Реакции нуклеофильного замещения, нуклеофильного присоединения. Примеры реакций нуклеофильного присоединения Реакции радикального присоединения

(реакции присоединения-отщепления).

Реакции нуклеофильного замещения с участием - гибридизованного атома углерода. Механизм реакций этого типа рассмотрим на примере взаимодействия карбоновых кислот со спиртами (ре­акция этерификации ). В карбоксильной группе кислоты реализу­ется p , -сопряжение, поскольку пара электронов атома кислоро­да гидроксильной группы ОН вступает в сопряжение с двойной углерод-кислородной связью ( -связью):

Такое сопряжение является причиной, с одной стороны, повы­шенной кислотности карбоксильных соединений, а с другой - уменьшения частичного положительного заряда () на атоме углерода карбоксильной группы ( -гибридизованном атоме), что значительно затрудняет непосредственную атаку нуклеофила. С целью увеличения заряда на атоме углерода используют до­полнительное протонирование - кислотный катализ (стадия I):

На стадии II происходит атака нуклеофила (молекулы спирта ), протонирование гидроксильной группы с образованием хорошоуходящей группы , на стадии III - ее отщепление и а стадии IV - регенерация протона - возврат катализатора с образованием конечного продукта - сложного эфира. Реакция обратима, что наблюдается при гидролизе сложных эфиров, гидролизе жиров в биосистемах.

Реакции нуклеофильного присоединения. Наиболее характерны реакции нуклеофильного присоединения () для оксосоединений - альдегидов и кетонов. Механизм этих реакций имеет общие черты, это двухстадийный ионный процесс. Первая стадия (лимитирующая) представляет собой обратимую атаку нуклеофилом Nu: с образованием так называемого тетраэдрического интермедиата. Вторая стадия - быстрая атака электрофилом:

На реакционную способность оксосоединения оказывает влияние природа групп R и . Так, введение электронодонорных заместителей снижает реакционную способность, а электроноакцепторных - усиливает. Поэтому альдегиды более активны в реакциях , чем кетоны. Кроме того, реакционная способность зависит от природы нуклеофила. Например, тиолы RSH, являясь более сильными нуклеофилами, чем спирты ROH, вступают в реакцию как с альдегидами, так и с кетонами, образуя устойчивые к гидролизу тиоацетали, тогда как ацетали - продукты присоединения спиртов к альдегидам - к гидролизу не устойчивы:

Обратите внимание, что последние стадии процесса представ­ляют собой атаку нуклеофила (молекулы спирта ) на электрофильный реакционный центр (карбкатион) и идут по механиз­му нуклеофильного замещения . Образующиеся промежуточные соединения - полуацетали - являются неустойчивыми. Стабили­зация их возможна только в циклической форме при образовании циклических полуацеталей, например 5-гидроксипентаналя:



Другой пример биологически важной реакции этого типа - присоединение аминов и некоторых других азотсодержащих со­единений к карбонильным соединениям - альдегидам и кетонам. Реакция идет по механизму нуклеофильного присоединения-эли­минирования ( -E), или нуклеофильного присоединения- отщепления:

Другие азотсодержащие соединения, выступающие в этих ре­акциях в роли нуклеофила: гидразин , гидроксиламин , фенилгидразин .

Продуктами реакций -Е в этих случаях являются соединения общей формулы

называемые гидразонами (X = ), оксимами (X = ОН), фенил-гидразонами (X = ), иминами (X = R), что будет более подробно рассмотрено в соответствующих разделах.

Помимо указанных реакций присоединения возможны реакцииAd R - свободнорадикального присоединения и полимеризации или поликонденсации.

Ad R - свободнорадикальное присоединение


Примером реакции поликонденсации является поликонденсация фенола с альдегидами, в част­ности, с формальдегидом, в результате которой происходит образование полимерных про­дуктов реакции - фенолформальдегидных смол и твер­дых полимеров.

