Согласно гипотезе планка энергия света излучается веществом. Гипотеза Планка о световых квантах. Формула Планка. Примеры дискретности в природе

Основоположником квантовой физики считается немецкий физик-теоретик Макс Карл Эрнст Людвиг Планк. Именно он в 1900 г. заложил основы квантовой теории, предположив, что при тепловом излучении энергия испускается и поглощается отдельными порциями – квантами.

Позже было доказано, что любому излучению присуща прерывность.

Из биографии

Родился Макс Планк 23 апреля 1858 г. в г. Киле. Его отец, Иоганн Юлиус Вильгельм фон Планк, был профессором права. В 1867 г. Макс Планк начал обучаться в Королевской Максимилиановской гимназии в Мюнхене, куда к тому времени переехала его семья. В 1874 г.Планк закончил гимназию и занялся изучением математики и физики в Мюнхенском и Берлинском университетах. Планку был всего 21 год, когда в 1879 г. он защитил свою диссертацию «О втором законе механической теории тепла», посвящённую второму началу термодинамики. Через год он защищает вторую диссертацию «Равновесное состояние изотропных тел при различных температурах» и становится приват-доцентом факультета физики в Мюнхенском университете.

Весной 1885 г. Макс Планк – экстраординарный профессор кафедры теоретической физики Кильского университета. В 1897 г. был издан курс лекций Планка по термодинамике.

В январе 1889 г. Планк приступил к выполнению обязанностей экстраординарного профессора кафедры теоретической физики Берлинского университета, а в 1982 г. он стал ординарным профессором. Одновременно он возглавил Институт теоретической физики.

В 1913/14 учебном году Планк занимал пост ректора Берлинского университета.

Квантовая теория Планка

Берлинский период стал наиболее плодотворным в научной карьере Планка. Занимаясь проблемой теплового излучения с 1890 г., в 1900 г. Планк предположил, что электромагнитное излучение не является непрерывным. Оно излучается отдельными порциями – квантами. А величина кванта зависит от частоты излучения. Планком была выведена формула распределения энергии в спектре абсолютно чёрного тела. Он установил, что свет испускается и поглощается порциями-квантами с определённой частотой колебаний. А энергия каждого кванта равна частоте колебания, умноженной на постоянную величину , получившую название константы Планка.

E = hn , где n – частота колебаний, h –константа Планка.

Константу Планка называют основной константой квантовой теории , или квантом действия .

Это величина, связывающая величину энергии кванта электромагнитного излучения с его частотой. Но так как любое излучение происходит квантами, то константа Планка справедлива для любой линейной колебательной системы.

19 декабря 1900 г., когда на заседании Берлинского физического общества Планк доложил о своём предположении, стал днём рождения квантовой теории.

В 1901 г. на основе данных по излучение чёрного тела Планку удалось вычислить значение постоянной Больцмана . Он также получил число Авогадро (число атомов в одном моле) и установил величину заряда электрона с высочайшей точностью.

В 1919 г. Планк стал лауреатом Нобелевской премии по физике за 1918 г. за заслуги «в деле развития физики благодаря открытию квантов энергии».

В 1928 г. Максу Планку исполнилось 70 лет. Он вышел в формальную отставку. Но сотрудничество с Обществом фундаментальных наук кайзера Вильгельма не прекратил. В 1930 г. он стал президентом этого общества.

Планк был членом академий наук Германии и Австрии, научных обществ и академий Ирландии, Англии, Дании, Финляндии, Нидерландов, Греции, Италии, Венгрии, Швеции, США и Советского Союза.Германское физическое общество учредило медаль Планка. Это высшая награда этого общества. И первым почётным её обладателем стал сам Макс Планк.

