Рибосомы вики. Рибосома - это что? Строение рибосомы. Отличия в строении рибосом прокариотов и эукариотов

Рибосомы — внутриклеточные органеллы диаметром 20—22 нм, осуществляющие биосинтез белка. Они обнаружены в клетках всех живых организмов. Форма рибосом близка к сферической. Для клеток прокариот (бактерий, синезеленых водорослей), а также для хлоропластов и митохондрий эукариот характерны 70 S рибосомы; в цитоплазме всех эукариот обнаружены 80 S рибосомы. S — показатель скорости осаждения (седиментации), чем больше число S, тем выше скорость осаждения. Расположение рибосом в цитоплазме может быть свободным, но чаще всего они связаны с ЭПС, образуя полисомы (объединения ри-
босом в цитоплазме может быть свободным, но чаще всего они связаны с ЭПС, образуя полисомы (объединения рибосом с помощью информационной РНК).
Состав и строение рибосом . Рибосомы состоят из двух субчастиц: большой и малой. Большая субъединица каждой рибосомы прикреплена к мембране самой шероховатой ЭПС, а малая выступает в цитоплазматический матрикс. Малая объединяет 1 молекулу рРНК и 33 молекулы различных белков, большая — три молекулы рРНК и около 40 белков. рРНК (рибосомная) выполняет функцию каркаса для белков (выполняют структурную и ферментативную роль), а также обеспечивает связывание рибосом с определенной нуклеотидной последовательностью иРНК (информационная РН К). Образование

рибосом в клетках идет путем самосборки из предварительно синтезированных РНК и белков. Предшественники рибосомальной РНК синтезируются в ядрышке на ДНК ядрышка.
Функции рибосом:
. специфическое связывание и удержание компонентов белоксинтезирующей системы (информационной РНК; транспортных РНК, (ГТФ) и белковых факторов трансляции);
. каталитические функции (образование пептидной связи, гидролиз гуанозинтрифосфата);
. функции механического перемещения субстратов (информационной и транспортных РНК), или транслокации.
Трансляция — процесс образования полипептидной цепи на матрице и РНК. Синтез белковых молекул происходит на рибосомах, расположенных либо свободно в цитоплазме, либо на шероховатом ЭПР.
Этапы трансляции (рис. 13):


Рис. 13. Схема трансляции
Последовательные стадии синтеза полипептида:
. малая субъединица рибосомы соединяется с мет тРНК, затем с иРНК;
. рибосома перемешается вдоль и РНК, что сопровождается многократным повторением цикла присоединения очередной аминокислоты к растущей полипептидной цепи;
. рибосома достигает одного из стоп-кодонов иРНК, полипептидная цепь высвобождается и отделяется от рибосомы.
Активация аминокислот. Каждая из 20 аминокислот белка соединяется ковалентными связями к определенной тРНК, используя энергию АТФ. Реакция катализуется специализированным ферментом, требующими присутствия ионов магния — аминоацил-тРНК-синтетазой.
Инициация белковой цепи. В малой субъединице рибосомы различают функциональный центр с двумя участками — пептидильным (Р-участок) и аминоацильный (А-участок). В первой позиции находится тРНК, несущая определенную аминокислоту, во второй располагается тРНК, которая нагружена цепочкой аминокислот. 5"-конец иРНК, который содержит информацию о данном белке, связывается с Р-участком малой частицей рибосомы и с инициирующей аминокислотой (у прокариот формилметионин; у эукариот — метионин), прикрепленной к соответствующей тРНК. тРНК комплементарна с находящимся в составе иРНК триплетом, сигнализирующим о начале белковой цепи.
Элонгация представляет собой циклически повторяющиеся события, при которых происходит удлинение пептида. Полипептидная цепь удлиняется за счет последовательного присоединения аминокислот, каждая из которых доставляется к рибосоме и встраивается в определенное положение при помощи соответствующей тРНК. Между аминокислотой из пептидной цепочки и аминокислотой, соединенной с тРНК, образуется пептидная связь. Рибосома продвигается вдоль мРНК и тРНК с цепочкой аминокислот попадает в А-участок. Такая последовательность событий повторяется до тех пор, пока рибосомы не поступят в кодон-терминатор, для которого не существует соответствующей тРНК.
Терминация. После завершения синтеза цепи, о чем сигнализирует т.н. стоп-кодон иРНК (УАА, УАГ, УГА). При этом к последней аминокислоте в пептидной цепи присоединяется вода и ее карбоксильный конец отделяется от тРНК, а рибосома распадается на две субчастицы.
Синтез пептида происходит не одной рибосомой, а несколькими тысячами, которые образуют комплекс — полисому.
Сворачивание и процессинг. Чтобы принять обычную форму, белок должен свернуться, образуя при этом определенную пространственную конфигурацию. До или после сворачивания полипептид может претерпевать процессинг, осуществляющийся ферментами и заключающийся в удалении лишних аминокислот, присоединении фосфатных, метальных и других групп и т. п.

