использовать направляющий вектор прямой x 2 = y - 3 - 1 , который запишем в виде: a → = (2 , - 1) . Теперь известны все необходимые данные для того, чтобы составить искомые параметрические уравнения:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x = 1 2 + 2 · λ y = 2 3 + (- 1) · λ ⇔ x = 1 2 + x · λ y = 2 3 - λ

Ответ: x = 1 2 + x · λ y = 2 3 - λ .

Пример 9

Задана точка М 1 (0 , - 7) . Необходимо записать параметрические уравнения прямой, проходящей через эту точку перпендикулярно прямой 3 x – 2 y – 5 = 0 .

Решение

В качестве направляющего вектора прямой, уравнение которой надо составить, возможно взять нормальный вектор прямой 3 x – 2 y – 5 = 0 . Его координаты (3 , - 2) . Запишем требуемые параметрические уравнения прямой:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x = 0 + 3 · λ y = - 7 + (- 2) · λ ⇔ x = 3 · λ y = - 7 - 2 · λ

Ответ: x = 3 · λ y = - 7 - 2 · λ

  1. В задачах третьего типа требуется осуществить переход от параметрических уравнений заданной прямой к прочим видам уравнений, которые ее определяют. Решение подобных примеров мы рассматривали выше, приведем еще один.
Пример 10

Дана прямая на плоскости в прямоугольной системе координат, определяемая параметрическими уравнениями x = 1 - 3 4 · λ y = - 1 + λ . Необходимо найти координаты какого-либо нормального вектора этой прямой.

Решение

Чтобы определить искомые координаты нормального вектора, осуществим переход от параметрических уравнений к общему уравнению:

x = 1 - 3 4 · λ y = - 1 + λ ⇔ λ = x - 1 - 3 4 λ = y + 1 1 ⇔ x - 1 - 3 4 = y + 1 1 ⇔ ⇔ 1 · x - 1 = - 3 4 · y + 1 ⇔ x + 3 4 y - 1 4 = 0

Коэффициенты переменных x и y дают нам требуемые координаты нормального вектора. Таким образом, нормальный вектор прямой x = 1 - 3 4 · λ y = - 1 + λ имеет координаты 1 , 3 4 .

Ответ: 1 , 3 4 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Уравнение, которое кроме неизвестной величины содержит также другую дополнительную величину, которая может принимать различные значения из некоторой области, называется параметрическим . Эта дополнительная величина в уравнении называется параметр . На самом деле с каждым параметрическим уравнением может быть написано множество уравнений. Мы рассмотрим модуль параметрического уравнения и решение простых параметрических уравнений.

Задача 1 Решите уравнения в отношении к $x$
A) $x + a = 7$
B) $2x + 8a = 4$
C) $x + a = 2a – x$
D) $ax = 5$
E) $a – x = x + b$
F) $ax = 3a$

Решение :

A) $x + a = 7 \Leftrightarrow x = 7 – a$, то есть решение к данному уравнению найдено.
Для различных значений параметров, решения есть $x = 7 – a$

B) $2x + 8a = 4 \Leftrightarrow 2x = 4 - 8a \Leftrightarrow x = 2 – 4a$

C) $x + a = 2a – x \Leftrightarrow x + x = 2a – a \Leftrightarrow 2x = a \Leftrightarrow x = \frac{a}{2}$

D) $ax = 5$, когда а отличается от 0 мы можем разделить обе части на a и мы получим $x = 5$
Если $a = 0$, мы получим уравнение, такое как $0.x = 5$, и которое не имеет решения;

E) $a – x = x + b \Leftrightarrow a – b = x + x \Leftrightarrow 2x = a – b \Leftrightarrow x = \frac{a-b}{2}$

F) Когда a = 0 уравнение ax = 3a равно 0.x = 0
Поэтому, любое x является решением. Если a отличается от 0, тогда
$ax = 3a \Leftrightarrow x = \frac{3a}{a} \Leftrightarrow x = 3$