Окружающий нас мир сегодня кардинально отличается по технологиям от всего, что было привычно в обществе еще сотню лет назад. Все это стало вероятным только благодаря тому, что на заре двадцатого столетия исследователи смогли преодолеть барьер и осознать, наконец: любой элемент в самом маленьком масштабе действует не непрерывно. А открыл эту уникальную эру своей гипотезой талантливый ученый – Макс Планк.

Рисунок 1. Квантовая гипотеза Планка. Автор24 - интернет-биржа студенческих работ

Именем указанного физика названы:

  • одна из физических теорий,
  • научное сообщество в Германии,
  • квантовое уравнение,
  • астероид,
  • кратер на Луне,
  • современный космический телескоп.

Изображение Планка было напечатано на купюрах и выбито на монетах. Такая выдающаяся личность своими предположениями смогла покорить общество и стать узнаваемым ученым еще при жизни.

Макс Планк родился в середине девятнадцатого столетия в обычной небогатой немецкой семье. Его предки были служителями церкви и хорошими юристами. Высшее образование физик получил достаточно хорошее, но коллеги-исследователи в шутку называли его «самоучкой». Ключевые знания он получил посредством получения информации из книг.

Формирование теории Планка

Гипотеза Планка родилась из концепций, которые он изначально вывел теоретически. В своих научных работах он пытался описать принцип «наука важнее всего», а во время первой мировой войны ученый не потерял важные связи с зарубежными коллегами из небольших стран Германии. Неожиданные приход нацистов застал Планка его на должности руководителя большой научной группы – и исследователь стремился защитить своих коллег, помогал своим сотрудникам выехать за границу и сбежать от режима.

Так что квантовая теория Планка была не единственной, за что его уважали. Стоит отметить, что ученый никогда не высказывал свое мнение в отношении действий Гитлера, очевидно осознавая, что может нанести не только себе вред, но и тем, кто нуждался в его помощи. К сожалению, многие представители научного мира не приняли такой позиции Планка и полностью прекратили переписку с ним. У него было пятеро детей, и только самый младший смог пережить отца. При этом современники подчеркивают, что только дома физик был самим собой – искренним и справедливым человеком.

Еще с юношеских лет ученый был вовлечен в изучение принципов термодинамики, которые гласят, что любой физический процесс идет исключительно с увеличением хаоса и уменьшением массы или массы.

Замечание 1

Планк является первым, кто грамотно сформулировал определение термодинамической системы (в терминах энтропии, которая может наблюдаться только в этой концепции).

Позже именно эта научная работа привела к тому, что была создана известная гипотеза Планка. Также он смог разделить физику и математику, разработав комплексный математический раздел. До талантливого физика все естественные науки имели смешанные корни, а эксперименты проводились на элементарном уровне одиночками в лабораториях.

Гипотеза о квантах

Исследуя энтропию электрических и магнитных волн в пределах терминов осцилляторов и опираясь на научные данные, Планк представил общественности и другим ученым универсальную формулу, которая впоследствии будет названа в честь своего создателя.

Новое уравнение связывало между собой:

  • длину волны;
  • энергию и насыщенность действия электромагнитного поля;
  • температуру светового излучения, которое предназначалось в значительной мере для абсолютно черного вещества.

После официального представления данной формулы коллеги Планка под руководством Рубенса в течение нескольких дней ставили эксперименты, чтобы с научной точки зрения подтвердить эту теорию. В результате, она оказалась абсолютно верной, но, чтобы обосновать теоретически вытекающую из этого уравнения гипотезу и при этом не допустить математических сложностей, ученому пришлось признать, что электромагнитная энергия излучается отдельными порциями, а не непрерывным потоком, как считалось ранее. Такой метод окончательно разрушил все существующие представления о твердом физическом теле. Квантовая теория Планка совершила настоящую революцию в физике.

Современники считают, что изначально исследователь не осознавал значимость сделанного им открытия. Некоторое время представленная им гипотеза использовалась только как удобное решение для сокращения количества математических формул для вычисления. При этом Планк, как и его коллеги, применяли в своей работе непрерывные уравнения Максвелла.