Лекция, реферат. Рибосома, её состав и строение. Трансляция - понятие и виды. Классификация, сущность и особенности. 2018-2019.

Рибосомы представляют собой крупный рибонуклеопротеидный комплекс с молекулярной массой около 2,5 мДа, состоящий из рибосомных белков, молекул рРНК и ассоциированных с ними факторов трансляции. Рибосомы - немембранные органеллы, на которых происходит синтез белка в клетке. Они представляют собой сферические структуры с диаметром около 20 нм. Эти самые мелкие клеточные органеллы устроены чрезвычайно сложно. Ни одна молекула, входящая в состав рибосом, не повторяется дважды. Лучше других изучены рибосомы бактерии Е. coli (кишечной палочки).

Рибосомы прокариотических и эукариотических организмов различаются по размерам. Электронно-микроскопические изображения рибосом всех известных организмов ясно показывают, что эти частицы построены из двух неравных субчастиц ( рис. 2). Действительно, если в среде, окружающей рибосомы, понизить концентрацию ионов магния или каким-либо еще образом увеличить электростатическое отталкивание фосфатных групп рибосомной РНК, то рибосома диссоциирует на две неравные субчастицы - большую и малую ( рис. 34), с соотношением их масс около 2:1.

При диссоциации прокариотической субчастицы образуются 30S и 50S субчастицы, а эукариотической - 40S и 60S . Полные рибосомные частицы и их субчастицы принято обозначать в соответствии с их коэффициентами седиментации (скоростями осаждения, лат. sedimentum - осадок) в ультрацентрифуге, выражаемыми в единицах Сведберга (S). S - коэффициент седиментации, он зависит от молекулярной массы и пространственной конформации частицы, осаждаемой при центрифугировании. Бактериальная рибосома с молекулярной массой около 3-х миллионов (3 на 10 в степени 6) имеет коэффициент седиментации 70S и обозначается как 70S-частица , а несколько более крупная рибосома эукариотических организмов (животные, растения и грибы) предстает как 80S-частица . Их диссоциация на субчастицы обратима, и при восстановлении условий субчастицы реассоциируют в полные рибосомные частицы. В целом и электронно-микроскопические наблюдения, и эксперименты по диссоциации рибосом, и более изощренные подходы в изучении этих частиц показывают, что рибосома всегда построена из двух неравных блоков - большой и малой субчастиц и что блоки (субчастицы) рибосомы довольно лабильно ассоциированы друг с другом. 70S рибосомы эубактерий в своем составе содержат 55-60 рибосомных белков , для 80S рибосом эукариот это число составляет 75-85. В обоих случаях рибосомные белки в составе рибосом ассоциированы с молекулами рРНК, образуя пространственно организованные рибонуклеопротеиновые тяжи.