Задача 2 Если a является параметром, решите уравнение:
A) $(a + 1)x = 2a + 3$
B) $2a + x = ax + 4$
C) $a^2x – x = a$
D) $a^2x + x = a$

Решение :

A) Если $a + 1$ отлично от 0, то есть.. $a \neq -1$,
тогда $x = \frac{2a+3}{a+1}$;
если $a + 1 = 0$, i.e. $a = - 1$
уравнение принимает вид $0\cdot x = (2)\cdot(-1) + 3 \Leftrightarrow$
$0\cdot x = 1$, что не имеет решения;

B) $2a + x = ax + 4 \Leftrightarrow$
$x – ax = 4 - 2a \Leftrightarrow$
$(1 – a)\cdot x = 2(2 – a)$
Если $(1 – a) \neq 0$, то есть a $\neq 1$; решение будет
$x = \frac{2(2 - a)}{(1 - a)}$;
Если $a = 1$ уравнение примет вид $0\cdot x = 2(2 - 1) \Leftrightarrow$
$0\cdot x = 2$, что не имеет решения

C) $a^2x – x = a \Leftrightarrow$
$x(a^2 -1) = a \Leftrightarrow$
$(a - 1)(a + 1)x = a$
Если $a - 1 \neq 0$ и $a + 1 \neq 0$ то есть $a \neq 1, -1$,
решением есть is $x = \frac{a}{(a - 1)(a + 1)}$
Если $a = 1$ or $a = -1$, уравнение принимает вид is $0\cdot x = \pm 1$, что не имеет решения

D) $a^2x + x = a \Leftrightarrow$
$(a^2 + 1)x = a$
В этом случае $a^2 + 1 \neq 0$ для любого $а$, потому что это есть сумма позитивного числа (1) и одного негативного числа
$(a^2 \geq 0)$ поэтому $x = \frac{a}{a^2 + 1}$

Задача 3 Если a and b являются параметрами, решите уравнения:
A) $ax + b = 0$
B) $ax + 2b = x$
C) $(b - 1)y = 1 – a$
D) $(b^2 + 1)y = a + 2$

Решение :

A) $ax + b = 0 \Leftrightarrow ax = -b$
Если $a \neq 0$, тогда решение есть $x = -\frac{b}{a}$.
Если $a = 0, b \neq 0$, уравнение принимает вид $0\cdot x = -b$ и не имеет решения.
Если $a = 0$ и $b = 0$, уравнение принимает вид $0\cdot x = 0$ и любое $x$ является решением;

B) $ax + 2b = x \Leftrightarrow ax – x = -2b \Leftrightarrow (a - 1)x = -2b$
Если $a - 1 \neq 0$, i.e. $a \neq 1$, решение есть is $x = -\frac{2b}{a-1}$
Если $a - 1 = 0$, то есть $a = 1$, и $b \neq 0$, уравнение принимает вид $0\cdot x = - 2b$ и не имеет решения

C) Если $b - 1 \neq 0$, то есть $b \neq 1$,
решением есть $y = \frac{1-a}{b-1}$
Если $b - 1 = 0$, то есть $b = 1$, но $1 – a \neq 0$,
то есть $a \neq 1$, уравнение принимает вид $0\cdot y = 1 – a$ и не имеет решения.
Если $b = 1$ и $a = 1$ уравнение принимает вид $0\cdot y = 0$ и любое $y$ является решением

D) $b^2 + 1 \neq 0$ для любого $b$(почему?), поэтому
$y = \frac{a+2}{b^2}$ является решением уравнения.