Смущала исследователей только постоянная $h$, которая никак не могла получить физический смысл. Только позже Пауль Эренфест и Альберт Эйнштейн, тщательно исследуя новые явления радиоактивности и изучая математические обоснования оптическим спектрам, смогли понять всю важность теории Планка. Известно, что научный доклад, на котором впервые была озвучена формула квантования энергии, открыл век новой физики.

Использования теории Планка

Замечание 2

Благодаря закону Планка общественность получила весомый аргумент в пользу так называемой гипотезы Большого Взрыва, которая объясняет расширение и возникновение Вселенной в результате мощного взрыве с крайне высокой температурой.

Считается, что на ранних этапах своего становления наша Вселенная была полностью заполнена неким излучением, спектральное свойство которого должно совпадать с лучеиспусканием черного тела.

С тех пор мир только расширялся, а затем остыл до нынешней температуры. То есть, излучение, которое на сегодняшний день распространяется во Вселенной, по своему составу должно быть аналогичным альфа-излучению черного вещества с определенной температурой. В 1965 году Вильсон обнаружили данное излучение на длине магнитной волны 7.35 см, которое постоянно падает на нашу планету с одинаковой энергией абсолютно во всех направлениях. Вскоре стало понятно, что это явление может испускать только черное тело, которое возникло после Большого Взрыва. Итоговые показатели измерений свидетельствуют о том, что температура указанного вещества на сегодняшний день составляет 2,7 К.

Применением теории теплового и электромагнитного излучения можно объяснить процессы, которые сопутствовали бы ядерному взрыву (так называемую «атомную зиму»). Мощный взрыв поднимет в верхние слои воздух колоссальные массы сажи и пыли. Как наиболее близкое к черному телу, сажа полностью поглощает практически все солнечное излучение, нагревается до максимального предела, а следом испускает лучеиспускание в обе стороны.

В итоге на Землю попадает всего лишь половина излучения, которое приходит от Солнца, так как вторая половина будет направляться в противоположную от планеты сторону. Согласно расчетам ученым, средняя температура Земли снизится на 50 K (это температура ниже самой точки замерзания воды).

Окружающий нас мир сегодня кардинально отличается по технологиям от всего, что было привычно в обществе еще сотню лет назад. Все это стало вероятным только благодаря тому, что на заре двадцатого столетия исследователи смогли преодолеть барьер и осознать, наконец: любой элемент в самом маленьком масштабе действует не непрерывно. А открыл эту уникальную эру своей гипотезой талантливый ученый – Макс Планк.

Рисунок 1. Квантовая гипотеза Планка. Автор24 - интернет-биржа студенческих работ

Именем указанного физика названы:

  • одна из физических теорий,
  • научное сообщество в Германии,
  • квантовое уравнение,
  • астероид,
  • кратер на Луне,
  • современный космический телескоп.

Изображение Планка было напечатано на купюрах и выбито на монетах. Такая выдающаяся личность своими предположениями смогла покорить общество и стать узнаваемым ученым еще при жизни.

Макс Планк родился в середине девятнадцатого столетия в обычной небогатой немецкой семье. Его предки были служителями церкви и хорошими юристами. Высшее образование физик получил достаточно хорошее, но коллеги-исследователи в шутку называли его «самоучкой». Ключевые знания он получил посредством получения информации из книг.

Формирование теории Планка

Гипотеза Планка родилась из концепций, которые он изначально вывел теоретически. В своих научных работах он пытался описать принцип «наука важнее всего», а во время первой мировой войны ученый не потерял важные связи с зарубежными коллегами из небольших стран Германии. Неожиданные приход нацистов застал Планка его на должности руководителя большой научной группы – и исследователь стремился защитить своих коллег, помогал своим сотрудникам выехать за границу и сбежать от режима.