Взаимодействие фенола с формальдегидом можно опи­сать схемой:

В ходе дальнейших стадий образуется полимер, а побочным продуктом реакции поликонденсации, в данном случае, является вода.



ГЛАВА 4. ОКСОСОЕДИНЕНИЯ (АЛЬДЕГИДЫ И КЕТОНЫ).

Вопросы к занятию.

1. Электронное строение карбонильной группы (>C=0) в оксосоединениях.

2. Влияние заместителей на реакционную способность >C=0- связи в оксосоединениях.

3. Механизм нуклеофильного присоединения по >C=0 связи.

4. Реакции нуклеофильного присоединения (на примере воды, спиртов, бисульфита натрия, HCN).

5. Реакции присоединения- отщепления на примере гидроксиламина, гидразина, аминов.

6. Реакция диспропорционирования на примере бензилальдегида.

7. Механизм реакции альдольной конденсации.

8. Окисление альдегидов и кетонов.

9. Полимеризация альдегидов.

В зависимости от характера связанных с карбонильной группой заместителей карбонильные соединения делят на следующие классы: альдегиды, кетоны, карбоновые кислоты и их функциональные произ­водные.

Для альдегидов и кетонов наиболее характерны реакции нуклеофильного присоединения A N .

Общее описание механизма нуклеофильного присоединения A N

Легкость нуклеофильной атаки по атому углерода карбонильной группы альдегида или кетона зависит от величины частичного

положительного заряда на атоме углерода, его пространственной доступности и кислотно-основных свойств среды.

С учетом электронных эффектов групп, связанных с карбонильным атомом углерода, величина частичного положительного заряда δ+ на нем в альдегидах и кетонах убывает в следующем ряду:

Пространственная доступность карбонильного атома углерода уменьшается при замене водорода более объемистыми органиче- скими радикалами, поэтому альдегиды более реакционноспособны, чем кетоны.

Общая схема реакций нуклеофильного присоединения A N к карбонильной группе включает нуклеофильную атаку по карбонильному атому углерода, за которой следует присоединение электрофила к атому кислорода.

В кислой среде активность карбонильной группы, как правило, увеличивается, поскольку вследствие протонирования атома кислорода на атоме углерода возникает положительный заряд. Кислотный катализ используют обычно тогда, когда атакующий нуклеофил обладает низкой активностью.

По приведенному выше механизму осуществляется ряд важных реакций альдегидов и кетонов.

Многие свойственные альдегидам и кетонам реакции протекают в условиях организма, эти реакции представлены в последующих разделах учебника. В настоящей главе будут рассмотрены наиболее важные реакции альдегидов и кетонов, которые в обзорном виде приведены на схеме 5.2.

Присоединение спиртов. Спирты при взаимодействии с альдегидами легко образуют полуацетали. Полуацетали обычно не выделяют из-за их неустойчивости. При избытке спирта в кислой среде полуацетали превращаются в ацетали.

Применение кислотного катализатора при превращении полуацеталя в ацеталь становится понятным из приведенного ниже механизма реакции. Центральное место в нем занимает образование карбо- катиона (I), стабилизированного за счет участия неподеленной пары электронов соседнего атома кислорода (+M-эффект группы С 2 Н 5 О).

Реакции образования полуацеталей и ацеталей обратимы, поэтому ацетали и полуацетали легко гидролизуются избытком воды в кислой среде. В щелочной среде полуацетали устойчивы, так как алкоксидион является более трудно уходящей группой, чем гидроксид-ион.

Образование ацеталей часто используется как временная защита альдегидной группы.

Присоединение воды. Присоединение воды к карбонильной группе - гидратация - обратимая реакция. Степень гидратации альдегида или кетона в водном растворе зависит от строения субстрата.

Продукт гидратации, как правило, в свободном виде выделить с помощью перегонки не удается, так как он разлагается на исходные компоненты. Формальдегид в водном растворе гидратирован более чем на 99,9%, ацетальдегид - приблизительно наполовину, ацетон практически не гидратирован.