Задача $4$ Для каких значений $x$ следующие выражения имеют равные значения:
A) $5x + a$ и $3ax + 4$
B) $2x - 2$ и $4x + 5a$

Решение :

Чтобы получить одинаковые значения мы должны найти решения уравнений
$5x + a = 3ax + 4$ и $2x – 2 = 4x + 5a$

A) $5x + a = 3ax + 4 \Leftrightarrow$
$5x - 3ax = 4 – a \Leftrightarrow$
$(5 - 3a)x = 4 – a$
Если $5 - 3a \neq 0$, т.e. $a \neq \frac{5}{3}$, решения есть $x = \frac{4-a}{5-3a}$
Если $5 - 3a = 0$, т.e. $a = \frac{5}{3}$, уравнение принимает вид $0\cdot x = 4 – \frac{5}{3} \Leftrightarrow$
$0\cdot x = \frac{7}{3}$, что не имеет решения

B) $2x - 2 = 4x + 5a \Leftrightarrow$
$-2 - 5a = 4x - 2x \Leftrightarrow$
$2x = - 2 - 5a \Leftrightarrow$
$x = -\frac{2+5a}{2}$

Задача 5
A) $|ax + 2| = 4$
B) $|2x + 1| = 3a$
C) $|ax + 2a| = 3$

Решение :

A) $|ax + 2| = 4 \Leftrightarrow ax + 2 = 4$ или $ax + 2 = -4 \Leftrightarrow$
$ax = 2$ или $ax = - 6$
Если $a \neq 0$, уравнения примут вид $x = \frac{2}{a}$ or $x = -\frac{6}{a}$
Если $a = 0$, уравнения не имею решения

B) Если $a Если $a > 0$, это эквивалентно $2x + 1 = 3a$
или $2x + 1 = -3a \Leftrightarrow 2x = 3a - 1 \Leftrightarrow x = \frac{3a-1}{2}$ or
$2x = -3a - 1 \Leftrightarrow x = \frac{3a-1}{2} = -\frac{3a-1}{2}$

C) $|ax + 2a| = 3 \Leftrightarrow ax + 2a = 3$ или $ax + 2a = - 3$,
и мы находим $ax = 3 - 2a$ или $ax = -3 - 2a$
Если a = 0, тогда нет решений, если $a \neq 0$
решениями есть: $x = \frac{3-2a}{a}$ и $x = -\frac{3+2a}{a}$

Задача 6 Решите уравнение $2 – x = 2b – 2ax$, где a и b являются действительными параметрами. Найдите, для каких значениях a уравнение имеет в качестве решения натуральное число, если $b = 7$

Решение :

Представим данное уравнение в следующем виде: $(2a - 1)x = 2(b - 1)$
Возможны следующие варианты:
Если $2a - 1 \neq 0$, т.e. $a \neq \frac{1}{2}$, уравнение имеет единственное решение
$x = \frac{2(b-1)}{2a-1}$
Если $a = \frac{1}{2}$ и $b = 1$, уравнение получает вид $0\cdot x = 0$ и любое $x$ является решением
Если $a = \frac{1}{2}$ и $b \neq 1$, мы получаем $0\cdot x = 2(b - 1)$, где $2(b - 1) \neq 0$
В этом случае уравнение не имеет решения.
Если $b = 7$ и $a \neq \frac{1}{2}$ является единственным решением
$x = \frac{2(7-1)}{2a-1} = \frac{12}{2a-1}$
Если a целое число, тогда $2a - 1$ также есть целым числом и решением есть
$x = \frac{12}{2a-1}$ является натуральным числом когда
$2a - 1$ есть положительным делителем для числа $12$.
Чтобы a было целым числом, делитель числа $12$ должен быть нечетным. Но только $1$ и $3$ являются положительными нечетными числами, на которые делится12
Поэтому $2a - 1 = 3 \Leftrightarrow a = 2$ или $2a - 1 = 1 \Leftrightarrow$
$a = 1 a = 2$ или $2a - 1 = 1 \Leftrightarrow a = 1$

Задача 7 Решите уравнение $|ax - 2 – a| = 4$, где a является параметром. Найдите, для каких значениях а корнями уравнения являются целые отрицательные числа.