Коэффициент седиментации бактериальной рибосомы равен 70S , так как нельзя механически складывать 30S и 50S, поскольку конформация ассоциированной рибосомы отличается от конформации каждой субчастицы).

Таким образом, биосинтез белка - это центральный процесс живой клетки: именно через него "мертвые" молекулы нуклеиновых кислот обретают жизнь, химия превращается в биологию. Процесс биосинтеза белка проходит в несколько этапов, в большинстве из которых рибосома принимает активное участие.

В бактериальной клетке рибосомы составляют до 30% ее сухой массы: на одну бактериальную клетку приходится примерно 10 4 рибосом. В эукариотич. клетках (клетки всех организмов , за исключением бактерий и синезеленых водорослей) относит. содержание рибосом меньше, и их кол-во очень сильно варьирует в зависимости от белок-синтезирующей активности соответствующей ткани или отдельной клетки .

В эукариотич. клетке все рибосомы цитоплазмы (как мембрано-связанные, так и свободные) образуются в ядрышке; считается, что там они неактивны. Эукариотич. клетка имеет также специальные рибосомы в митохондриях (у животных и растений) и хлоропластах (у растений). Рибосомы этих органелл отличаются от цитоплазматических размерами и нек-рыми функцион. св-вами. Они образуются непосредственно в этих органеллах.

Различают два осн. типа рибосом. Всем прокариотич. организмам (бактерии и синезеленые водоросли) свойственны т. наз. 70S рибосомы, характеризующиеся коэф. (константой) седиментации ок. 70 единиц Сведберга, или 70S (по коэф. седиментации различают и рибосомы др. типов, а также субчастицы и биополимеры , входящие в состав рибосом). Их мол. м. составляет 2,5 · 10 6 , линейные размеры 20-25 нм. По хим. составу это рибонуклеопротеиды; они состоят только из рРНК и белка (соотношение этих компонентов 2:1). Рибосомная РНК в рибосомах присутствует гл. обр. в виде Mg-соли (по-видимому, частично и в виде Са-соли); магния в рибосомах до 2% от сухой массы. Кроме того, в разл. кол-вах (до 2,5%) могут присутствовать также катионы аминов-спермина H 2 N(CH 2) 3 NH(CH 2) 4 NH(CH 2) 3 NH 2 , спермидина H 2 N(CH 2) 3 NH(CH 2) 4 NH 2 и др.

По-видимому, рРНК определяет осн. структурные и функцион. св-ва рибосом, в частности обеспечивает целостность рибосомных субъединиц, обусловливает их форму и ряд структурных особенностей. Специфич. пространств. структура рРНК детерминирует локализацию всех рибосомных белков , играет ведущую роль в организации функцион. центров рибосом.

Рибосомный синтез белка-многоэтапный процесс. Первая стадия (инициация) начинается с присоединения матричной РНК (мРНК) к малой рибосомной субчастице, не связанной с большой субчастицей. Характерно, что для начала процесса необходима именно диссоциированная рибосома. К образовавшемуся т. наз. инициаторному комплексу присоединяется большая рибосомная субчастица. В стадии инициации участвуют спец. инициирующий кодон (см. Генетический код), инициаторная транспортная РНК (тРНК) и специфич. белки (т. наз. факторы инициации). Пройдя стадию инициации, рибосома переходит к последоват. считыванию кодонов мРНК по направлению от 5"- к 3"-концу, что сопровождается синтезом полипептидной цепи белка , кодируемого этой мРНК (подробнее о механизме синтеза полипептидов см. в ст. Трансляция). В этом процессе рибосома функционирует как циклически работающая мол. машина. Рабочий цикл рибосомы при элонгации состоит из трех тактов: 1) кодонзависимого связывания аминоацил-тРНК (поставляет аминокислоты в рибосому), 2) транспептидации-переноса С-конца растущего пептида на аминоацил-тРНК, т.е. удлинения строящейся белковой цепи на одно звено, 3) транслокации-перемещения матрицы (мРНК) и пептидил-тРНК относительно рибосомы и переход рибосомы в исходное состояние, когда она может воспринять след. аминоацил-тРНК. Когда рибосома достигнет специального

Хотя могут быть локализованы и в неприкреплённой форме в цитоплазме . Нередко с одной молекулой мРНК ассоциировано несколько рибосом, такая структура называется полирибосомой (полисомой). Синтез рибосом у эукариот происходит в специальной внутриядерной структуре - ядрышке .