Так что квантовая теория Планка была не единственной, за что его уважали. Стоит отметить, что ученый никогда не высказывал свое мнение в отношении действий Гитлера, очевидно осознавая, что может нанести не только себе вред, но и тем, кто нуждался в его помощи. К сожалению, многие представители научного мира не приняли такой позиции Планка и полностью прекратили переписку с ним. У него было пятеро детей, и только самый младший смог пережить отца. При этом современники подчеркивают, что только дома физик был самим собой – искренним и справедливым человеком.

Еще с юношеских лет ученый был вовлечен в изучение принципов термодинамики, которые гласят, что любой физический процесс идет исключительно с увеличением хаоса и уменьшением массы или массы.

Замечание 1

Планк является первым, кто грамотно сформулировал определение термодинамической системы (в терминах энтропии, которая может наблюдаться только в этой концепции).

Позже именно эта научная работа привела к тому, что была создана известная гипотеза Планка. Также он смог разделить физику и математику, разработав комплексный математический раздел. До талантливого физика все естественные науки имели смешанные корни, а эксперименты проводились на элементарном уровне одиночками в лабораториях.

Гипотеза о квантах

Исследуя энтропию электрических и магнитных волн в пределах терминов осцилляторов и опираясь на научные данные, Планк представил общественности и другим ученым универсальную формулу, которая впоследствии будет названа в честь своего создателя.

Новое уравнение связывало между собой:

  • длину волны;
  • энергию и насыщенность действия электромагнитного поля;
  • температуру светового излучения, которое предназначалось в значительной мере для абсолютно черного вещества.

После официального представления данной формулы коллеги Планка под руководством Рубенса в течение нескольких дней ставили эксперименты, чтобы с научной точки зрения подтвердить эту теорию. В результате, она оказалась абсолютно верной, но, чтобы обосновать теоретически вытекающую из этого уравнения гипотезу и при этом не допустить математических сложностей, ученому пришлось признать, что электромагнитная энергия излучается отдельными порциями, а не непрерывным потоком, как считалось ранее. Такой метод окончательно разрушил все существующие представления о твердом физическом теле. Квантовая теория Планка совершила настоящую революцию в физике.

Современники считают, что изначально исследователь не осознавал значимость сделанного им открытия. Некоторое время представленная им гипотеза использовалась только как удобное решение для сокращения количества математических формул для вычисления. При этом Планк, как и его коллеги, применяли в своей работе непрерывные уравнения Максвелла.

Смущала исследователей только постоянная $h$, которая никак не могла получить физический смысл. Только позже Пауль Эренфест и Альберт Эйнштейн, тщательно исследуя новые явления радиоактивности и изучая математические обоснования оптическим спектрам, смогли понять всю важность теории Планка. Известно, что научный доклад, на котором впервые была озвучена формула квантования энергии, открыл век новой физики.

Использования теории Планка

Замечание 2

Благодаря закону Планка общественность получила весомый аргумент в пользу так называемой гипотезы Большого Взрыва, которая объясняет расширение и возникновение Вселенной в результате мощного взрыве с крайне высокой температурой.

Считается, что на ранних этапах своего становления наша Вселенная была полностью заполнена неким излучением, спектральное свойство которого должно совпадать с лучеиспусканием черного тела.

С тех пор мир только расширялся, а затем остыл до нынешней температуры. То есть, излучение, которое на сегодняшний день распространяется во Вселенной, по своему составу должно быть аналогичным альфа-излучению черного вещества с определенной температурой. В 1965 году Вильсон обнаружили данное излучение на длине магнитной волны 7.35 см, которое постоянно падает на нашу планету с одинаковой энергией абсолютно во всех направлениях. Вскоре стало понятно, что это явление может испускать только черное тело, которое возникло после Большого Взрыва. Итоговые показатели измерений свидетельствуют о том, что температура указанного вещества на сегодняшний день составляет 2,7 К.