Решение :

Из определения модуля мы получаем
$|ax - 2 – x| = 4 \Leftrightarrow ax - 2 – x = 4$ или $ax - 2 – x = - 4$
Из первого равенства мы получаем $x(a - 1) - 2 = 4 \Leftrightarrow$
$(a - 1)x = 4 + 2 \Leftrightarrow (a - 1)x = 6$
Из второго равенства мы получаем $(a - 1)x = -2$
Если $a - 1 = 0$, т.e. $a = 1$, последнее уравнение не имеет решения.
Если $a \neq 1$ мы находим, что $x = \frac{6}{a-1}$ или $x = -\frac{2}{a-1}$
Чтобы эти корни были целыми отрицательными числами, должно выполняться следующее:
Для первого равенство $a - 1$ должно быть отрицательным делителем 6, и для второго - положительным делителям 2
Тогда $a - 1 = -1; -2; -3; - 6$ или $a - 1 = 1; 2$
Мы получаем $a - 1 = -1 \Leftrightarrow a = 0; a - 1 = -2 \Leftrightarrow$
$a = -1; a - 1 = -3 \Leftrightarrow a = -2; a - 1 = -6 \Leftrightarrow a = -5$
или $a - 1 = 1 \Leftrightarrow a = 2; a - 1 = 2 \Leftrightarrow a = 3$
Тогда $a = -5; -2; -1; 0; 2; 3$ являются решениями задачи.

Задача 8 Решите уравнение:
A) $3ax – a = 1 – x$, где a это параметр;
B) $2ax + b = 2 + x$, где a и b являются параметрами

Решение :

A) $3ax + x = 1 + a \Leftrightarrow (3a + 1)x = 1 + a$.
Если $3a + 1 \neq 0$, т.e. $a \neq -11 /3 /3$ , решение есть
$x = \frac{1+a}{3a+1}$
Если $a = -\frac{1}{3}$ уравнение принимает вид $0\cdot x = \frac{1.1}{3}$, что не имеет решения.

B) $2ax – x = 2 – b \Leftrightarrow (2a - 1)x = 2 – b$
Если $2a - 1 \neq 0$, т.e. $a \neq \frac{1}{2}, x = \frac{2-b}{2a-1}$ является решением.
Если $a = \frac{1}{2}$ уравнение принимает вид $0.x = 2 – b$
Тогда, если $b = 2$, любое x является решением, если $b \neq 2$, уравнение не имеет решения.

Задача 9 Дано уравнение $6(kx - 6) + 24 = 5kx$ , где к - целое число. Найдите, для каких значений k уравнение:
A) имеет корень $-\frac{4}{3}$
B) не имеет решения;
C) имеет корень как натуральное число.

Решение :

Перепишем уравнение в виде $6kx - 36 + 24 = 5kx \Leftrightarrow kx = 12$

A) Если $x = -\frac{4}{3}$, для k мы получим уравнение $-\frac{4}{3k} = 12 \Leftrightarrow k = - 9$

B) Уравнение $kx = 12$ не имеет решения, когда $k = 0$

C) Когда $k \neq 0$ является корнем $x = \frac{12}{k}$ и это натуральное число, если k есть целым положительным числом, на которое делится 12, т.e. $k = 1, 2, 3, 4, 6, 12$

Задача 10 Решите уравнение:
A) $2ax + 1 = x + a$, где a является параметром;
B) $2ax + 1 = x + b$, где a и b являются параметрами.

Решение :

A) $2ax + 1 = x + a \Leftrightarrow 2ax – x = a - 1 \Leftrightarrow$
$(2a - 1)x = a - 1$
Если $2a - 1 \neq 0$, т.e. $a \neq \frac{1}{2}$, единственным решением уравнения является
$x = \frac{a-1}{2a-1}$
Если $2a - 1 = 0$, т.e. $a = \frac{1}{2}$, уравнение принимает вид
$0.x = \frac{1}{2}- 1 \Leftrightarrow 0.x = -\frac{1}{2}$, что не имеет решения

B) $2ax + 1 = x + b \Leftrightarrow$
$2ax – x = b - 1 \Leftrightarrow$
$(2a - 1)x = b - 1$
Если $2a - 1 \neq 0$, т.e. $a \neq \frac{1}{2}$, решением является
$x = \frac{b-1}{2a-1}$
Если $a = \frac{1}{2}$, уравнения эквивалентно $0.x = b - 1$
Если b = 1 любое x является решением, если $b \neq 1$ тогда нет решения.