Рибосомы представляют собой нуклеопротеид , в составе которого соотношение РНК/белок составляет 1:1 у высших животных и 60-65:35-40 у бактерий. Рибосомная РНК составляет около 70 % всей РНК клетки. Рибосомы эукариот включают четыре молекулы рРНК, из них 18S , 5,8S и 28S рРНК синтезируются в ядрышке РНК-полимеразой I в виде единого предшественника (45S), который затем подвергается модификациям и нарезанию. 5S рРНК синтезируются РНК-полимеразой III в другой части генома и не нуждаются в дополнительных модификациях. Почти вся рРНК находится в виде магниевой соли, что необходимо для поддержания структуры; при удалении ионов магния рибосома подвергается диссоциации на субъединицы.

РНК большой субъединицы

Высокомолекулярная РНК, составляющая структурную основу большой субъединицы рибосомы, обозначается как 23S рРНК (в случае бактериальных рибосом) или 23S-подобная рРНК (в других случаях). Бактериальная 23S рРНК, также как и 16S рРНК, представляет собой одну ковалентно непрерывную полирибонуклеотидную цепь. В то же время 23S-подобная рРНК цитоплазматических рибосом эукариот состоит из двух прочно ассоциированных полирибонуклеотидных цепей - 28S и 5,8S рРНК (5,8S рРНК является структурным эквивалентом 5′-концевого ~160-нуклеотидного сегмента 23S рРНК, который оказался «отщеплён» в виде ковалентно обособленного фрагмента). 23S-подобная рРНК рибосом пластидов растений также состоит из двух прочно ассоциированных полирибонуклеотидных цепей и содержит 4,5S рРНК - структурный эквивалент 3′-концевого сегмента 23S рРНК. Известны случаи и ещё более глубоко зашедшей фрагментированности РНК, примером чего может служить 23S-подобная рРНК цитоплазматических рибосом некоторых протистов. Так, у Crithidia fasciculata она состоит из 7 отдельных фрагментов, а у Euglena gracilis - из 14.

Кроме вышеуказанной 23S(-подобной) рРНК, большая субъединица обычно содержит также относительно низкомолекулярную РНК - так называемую 5S рРНК. В отличие от вышеупомянутых 5,8S и 4,5S рРНК, 5S рРНК менее прочно ассоциирована с 23S(-подобной) рРНК, транскрибируется с отдельного гена и, таким образом, не может быть рассмотрена как отщеплённый фрагмент высокополимерной рРНК. 5S рРНК входит в состав большой субъединицы цитоплазматических рибосом всех прокариот и эукариот, но, по-видимому, не является непременной составляющей любой функциональной рибосомы, так как 5S рРНК отсутствуют в митохондриальных рибосомах млекопитающих (так называемых «минирибосомах»).

Число нуклеотидных звеньев, как и константы седиментации, для образцов 23S и 23S-подобных рРНК из различных источников могут существенно различаться. Например, 23S рРНК Escherichia coli состоит из 2904 нуклеотидных остатков, цитоплазматическая 26S рРНК Saccharomyces cerevisiae - из 3392, митохондриальная 26S рРНК Saccharomyces cerevisiae - из 3273, цитоплазматическая 28S рРНК Homo sapiens - из 5025. Большие субъединицы митохондриальных рибосом млекопитающих содержат относительно короткие 23S-подобные рРНК - всего 1560-1590 нуклеотидных остатков. Молекула 5,8S рРНК комплекса 28S 5,8S рРНК, характерного для цитоплазматических эукариотических рибосом, имеет длину около 160 нуклеотидных остатков. Длина 5S рРНК довольно консервативна и составляет 115-125 нуклеотидных остатков.