Применением теории теплового и электромагнитного излучения можно объяснить процессы, которые сопутствовали бы ядерному взрыву (так называемую «атомную зиму»). Мощный взрыв поднимет в верхние слои воздух колоссальные массы сажи и пыли. Как наиболее близкое к черному телу, сажа полностью поглощает практически все солнечное излучение, нагревается до максимального предела, а следом испускает лучеиспускание в обе стороны.

В итоге на Землю попадает всего лишь половина излучения, которое приходит от Солнца, так как вторая половина будет направляться в противоположную от планеты сторону. Согласно расчетам ученым, средняя температура Земли снизится на 50 K (это температура ниже самой точки замерзания воды).

Планка, кто ее создатель и насколько важной она стала для развития современной науки. Также показано значение идеи квантования для всего микромира.

Смартфон и квантовая физика

Современный окружающий нас мир сильно отличается по технологиям от всего, что было привычно еще сотню лет назад. Все это стало возможным только благодаря тому, что на заре двадцатого века ученые преодолели барьер и поняли, наконец: вещество в самом маленьком масштабе не непрерывно. А открыл эту эру своим предположением замечательный человек - Макс Планк.

Биография Планка

Его именем названы: одна из физических констант, квантовое уравнение, научное сообщество в Германии, астероид, космический телескоп. Его изображение было выбито на монетах и напечатано на марках и купюрах. Каким же человеком был Макс Планк? Он родился в середине девятнадцатого века в немецкой дворянской небогатой семье. Среди его предков было немало хороших юристов и служителей церкви. Образование М.Планк получил хорошее, но коллеги-физики в шутку называли его «самоучкой». Основные знания ученый получил из книг.

Гипотеза Планка родилась из предположения, которое он вывел теоретически. В своей научной карьере он придерживался принципа «наука важнее всего». В первую мировую войну Планк старался сохранить связи с зарубежными коллегами из стран-противниц Германии. Приход нацистов застал его на должности директора большого научного сообщества - и ученый стремился защитить своих сотрудников, помогал выехать за границу тем, кто бежал от режима. Так что гипотеза Планка была не единственным, за что его уважали. Однако он никогда открыто не высказывался против Гитлера, очевидно понимая, что не только принесет вред себе, но и не сможет помогать тем, кто нуждался в этом. К сожалению, многие физики не приняли такой позиции М. Планка и прекратили переписку с ним. У него было пятеро детей, и только самый младший пережил отца. Старшего сына забрала Первая, среднего - Вторая мировая война. Обе дочери не пережили родов. При этом современники отмечали, что только дома Планк был самим собой.

Источники квантов

Со школы ученый интересовался Оно гласит: любой процесс идет только с увеличением хаоса и потерей энергии или массы. Он был первым, кто сформулировал его именно так - в терминах энтропии, которая может только возрастать в термодинамической системе. Позже именно эта работа привела к тому, что была сформулирована знаменитая гипотеза Планка. Также он был одним из тех, кто ввел традицию разделять математику и физику, практически создав теоретический раздел последней. До него все естественные науки были смешаны, а эксперименты проводились одиночками в лабораториях, которые почти не отличались от алхимических.

Гипотеза о квантах

Исследуя энтропию электромагнитных волн в рамках терминов осцилляторов и опираясь на экспериментальные данные, полученные за два дня до того, 19 октября 1900 Планк представил другим ученым формулу, которую впоследствии назовут его именем. Она связывала между собой энергию, длину волны и температуру излучения (в предельном случае для Всю следующую ночь его коллеги под руководством Рубенса ставили эксперименты, чтобы подтвердить эту теорию. И она оказалась верной! Однако чтобы теоретически обосновать вытекающую из этой формулы гипотезу и при этом избежать математических сложностей типа бесконечностей, Планку пришлось признать, что энергия излучается не непрерывным потоком, как считалось раньше, а отдельными порциями (Е=hν). Такой подход рушил все существующие представления о твердом теле. Квантовая гипотеза Планка совершила революцию в физике.