Формальдегид (муравьиный альдегид) обладает способностью свертывать белки. Его 40% водный раствор, называемый формалином, применяется в медицине как дезинфицирующее средство и консервант анатомических препаратов.

Трихлороуксусный альдегид (хлораль) гидратирован полностью. Электроноакцепторная трихлорометильная группа настолько стабилизирует хлоральгидрат, что это кристаллическое вещество отщепляет воду только при перегонке в присутствии дегидратирующих веществ - серной кислоты и др.

В основе фармакологического эффекта хлоральгидрата СС1зСН(ОН)2 лежит специфическое действие на организм альдегидной группы, обусловливающее дезинфицирующие свойства. Атомы галогена усиливают ее действие, а гидратация карбонильной группы снижает токсичность вещества в целом.

Присоединение аминов и их производных. Амины и другие азотсодержащие соединения общей формулы NH2X (X = R, NHR) реагируют с альдегидами и кетонами в две стадии. Сначала образуются продукты нуклеофильного присоединения, которые затем вследствие неустойчивости отщепляют воду. В связи с этим данный процесс в целом классифицируют как реакцию присоединения-отщепления.

В случае первичных аминов получаются замещенные имины (их называют также основаниями Шиффа).

Имины - промежуточные продукты многих ферментативных процессов. Получение иминов проходит через стадию образования аминоспиртов, которые бывают относительно устойчивы, например при взаимодействии формальдегида с α-аминокислотами (см. 12.1.4).

Имины являются промежуточными продуктами получения аминов из альдегидов и кетонов путем восстановительного аминирования. Этот общий способ заключается в восстановлении смеси карбонильного соединения с аммиаком (или амином). Процесс протекает по схеме присоединения-отщепления с образованием имина, который затем восстанавливается в амин.

При взаимодействии альдегидов и кетонов с производными гидразина получаются гидразоны. Эту реакцию можно использовать для выделения альдегидов и кетонов из смесей и их хроматографической идентификации.

Основания Шиффа и другие подобные соединения легко гидролизуются водными растворами минеральных кислот с образованием исходных продуктов.

В большинстве случаев для реакций альдегидов и кетонов с азотистыми основаниями необходим кислотный катализ, ускоряющий дегидратацию продукта присоединения. Однако если слишком повысить кислотность среды, то реакция замедлится в результате превращения азотистого основания в нереакционноспособную сопряженную кислоту XNH3+.

Реакции полимеризации. Эти реакции свойственны в основном альдегидам. При нагревании с минеральными кислотами полимеры альдегидов распадаются на исходные продукты.

Образование полимеров можно рассматривать как результат нуклеофильной атаки атомом кислорода одной молекулы альдегида карбонильного атома углерода другой молекулы. Так, при стоянии формалина выпадает в виде белого осадка полимер формальдегида - параформ.

протонированная форма

Основность альдегидов и кетонов невысока, однако она играет заметную роль в реакциях нуклеофильного присоединения, поскольку в протонированной форме электрофильность атома углерода значительно выше. Поэтому типичные для альдегидов и кетонов реакции AdN могут катализироваться кислотами.

2.2. Реакции нуклеофильного присоединения

Взаимодействие альдегидов и кетонов с нуклеофильными агентами осуществляется по следующему общему механизму:

Нуклеофил Z–Н (очень часто при нуклеофильном центре имеется атом водорода) присоединяется к электрофильному атому углерода карбонильной группы за счет неподеленной пары электронов нуклеофильного центра, образуя продукт, в котором на бывшем карбонильном кислороде находится отрицательный заряд, а бывший нуклеофильный центр заряжается положительно. Этот биполярный ион стабилизируется переносом протона от положительно заряженного атома Z (кислота Бренстеда) к отрицательно заряженному атому кислорода (основание). Образовавшийся при этом продукт часто претерпевает дальнейшие превращения, например, отщепление воды.