Рибосомные белки

Помимо рРНК, рибосома содержит также около 50 (прокариотические рибосомы) или 80 (цитоплазматические рибосомы эукариот) различных белков . Почти каждый из этих белков представлен лишь одной копией на каждую рибосому. Преобладают умеренно-осно́вные белки. Большинство рибосомных белков эволюционно консервативны, многие белки рибосом из различных источников могут быть соотнесены как гомологи , что учитывается в современной универсальной номенклатуре рибосомных белков. Рибосома на 30-50 % состоит из белка.

Низкомолекулярные компоненты

Кроме биополимеров (РНК и белков) в состав рибосом входят также некоторые низкомолекулярные компоненты. Это молекулы воды, ионы металлов (главным образом Mg 2+ - до 2 % сухой массы рибосомы), ди- и полиамины (такие как путресцин , кадаверин , спермидин, спермин - могут составлять до 2,5 % сухой массы рибосомы).

Механизм трансляции

Трансляция - синтез белка рибосомой на основе информации, записанной в матричной РНК (мРНК). У прокариот мРНК связывается с малой субъединицей рибосомы в результате взаимодействия 3′-конца 16S рРНК с комплементарной ему последовательностью Шайн - Дальгарно 5′-конца мРНК (для связывания малой субъединицы эукариотической рибосомы помимо специфического мотива в нуклеотидной последовательности мРНК, необходимо также наличие кэп-структуры на её 5′-конце). Далее происходит позиционирование стартового кодона (как правило, AUG) мРНК на малой субъединице. Дальнейшая ассоциация малой и большой субъединиц происходит при связывании инициаторной тРНК (у прокариот - это формилметионил-тРНК , обозначаемая как fMet-тРНК f Met) и при участии факторов инициации (IF1, IF2 и IF3 у прокариот; в случае эукариотических рибосом в инициации трансляции участвуют аналоги прокариотических факторов, а также дополнительные факторы). Таким образом, распознавание антикодона (в тРНК) происходит на малой субъединице.

После ассоциации, fMet-тРНК f Met находится в P- (peptidyl-) сайте каталитического (пептидилтрансферазного) центра рибосомы. Следующая тРНК, несущая на 3′-конце аминокислоту и комплементарная второму кодону на мРНК, находясь в комплексе с заряженным (GTP) фактором элонгации EF-Tu, поступает в А- (aminoacyl-) сайт рибосомы. Затем, образуется пептидная связь между формилметионином (связанным с тРНК f Met , находящейся в Р-сайте) и аминокислотой, принесённой тРНК, находящейся в А-сайте. Механизм катализа реакции транспептидации (образования пептидной связи в пептидилтрансферазном центре) до сих пор полностью не выяснен. Существует несколько гипотез, объясняющих детали этого процесса:

Вероятно, высокая эффективность катализа достигается сочетанием этих факторов.

После образования пептидной связи, полипептид оказывается связанным с тРНК, находящейся в А-сайте. На следующем этапе деацилированная тРНК f Met сдвигается из Р-сайта в Е-сайт (exit-), пептидил-тРНК - из А-сайта в Р-сайт, а мРНК продвигается на один триплет нуклеотидов (кодон). Этот процесс называется транслокацией и происходит с затратой энергии (GTP) при участии фактора EF-G.

Далее, тРНК, комплементарная следующему кодону мРНК, связывается с освободившимся А-сайтом рибосомы, что ведёт к повторению описанных шагов, а образуемый полипептид удлинняется на один аминокислотный остаток с каждым циклом. Стоп-кодоны (UGA, UAG и UAA) сигнализируют об окончании трансляции. Процесс окончания трансляции и освобождения готового полипетида, рибосомы и мРНК называется терминацией. У прокариот он происходит при участии факторов терминации RF1, RF2, RF3 и RRF.