Последствия квантования

Поначалу ученый не осознавал важность сделанного им открытия. Какое-то время выведенная им формула употреблялась только как удобный способ сократить количество математических операций для вычисления. При этом как Планк, так и другие ученые, использовали непрерывные уравнения Максвелла. Смущала только постоянная h, которой никак не удавалось придать физический смысл. Позже только Альберт Эйнштейн и Пауль Эренфест, разбираясь в новых явлениях радиоактивности и пытаясь найти математическое обоснование оптическим спектрам, поняли всю важность того, что такое гипотеза Планка. Говорят, что доклад, на котором впервые прозвучала формула , открыл эру новой физики. Вероятно, Эйнштейн был первым, кто осознал ее начало. Так что это и его заслуга тоже.

Что квантуется

Все состояния, которые могут принимать любые элементарные частицы, дискретны. Электрон в ловушке может находиться только на определенных уровнях. Возбуждение атома, как и противоположный процесс - эмиссия, тоже происходит скачками. Любые электромагнитные взаимодействия - это обмен квантами соответствующей энергии. Энергию атома человечество обуздало только благодаря пониманию дискретности Надеемся, теперь у читателей не возникнет вопроса, в чем заключается гипотеза Планка, и каково ее влияние на современный мир, а значит, каждого из людей.

В физике не все явления и объекты наблюдаются непосредственно. Например, электрическое поле. То, что мы наблюдаем, - это взаимодействие тел, а уже по взаимодействию тел мы судим об электрическом заряде, об электрическом поле, которое вокруг него создается. Если мы не можем что-то наблюдать непосредственно, мы можем судить об этом по его проявлениям.

Луч света мы тоже не видим, пока в него что-то не попадет: мошка, дым, стена (см. рис. 1).

Рис. 1. Мошка на пути луча света

Сравните, как вы видите солнечный свет в комнате с чистым воздухом - только в виде солнечных зайчиков на полу и мебели (см. рис. 2) (то, что на пути луча попадаются молекулы воздуха, трудно заметить невооруженным глазом), и в пыльной комнате - в виде явных лучей (см. рис. 3).

Рис. 2. Свет в чистой комнате

Рис. 3. Свет в пыльной комнате

При исследовании света по его взаимодействию с веществом было обнаружено его очень интересное свойство: световая энергия излучается и поглощается порциями, которые называются квантами. Непривычно слышать? Но в природе это свойство встречается не так уж и редко, мы этого даже не замечаем. Об этом мы сегодня и поговорим.

Есть вещи, которые мы можем пересчитать в штуках, как пальцы на руке, ручки на столе, автомобили… Есть один автомобиль, а есть два, среднего быть не может, пол-автомобиля - это уже груда запчастей. Так вот, карандаши, автомобили, все предметы, которые являются отдельными и которые мы можем посчитать, дискретны. В отличие от них попробуйте сосчитать воду: одна, две… Вода непрерывна, ее можно лить струёй, которую всегда можно прервать (см. рис. 4).

Рис. 4. Вода непрерывна

А непрерывен ли сахар? На первый взгляд, да. Его, как и воду, можно взять ложкой сколько угодно. А если присмотреться поближе? Сахар состоит из кристалликов-песчинок, которые мы можем пересчитать (см. рис. 5).

Рис. 5. Кристаллики сахара

Получается, если в сахарнице много сахара и мы его берем оттуда ложкой, нас не интересуют отдельные кристаллики и мы считаем его непрерывным. А для муравья, который несет один или два кристаллика, и для нас, наблюдающих за этим через лупу, сахар дискретен. Выбор модели зависит от решаемой задачи. Вы хорошо понимаете, что такое дискретность и непрерывность, когда покупаете одни продукты поштучно, а другие - на развес.