В качестве нуклеофилов могут выступать различные соединения, в которых в качестве нуклеофильных центров выступают атомы кислорода (О-нуклеофилы), серы (S-нуклеофилы), азота (N- нуклеофилы), углерода (С-нуклеофилы).

Реакционная способность альдегидов и кетонов в реакциях нуклеофильного присоединения зависит от электрофильности кар-

http://mitht.ru/e-library

бонильной группы: чем больше частичный положительный заряд на атоме углерода, тем легче происходит присоединение нук-

леофила . Поскольку в молекулах альдегидов при карбонильном атоме углерода содержится только один углеводородный остаток, проявляющий электронодонорные свойства, а в молекулах кетонов таких остатков два, то естественно предположить, что в общем случае в реакциях нуклеофильного присоединения альдегиды более реакционноспособны, чем кетоны . Электроноакцепторные заместители, особенно вблизи карбонильной группы, увеличивают электрофильность карбонильного углерода и, следовательно, повышают реакционную способность. Определенное значение имеет и стерический фактор: поскольку при присоединении атом углерода карбонильной группы изменяет гибридизацию (sp2 → sp3 ), то чем объемнее заместители при карбонильном атоме углерода, тем бóльшие пространственные затруднения возникают при этом переходе. Например, в ряду: формальдегид, уксусный альдегид, ацетон, трет -бутилметилкетон реакционная способность уменьшается.

(CH3 )3 C

а) Реакции с О-нуклеофилами

Гидратация

При взаимодействии альдегидов и кетонов с водой в обратимом процессе образуется гидрат – геминальный диол, который в большинстве случаев является очень нестабильным соединением, поэтому данное равновесие сильно смещено влево.

Однако для некоторых карбонильных соединений это равновесие может быть смещено вправо. Так, в водном растворе формальдегид практически полностью находится в гидратной форме (в отличие, например, от ацетона, в водном растворе которого гидратной формы чрезвычайно мало), а трихлоруксусный альдегид (хлораль) при взаимодействии с водой превращается в очень устойчивый даже в кристаллическом виде хлоральгидрат.

CH2 =O H 2 O CH2 (OH)58 2

http://mitht.ru/e-library

Cl3 CCH=O + H2 O Cl3 CCH(OH)2

хлораль хлоральгидрат

Взаимодействие со спиртами (реакция ацетализации)

Продукт присоединения к молекуле альдегида или кетона одной молекулы спирта – так называемый полуацеталь – неустойчив. При взаимодействии же альдегида или кетона с 2 эквивалентами спирта в кислой среде, то образуется устойчивый продукт –

ацеталь.

Приведем механизм последней реакции на примере взаимодействия уксусного альдегида с метиловым спиртом (1:2) в присутствии сильной кислоты Бренстеда.

Протонирование карбонильной группы уксусного альдегида приводит к образованию катиона, в котором положительный заряд делокализован. По сравнению с уксусным альдегидом этот катион более электрофилен, и нуклеофильное присоединение молекулы метанола к нему происходит значительно легче. Продукт присоединения (катион оксония) является сильной кислотой, и при отщеплении от него протона образуется полуацеталь (1-метоксиэтанол).

CH3 CH=O H

CH3 CH=O

HO CH3

CH3 CH OH

CH3 CH OH

CH3 CH OH

H O CH3

OCH3

http://mitht.ru/e-library

Далее через протонированную форму этого полуацеталя происходит отщепление воды с образованием карбокатиона, к которому присоединяется следующая молекула метанола. При депротонировании продукта присоединения образуется диметилацеталь уксусного альдегида (1,1-диметоксиэтан).

HO CH3

CH3 CH OH

CH3 CH O H

CH3 CH

OCH3

OCH3

OCH3

CH3 CH

OCH3

CH3 CH OCH3

OCH3

OCH3

Весь описанный процесс реакции, которую называют ацетализацией, обратим, поэтому эффективно провести взаимодействие альдегида или кетона со спиртом до ацеталя можно только, смещая равновесие вправо, например, удаляя образующуюся воду из сферы реакции. Обратная реакция представляет собой кислотный гидролиз ацеталя. Следовательно, в кислой водной среде ацетали неустойчивы, поскольку подвергаются гидролизу.