История исследований рибосомы

Рибосомы впервые были описаны как уплотнённые частицы, или гранулы, американским клеточным биологом румынского происхождения Джорджем Паладе в середине 1950-х годов . В 1974 г. Паладе, Клод и Кристиан Де Дюв получили Нобелевскую премию по физиологии и медицине «за открытия, касающиеся структурной и функциональной организации клетки».

Термин «рибосома» был предложен Ричардом Робертсом в 1958 вместо «рибонуклеопротеидная частица микросомальной фракции» на первом симпозиуме, посвящённом этим частицам и их роли в биосинтезе белка . Биохимические и мутационные исследования рибосомы начиная с 1960-х позволили описать многие функциональные и структурные особенности рибосомы.

В начале 2000-х были построены модели с атомным разрешением (до 2,4 Å) структур отдельных субъединиц, а также полной прокариотической рибосомы, связанной с различными субстратами, которые позволили понять механизм декодинга (распознавания антикодона тРНК, комплементарного кодону мРНК) и детали взаимодействий между рибосомой, тРНК , мРНК , факторами трансляции, а также различными антибиотиками . Это крупнейшее достижение в молекулярной биологии было отмечено Нобелевской премией по химии 2009 года («За исследования структуры и функций рибосомы»). Награды были удостоены американец Томас Стейц , британец индийского происхождения

Каждая клетка любого организма имеет сложную структуру, включающую в себя множество компонентов.

Вкратце о строении клетки

Она состоит из мембраны, цитоплазмы, органоидов, которые в них расположены, а также ядра (кроме прокариотов), в котором находятся молекулы ДНК. Кроме того, над мембраной имеется дополнительная защитная структура. В животных клетках во всех остальных - У растений она состоит из целлюлозы, у грибов - из хитина, у бактерий - из муреина. Мембрана состоит из трех слоев: двух фосфолипидных и белкового между ними.

В ней есть поры, благодаря которым осуществляется перенос веществ внутрь и наружу. Возле каждой поры расположены специальные транспортные белки, которые пропускают в клетку только определенные вещества. Органоидами животной клетки являются:

Рибосома - это что?

Раз уж мы говорим о ней в данной статье, то вполне логично задать такой вопрос. Рибосома - это органоид, который может быть расположен на внешней стороне стенок комплекса Гольджи. Нужно уточнить еще, что рибосома - это органоид, который содержится в клетке в очень больших количествах. В одной может находиться до десяти тысяч.

Где находятся данные органоиды?

Итак, как уже говорилось, рибосома - это структура, которая находится на стенках комплекса Гольджи. Также она может свободно передвигаться по цитоплазме. Третий вариант, где может располагаться рибосома - мембрана клетки. И те органоиды, которые находятся в этом месте, практически не покидают его и являются стационарными.

Рибосома - строение

Как же выглядит данная органелла? Она похожа на телефон с трубкой. Рибосома эукариот и прокариот состоит из двух частей, одна из которых больше, другая - меньше. Но эти две ее составляющие не соединяются вместе, когда она находится в спокойном состоянии. Это происходит только тогда, когда рибосома клетки непосредственно начинает выполнять свои функции. О функциях мы поговорим позже. Рибосома, строение которой описывается в статье, также имеет в своем составе информационную РНК и Данные вещества необходимы для того, чтобы записывать на них информацию о нужных клетке белках. Рибосома, строение которой мы рассматриваем, не имеет собственной мембраны. Ее субъединицы (так называются две ее половины) ничем не защищены.

Какие функции выполняет в клетке данный органоид?