Если присмотреться еще ближе, то можно дискретной считать и воду: уже давно никого не удивишь тем, что вещества состоят из отдельных атомов и молекул. И также нельзя взять полмолекулы воды (см. рис. 6).

Рис. 6. Близкое рассмотрение воды

То же самое мы знаем об электрическом заряде: заряд тела может принимать значения только кратные заряду электрона или протона, потому что это элементарные носители заряда (см. рис. 7).

Рис. 7. Элементарные носители заряда

Всё непрерывное на каком-то уровне изучения становится дискретным, вопрос только - на каком.

Примеры дискретности в природе

Посмотрите на видовое разнообразие живого мира: есть бегемот с короткой шеей и есть жираф с длинной. Но нет множества промежуточных форм, среди которых можно было бы найти животное с любой длиной шеи. Понятно, что есть другие животные с любыми шеями, но длина шеи - только один признак. Если взять набор признаков, то каждый вид имеет свой набор, и снова нет множества промежуточных форм со всеми промежуточными признаками (см. рис. 8).

Рис. 8. Набор признаков животных

Животные, как и растения, бывают отдельных определенных видов. Ключевое слово - отдельных, то есть живая природа в своем видовом разнообразии дискретна.

Наследственность также дискретна: признаки передаются генами, и не может быть полгена: он или есть, или его нет. Конечно, генов много, поэтому признаки, которые они кодируют, кажутся непрерывными, как сахар в большом мешке. Мы же не видим людей в виде конструкторов, собранных из набора шаблонов: один из трех стандартных цветов волос, один из пяти цветов глаз (см. рис. 9).

Рис. 9. Человек не собирается подобно конструктору из набора признаков

К тому же на организм, помимо наследственности, влияют условия окружающей среды.

Дискретность видна и в резонансных частотах: слегка ударьте стоящий на столе стакан. Вы услышите звон: звук определенной - резонансной для этого стакана - частоты. Если удар будет достаточно сильным и стакан зашатается, то шататься он будет тоже с определенной частотой (см. рис. 10).

Рис. 10. Сильный удар по стакану

Если он будет с водой, по ней пойдут круги, поверхность воды будет колебаться с резонансной для этой воды в стакане частотой (см. рис. 11).

Рис. 11. Полный стакан воды

В данной системе, в нашем примере это был стакан с водой, колебания протекают не на любой частоте, а лишь на определенных - снова дискретность.

Даже воду, пока она течет из крана струйкой, мы считаем непрерывной, а когда она начинает капать - дискретной. Да, мы не думаем, что капли неделимы, как молекулы, но ведь мы считаем их поштучно, мы не говорим о скорости вытекания воды, например 2 мл за секунду, если падает одна капля, например, в 5 секунд. То есть мы применяем модель воды, состоящей из капель.

До этого дискретность, или квантованность, замечали у вещества. Макс Планк впервые указал на то, что этим свойством обладает и энергия. Планк предположил, что энергия света дискретна, а одна порция энергии пропорциональна частоте света. Он это сделал при решении задачи о тепловом излучении. Нам не хватает знаний, чтобы разобраться в этой задаче, но ее Планк решил, и главное, что его предположение подтвердилось экспериментально.

Гипотеза Планка заключается в следующем: энергия колеблющихся молекул и атомов принимает не любые, а только некоторые определенные значения. Значит, при излучении энергия излучающих молекул и атомов изменяется скачками. Соответственно, свет излучается не непрерывно, а некоторыми порциями, которые Планк назвал квантами (см. рис. 12).

Рис. 12. Кванты света

Гипотеза Планка была доказана открытием и объяснением фотоэффекта: это явление испускания электронов веществом под действием света или другого электромагнитного излучения. Это происходит так: энергия одного кванта передается одному электрону (см. рис. 13).