OCH3 + H2 O

CH3 CH=O + 2 CH3 OH

OCH3

В щелочной же среде ацетали устойчивы, поскольку гидролиз

в этих условиях произойти не может.

б) Реакции с S-нуклеофилами

Атом серы в аналогах спиртов – тиолах (меркаптанах) – является более сильным нуклеофилом, поэтому меркаптаны легче присоединяются к альдегидам и кетонам. При этом образуются продукты, аналогичные полуацеталям и ацеталям, например, при взаимодействии бензальдегида с двумя эквивалентами метантиола (метилмеркаптана) в кислой среде образуется диметилтиоацеталь бензальдегида.

2CH3 SH

CH(SCH3 )2

Схема:

Механизм:

1- Образование π-комплекса (медл)

2- Образование ϭ- комплекса или карбкатиона (медл)

Карбкатионы – положительно заряженные нестабильные интермедиаты с секстетом валентных электронов у атома углерода.

Нуклеофильная атака галагенониевого иона (быстро)

Скорость реакции существенно зависит от строения алкена. При введение в алкен метильных заместителей увеличивается электронная плотность за счёт +I CH 3 и скорость реакции возрастает. С другой стороны трифтометильная группа CF 3 вследствие отрицательного индуктивного эффекта понижает электронную плотность в алкене и тем самым затрудняет электрофильную атаку.

CF 3 CH=CH 2 < CH 2 =CH 2 < CH 3 CH=CH 2 < (CH 3) 2 CH=CH 2 < (CH 3) 2 CH=CH(CH 3) 2


Увеличение скорости реакции алкенов галогенами.

При добавлении к ненасыщенному углеводороду воды, в механизм добавляется четвёртая стадия (возврат катализатора).

47-реакция электрофильного замещения: гетеролитическая реакция с участием π-электронного облака ароматической системы (галогенирование, нитрование, алкинирование).

S E -реакция электрофильного замещения..

Взаимодействие аренов с электрофильным агрегатом протекает также стадийно через образование ϭ и π-комплексов.

Характерной особенностью ароматических соединений бензольного ряда, конденсированных и гетероциклических ароматических соединений являетс их склонность вступать в реакции, не приводящие к нарушению ароматической системы – реакции замещения . Напротив, в реакциях, нарушающих ароматичность, таких, кК присоединение или окисление, ароматические соединения обладают пониженной реакционной способностью.

Схема:

Механизм:

Генерирование электрофильной частицы.

2. Образование π-комплекса (медл)

3. Образование ϭ- комплекса или карбкатиона

4. Отщепление протона от ϭ-комплекса

Галогенирование.

Нитрование.

Алкинирование.

48-Реакция нуклеофильного замещения у sp 3 -гибридизованного атома углерода: гетеролитические реакции обусловленные поляризацией ϭ-связи углерод-гетероатом (галогенпроизводные, спирты).

SN-Реакция нуклеофильного замещения

SN наиболее характерны для насыщенных органических соединений, содержащих следующие функциональные группы: галоген, гидроксильную, тиольную и аминогруппу.

SN 1 – характерны характерны для третичных и частично вторичных алкангалогенидов при наличии слабого нуклеофила и полярного растворителя

Механизм:

I стадия

II стадия

SN 2 -характерен для первичных и частично вторичных атомомв.

Механизм:

49-Реакция нуклеофильного присоединения: гетеролитическая реакция с участием π-связи углерод-кислород (взаимодействие альдегидов и кетонов со спиртами, первичными аминами). Влияние электронных и пространственных факторов, роль кислотного катализа. Биологическое значение реакции нуклеофильного присоединения.

A N -Реакция нуклеофильного присоединения.

Характерны для альдегидов и кетонов.