То, за что отвечает рибосома, - синтез белка. Он происходит на основе информации, которая записана на так называемой матричной РНК (рибонуклеиновой кислоте). Рибосома, строение которой мы рассмотрели выше, объединяет свои две субъединицы только на время синтеза белка - процесса под названием трансляция. Во время данной процедуры синтезируемая полипептидная цепь находится между двумя субъединицами рибосомы.

Где они формируются?

Рибосома - органоид, который создается ядрышком. Данная процедура происходит в десять этапов, на протяжении которых постепенно формируются белки малой и большой субъединиц.

Каким образом происходит формирование белков?

Биосинтез белков происходит в несколько этапов. Первый из них - это активация аминокислот. Всего их существует двадцать, при комбинировании их разными методами можно получить миллиарды различных белков. На протяжении данного этапа из аминокислот формируется аминоалиц-т-РНК. Данная процедура невозможна без участия АТФ (аденозинтрифосфорной кислоты). Также для осуществления этого процесса необходимы катионы магния.

Второй этап - полипептидной цепи, или процесс объединения двух субъединиц рибосомы и поставка к ней необходимых аминокислот. В данном процессе также принимают участие ионы магния и ГТФ (гуанозинтрифосфат). Третий этап называется элонгацией. Это непосредственно синтез полипептидной цепи. Происходит методом трансляции. Терминация - следующий этап - это процесс распада рибосомы на отдельные субъединицы и постепенное прекращение синтеза полипептидной цепочки. Далее идет последний этап - пятый - На этой стадии из простой цепи аминокислот формируются сложные структуры, которые уже и представляют собой готовые белки. В данном процессе участвуют специфические ферменты, а также кофакторы.

Структура белка

Так как рибосома, строение и функции которой мы разобрали в этой статье, отвечает за синтез белков, то давайте рассмотрим подробнее их структуру. Она бывает первичной, вторичной, третичной и четвертичной. - это определенная последовательность, в которой располагаются аминокислоты, формирующие данное органическое соединение. представляет собой сформированные из полипептидных цепочек альфа-спирали и бета-складки. Третичная структура белка предусматривает определенную комбинацию альфа-спиралей и бета-складок. Четвертичная же структура заключается в формировании единого макромолекулярного образования. То есть комбинации альфа-спиралей и бета-структур формируют глобулы либо фибриллы. По этому принципу можно выделить два типа белков - фибриллярные и глобулярные.

К первым относятся такие, как актин и миозин, из которых сформированы мышцы. Примерами вторых могут служить гемоглобин, иммуноглобулин и другие. напоминают собой нить, волокно. Глобулярные больше похожи на клубок сплетенных между собой альфа-спиралей и бета-складок.

Что такое денатурация?

Каждый наверняка слышал это слово. Денатурация - это процесс разрушения структуры белка - сначала четвертичной, затем третичной, а после - и вторичной. В некоторых случаях происходит и ликвидация первичной структуры белка. Данный процесс может происходить вследствие воздействия на данное органическое вещество высокой температуры. Так, денатурацию белка можно наблюдать при варке куриных яиц. В большинстве случаев этот процесс необратим. Так, при температуре выше сорока двух градусов начинается денатурация гемоглобина, поэтому сильная гипертермия опасна для жизни. Денатурацию белков до отдельных нуклеиновых кислот можно наблюдать в процессе пищеварения, когда с помощью ферментов организм расщепляет сложные органические соединения на более простые.

Вывод

Роль рибосом очень сложно переоценить. Именно они являются основой существования клетки. Благодаря данным органоидам она может создавать белки, которые ей необходимы для самых разнообразных функций. формирующиеся рибосомами, могут играть защитную роль, транспортную, роль катализатора, строительного материала для клетки, ферментативную, регуляторную (многие гормоны имеют белковую структуру). Поэтому можно сделать вывод, что рибосомы выполняют одну из самых важных функций в клетке. Поэтому их и так много - клетке всегда нужны продукты, синтезируемые данными органоидами.

Поделиться