Рис. 13. Энергия кванта передается одному электрону

Она идет на то, чтобы вырвать электрон из вещества, а оставшаяся энергия идет на разгон электрона, переходит в его кинетическую энергию. И вот что заметили: чем больше частота света, тем сильнее разгоняются электроны. Значит, энергия одного кванта излучения пропорциональна частоте излучения. Планк так и принял:

где E - энергия кванта излучения в джоулях, ν - частота излучения в герцах. Полученный при согласовании экспериментальных данных с теорией коэффициент пропорциональности равный , был назван постоянной Планка.

Удивительно, что мы говорим: «свет проявляет свойства потока частиц», а энергию этих частиц связываем с частотой - характеристикой волны, не частицы. То есть мы не говорим, что свет является потоком частиц, мы просто применяем модель, лишь бы она помогла нам описать явление.

Фотоэффект. Уравнение Эйнштейна для фотоэффекта

Явление фотоэффекта стало подтверждением квантовой гипотезы, здесь квантовая модель хорошо работает.

Как волна может выбить электрон из вещества - непонятно. И уж тем более непонятно, почему излучение с одной частотой выбивает электрон, а с другой частотой - нет. И как энергия излучения распределяется по электронам: излучение сообщит большую энергию одному электрону или меньшую - двум?

Используя квантовую модель, мы легко во всем разберемся: один поглощенный квант световой энергии (фотон) - может вырвать из вещества только один фотоэлектрон (см. рис. 14).

Рис. 14. Один фотон выбивает один фотоэлектрон

Если кванта световой энергии для этого недостаточно, электрон не выбивается, а остается в веществе (см. рис. 15).

Рис. 15. Электрон остается в веществе

Лишняя энергия передаётся электрону в виде кинетической энергии его движения после выхода из вещества. А сколько будет таких квантов, столько и электронов подвергнутся их воздействию.

У нас будет отдельный урок, посвященный фотоэффекту, и тогда мы поговорим о нем более подробно, но уже сейчас нам будет понятно уравнение Эйнштейна для фотоэффекта (см. рис. 16).

Рис. 16. Явление фотоэффекта

Оно отражает то, что мы проговорили, и выглядит так:

- это работа выхода - минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл. Это характеристика металла и состояния его поверхности.

Квант энергии света расходуется на совершение работы выхода и на сообщение электрону кинетической энергии.

Фотоэффект и уравнение, которое его описывает, было использовано для получения и проверки значения , полученного Планком. Об этом подробнее смотрите в следующем ответвлении.

Экспериментальное определение постоянной Планка

Пользуясь уравнением Эйнштейна, можно определить постоянную Планка, для этого нужно экспериментально определить частоту света , работу выхода A, и кинетическую энергию фотоэлектронов. Это было проделано, получено значение , совпадающее с тем, которое было найдено Планком теоретически при изучении совершенно другого явления - теплового излучения.

В физике нам часто встречались константы (например, число Авогадро, температура кипения воды, универсальная газовая постоянная и пр.). Такие константы неравноправны, среди них есть так называемые фундаментальные, на которых строится здание физики. Постоянная Планка - одна из таких констант, помимо неё, к фундаментальным константам относятся скорость света и гравитационная постоянная.

Одну порцию излучения можно считать частицей света - фотоном. Энергия фотона равна одному кванту. В формулировках задач мы будем равноправно использовать термины «энергия фотона» и «квант энергии света». Также эти свойства света называют корпускулярными (корпускула - значит частица).

В соответствии с гипотезой Планка энергия излучения складывается из минимальных долей , т. е. полная излученная энергия принимает дискретные значения:

где - натуральное число.

Так как размер минимальной порции энергии - , то, например, порция (или квант) излучения в красном диапазоне имеет меньшую энергию, чем порция (или квант) излучения в ультрафиолетовом диапазоне.

Решим следующую задачу.

Мощность излучения лазерной указки с длиной волны равна . Определите число фотонов, излучаемых указкой за 2 с.

Поделиться