Задача 11 Дано уравнение $3(ax - 4) + 4 = 2ax$, где параметром является целым числом. Найдите, для каких значений a уравнение в качестве корней имеет:
А) $\left(-\frac{2}{3}\right)$
B) целое число
C) натуральное число

Решение :

A) Если $x = -\frac{2}{3}$ есть решением уравнения, тогда должно быть истинным
$3\left + 4 = 2a\left(-\frac{2}{3}\right) \Leftrightarrow$
$-2a - 12 + 4 = -\frac{4a}{3} \Leftrightarrow$
$\frac{4a}{3} - 2a = 8 \Leftrightarrow \frac{4a-6a}{3} = 8 \Leftrightarrow$
$-\frac{2a}{3} = 8 \Leftrightarrow a = -12$

B) $3(ax - 4) + 4 = 2ax \Leftrightarrow 3ax - 2ax = 12 - 4 \Leftrightarrow ax = 8$
Если $a \neq 0$ решением является $x = \frac{8}{a}$, это целое число, если а является делимым числа $8$.
Поэтому; $±2; ±4; ±8$
Если $a=0$, уравнение не имеет решения

C) Чтобы получить натуральное (целое положительное) число для этого решения $x=\frac{8}{a}$ число должно равняться: $a=1, 2, 4, 8$

Задача 12 Дано уравнение $2 – x = 2b – 2ax$, где $a$ и $b$ - параметры. Найдите, для каких значений a уравнение имеет решения в виде натурального числа, если $b = 7$

Решение :

В уравнение мы подставляем $b = 7$ и получаем $2 – x = 2.7 - 2ax \Leftrightarrow$
$2ax – x = 14 – 2 \Leftrightarrow (2a - 1)x = 12$
Если $2a -1 \neq 0$, т.e. $a \neq \frac{1}{2}$, уравнение примет вид
$x = \frac{12}{2a-1}$ и это будет натуральное число, если знаменатель $2a - 1$ есть положительным делимым $12$ и кроме того, чтобы оно было целым числом, необходимо, чтобы $2a - 1$ было нечетным числом.
Поэтому $2a - 1$ может быть $1$ или $3$
Из $2a - 1 = 1 \Leftrightarrow 2a = 2 \Leftrightarrow a = 1$ и $2a - 1 = 3$
$\Leftrightarrow 2a = 4 \Leftrightarrow a = 2$

Задача 13 Дана функция $f(x) = (3a - 1)x - 2a + 1$, где a - параметр. Найдите, для каких значений a график функции:
А) пересекает ось абсцисс;
B) пересекает ось абсцисс

Решение :

Чтобы график функции пересёк ось абсцисс, необходимо, чтобы
$(3a - 1)\cdot x -2a + 1 = 0$ имело решения и не имело решения для непересечения оси абсцисс.
С уравнения мы получаем $(3a - 1)x = 2a - 1$
Если $3a - 1 \neq 0$, т.e. $a \neq \frac{1}{3}$, уравнение имеет решения
$x = \frac{2a-1}{3a-1}$, поэтому график функции пересекает ось абсцисс.
Если $a = \frac{1}{3}$, мы получаем $0.x = \frac{2}{3} - 1 \Leftrightarrow 0.x = -\frac{1}{3}$, что не имеет решения.
Поэтому, если $a = \frac{1}{3}$, график функций не пересекает ось абсцисс.