Большое значение в биологическом плане имеет реакция карбонильных соединений (альдегидов и кетонов) с аммиаком, при этом образуются имины (основания Шиффа), очень неустойчивые, легкогидролизующиеся соединения.

Имины являются промежуточными продуктами в некотоорых ферментативных реакциях, при синтезе аминов из альдегидов и кетонов.

Например, в организме по такой схеме синтезируются некоторые α-аминокислоты.

Взаимодействие аммиака с альдегидами может осложняться возможной циклизацией. Так, из формальдегида А.М. Бутлеров впервые получил медицинский препарат – гексаметилентетраамин (уротропин), получивший широкое применение в качестве антисептического средства.

Кислотный катализ служит для активации субстрата.

Реакционные центры.

Механизм:

В реакциях A N для увеличения скорости реакции используется катализатор (неорганическая кислота)

Схема:

Механизм:

Нуклеофильное присоединение к алкинам инициируется под воздействием отрицательно заряженной частицы - нуклеофила . В общем случае, катализатором таких реакций являются основания. Общая схема первой стадии реакции нуклеофильного присоединения:

Типовые реакции нуклеофильного присоединения

· Характерным примером реакции нуклеофильного присоединения является Реакция Фаворского - присоединение спиртов в присутствии щелочей с образованием алкенильных эфиров:

· Первичные амины под действием оснований присоединяются к алкинам с образованием иминов :

По аналогии ацетилен реагирует с аммиаком, образуя этилиденимин :

При высокой температуре в присутствии катализатора имин дегидрируется и превращается в ацетонитрил:

· В среде очень сильных оснований (например: КОН+ДМСО) ацетилен реагирует с сероводородом, образуя дивинилсульфид :

Реакции радикального присоединения

В присутствии перекисей или других условиях, способствующих образованию свободных радикалов, присоединение к алкинам идет по радикальному механизму - против правила Марковникова(эффект Хараша):

По свободнорадикальному механизму* может протекать реакция алкинов с тиолами:

* - В присутствии оснований реакция идет по нуклеофильному механизму.

Аналогично происходит присоединение карбенов:

Реакции этинилирования

Реакциями этинилирования называют реакции увеличения углеродного скелета алкинов с сохранением тройной связи. Они могут протекать как по электрофильному, так и нуклеофильному механизму в зависимости от среды и условий реакции, характера субстрата, а также типа используемого катализатора.

Получение ацетиленовых спиртов

В присутствии сильных оснований алкины с концевой тройной связью способны присоединять карбонильные соединения с образованием спиртов (Реакция Фаворского):

Важнейшей реакцией из этой группы является присоединения формальдегида к ацетилену с образованием пропаргилового спирта и далее бутин-2-диола-1,4 * :

Получение ацетиленовых эфиров и кислот

Ацетиленовые кислоты или их эфиры можно получить по реакции Цужи :

Катализаторы: PdCl 2 , CuCl.

Реакции гидрирования

Гетерогенное гидрирование

Гидрирование алкинов водородом на гетерогенных катализаторах, как правило, приводит к образованию цис -присоединения . Катализаторами гидрирования служат Ni, Pd, Pt, а также оксиды или комплексы Ir, Ru, Rh и некоторых других металлов.



На первой стадии образуется алкен, который практически сразу же гидрируется до алкана:

Для остановки реакции на стадии получения алкена используют катализаторы Линдлара (Pd/PbO/CaCO 3) или борид никеля.

При гидрировании ацетилена на никель-кобальтовом катализаторе можно получить изобутилен:

Гомогенное гидрирование

Гомогенное гидрирование проводят в амидом натрия в жидком аммиаке или алюмогидридом лития в тетрагидрофуране. В ходе реакции образуются транс -алкены.

Гидроборирование

Алкины легко присоединяют диборан против правила Марковникова, образуя цис -алкенилбораны:

или окислить H 2 O 2 до альдегида или кетона .

Поделиться