Задача 14 Решите параметрическое уравнение:
A) $|x -2| = a$
B) $|ax -1| = 3$
C) $|ax - 1| = a - 2$

Решение :

A) Если $a 0$ мы получаем:
$|x - 2| = a \Leftrightarrow x - 2 = a$ или $x - 2 = -a$
Из $x - 2 = a \Rightarrow x = a + 2$, и из
$x - 2 = -a \Rightarrow x = 2 – a$
Если $a = 0$, тогда $x - 2 = 0$ или $x = 2$

B) $|ax - 1| = 3 \Leftrightarrow ax - 1 = 3$ или $ax - 1 = -3$
откуда $ax = 4$ или $ax = - 2$
Если $a \neq 0$ решения: $x = \frac{4}{a}$ or $x = -\frac{2}{a}$
Если $a = 0$, здесь нет решения

C) Если $a - 2 Если $a - 2 > 0$, т.e. $a > 2$ мы получаем
$|ax - 1| = a - 2 \Leftrightarrow ax - 1 = a - 2$ или $ax - 1 = 2 – а$
Итак, мы получаем $ax = a - 1$ или $ax = 3 – a$
Потому что $a > 2, a \neq 0$, therefore
$x = \frac{a-1}{a}$ или $x = \frac{3-a}{a}$.
Если $a = 2$, уравнения эквивалентно
$2x - 1 = 0 \Leftrightarrow 2x = 1 \Leftrightarrow x = \frac{1}{2}$

Задача 15 Найдите, для каких значений параметра m (a), два уравнения эквивалентны:
A) $\frac{x+m}{2} = 1 – m$ и $(-x - 1) ^2 - 1 = x^2$
B) $\frac{x+m}{2} = 1 – m$ и $\frac{x-m}{3} = 1 - 2m$
C) $|3 – x| + x^2 -5x + 3 = 0$ и $ax + 2a = 1 + x$, если $x > 3$

Решение :

A) Решим второе уравнение. Запишем его в виде:
$(-x - 1)^2 - 1 = x^2 \Leftrightarrow$
$[(-1)(x + 1) ]^2 - 1 = x^2 \Leftrightarrow$
$x^2 + 2x + 1 - 1 = x^2 \Leftrightarrow$
$2x = 0 \Leftrightarrow x = 0$
Для первого мы получим
$\frac{x+m}{2} = 1 – m \Leftrightarrow x + m = 2 - 2m \Leftrightarrow x = 2 - 3m$
Эти два уравнения эквивалентны, если они имеют одинаковые корни, т.e.
$2 - 3m = 0 \Leftrightarrow$ $m = \frac{2}{3}$

B) Для первого уравнения решением есть $х = 2 - 3m$ и для второго мы получим
$x – m = 3 - 6m \Leftrightarrow$ $x = 3 – 5m$
Они имеют одинаковые корни, когда
$2 - 3m = 3 - 5m \Leftrightarrow 5m - 3m = 3 - 2 \Leftrightarrow 2m = 1 \Leftrightarrow m = \frac{1}{2}$

C) Так как $x > 3, 3 – x $|3 – x| = -(3 – x) = x - 3$
Первое уравнение будет выглядеть так: $x - 3 + x^2 – 5x + 3 = 0 \Leftrightarrow$
$x^2 - 4x – 0 \Leftrightarrow x(x - 4) = 0 \Leftrightarrow$
$x = 0$ или $x = 4$
С условием, что $х> 3$, поэтому только $x = 4$ есть решением. Для второго уравнения мы получаем
$ax – x = 1 - 2a \Leftrightarrow (a - 1)x = 1 - 2a$
Если $a - 1 = 0$, здесь нет решения (Почему?), если $a - 1 \neq 0$, i.e. $a \neq 1$, решением есть
$x = \frac{1-2a}{a-1}$ Эти два уравнения будут равны, если $4 = \frac{1-2a}{a-1} \Leftrightarrow$ $4(a - 1) = 1 - 2a \Leftrightarrow 4a + 2a = 1 + 4 \Leftrightarrow 6a = 5 \Leftrightarrow a = \frac{5}{6}$

Поделиться