Солнечные пятна и их магнитные поля. Магнитное поле - ключ к солнцу Магнитные поля солнца

Люди, посвятившие себя изучению Солнца, неизбежно встречаются с одной проблемой. Их наблюдения проводятся издалека. Они полагаются на изображения и данные, полученные с расстояния в 140 миллионов километров. Как ни крути, такие данные не позволяют создать точную картину магнитных полей, существующих и, главное, постоянно меняющихся, около Солнца.

Но оставить эту проблему нельзя. Напротив, ученым следует уделить ей максимальное внимание. Понимание структуры и динамики этих полей позволит разобраться в том, как корональные выбросы путешествуют в пространстве, в том числе, в направлении Земли, где они могут нанести серьезный ущерб спутникам. Группа американских специалистов разработала подход, объединяющий старые, испробованные во многих областях знания математические методы и новые теории и экспериментальные техники наблюдения за динамикой корональных масс для того, чтобы создать новую, достаточно точную модель магнитных полей около Солнца. В первую очередь - в верхних слоях его атмосферы, в короне.

«Магнитное поле - своеобразный скелет всей гелиосферы, оно определяет, как частицы и корональные массы движутся в сторону Земли», - говорит специалист по Солнцу, физик из Центра космических полетов имени Годдарда Нэт Гопалсуами . По его словам, измерение магнитных полей около поверхности Солнца стало для физиков рутинной работой, но вот подняться выше и проводить измерения в атмосфере, особенно в ее верхних слоях, пока толком не научились. «До недавнего времени мы могли измерять магнитное поле только в верхней части короны и при определенных условиях. Новая методика позволит проводить более общие исследования».

Для использования нового метода нужно лишь иметь хорошие измерения коронального выброса. Метод основывается на взаимодействии между объектом, движущимся через газ и самим газом. При этом возникает ударная волна, вокруг объекта возникает область сжатого, неравновесного газа, примерно как при движении реактивного самолета. Это было открыто еще в 1960-х годах. Если же объект движется через электризованный газ, плазму, его взаимодействие с газом обуславливается также магнитным полем, в особенности его напряженностью. Такую ударную волну с магнитном поле называют головной.

Проблема заключается в том, чтобы в верхней короне засечь головную ударную волну. В верхней части короны ученым пока не удавалось заметить тех явлений, по которым обычно и различают ударную волну в областях, которые ближе к поверхности Солнца. Однако 25 марта 2008 года Солнце предоставило ученым шанс проникнуть в свои секреты. Образовался корональный выброс, двигавшийся со скоростью почти в 5 миллионов километров в час. Он был замечен многими космическими аппаратами, занимающимися наблюдением за Солнцем. За счет этого было получено трехмерное изображение движения корональных масс. Оказалось, что в лимбе (в крайних областях Солнца) хорошо заметно движение корональных масс. Все явления, наблюдаемые в лимбе, чрезвычайно удобны для наблюдения и анализа. Ученые получили отличные данные о динамике коронального выброса.

Гопалсуани предположил, что ударная волна может быть видна на стандартных изображениях в белом цвете. Она действительно была видно, но не так, как он предполагал. Траектории ударных волн были на удивление неточны, что особенно странно в тонкой атмосфере Солнца. Вместо того, чтобы быть вблизи самих корональных масс, ударные волны вырывались с границ движущейся массы.

Во время выброса 25 марта ученым удалось заметить контуры своего рода диффузионного кольца около границ коронального выброса. Их структура позволила определить силу магнитного поля, приводящего к смещению ударных волн. Расстояние между корональными массами и фронтом ударной волны, а также радиус искривления траектории выброса дают исчерпывающую информацию для определения магнитных свойств среды, через которую они движутся. Можно сказать, аналогично по волнам можно определить, движутся ли они в воде или, например, в масле.

Скорость распространения ударной волны может быть использована для того, что определить так называемую скорость Альфвена - скорость распространения волны Альфвена. Эта скорость определяет, как быстро волна может проходить через магнитную среду. Это - аналог скорости распространения звуковой волны в воздухе. По этой скорости можно определить, до какой степени может дойти скорости объекта до того, как он создаст ударную волну. Определив эту волну, можно затем вычислить напряженность магнитного поля в среде.

Математические модели, используемые при этих преобразованиях, были объединены с более привычными моделями распространения ударных волн и позволили создать новую теорию движения корональных масс и их воздействия на Землю. Это - свидетельство того, как математические методы, применяемые в различных областях знания могут использоваться совместно. В данном случае используется метод, изначально разработанный для изучения геомагнитного поля. Затем он был расширен для анализа движения корональных масс в межпланетном пространстве, затем - около Солнца и, наконец, для определения магнитного поля в короне.

Для верификации нового метода ученые провели измерения напряженности магнитного поля на разных расстояниях от Солнца. Эти данные хорошо совпали с предсказаниями новой модели, что позволяет надеяться, что новая разработка скоро будет активно применяться для измерения напряженности магнитного поля в короне. Совместно с другими данными, которые в настоящее время доступны измерению человеком, такими как плотность, температура и направление линий магнитного поля, измерения напряженности магнитного поля позволят получить полную картину магнитного поля в короне Солнца.

Знание магнитного поля совершенно необходимо для предсказания космической погоды.

Необходимые сведения о Солнце. Солнце – плазменный шар, центральное тело нашей солнечной системы и единственная ближайшая звезда, которую видим не как точку, а как диск. Линейный радиус Солнца составляет R C =695990 км. Масса Солнца равна M C =2 10 30 кг . Температура в центре (ядре) равна 15 млн. K. Плотность ядра 1,6 10 5 кг. Хотя ядра атомов «упакованы» здесь примерно в 1000 раз плотнее, чем в металлах, высокая температура поддерживает вещество в газообразном состоянии .

Согласно теоретическим данным в настоящее время Солнце пребывает на стадии главной последовательности (на стадии превращения ядер водорода в ядра гелия) уже 4,6 10 9 лет и будет продолжать находиться на этой стадии примерно столько же времени, пока водород в ядре не будет исчерпан. Внутреннее строение Солнца приведено на рис. 1 .

Наружный слой Солнца, из которого излучается принимаемое нами оптическое излучение, фотосфера нагрета до 6000 K. Газ в фотосфере ионизован лишь на 0,1%, но этого вполне достаточно, чтобы электропроводимость была высокой. Выше и ниже фотосферы газ ионизован практически полностью, поэтому проводимость еще выше. Над фотосферой расположена верхняя атмосфера Солнца. Ее делят на нижнюю часть – хромосферу, толщиной в несколько тысяч км с температурой 6 10 3 – 10 4 K, среднюю, переходную область с резким переходом температуры от 10 4 до 10 6 K и корону – очень протяженную внешнюю атмосферу, нагретую, в среднем до 2 млн. K и плавно переходящую в межпланетную среду. Непосредственно под фотосферой располагается конвективная зона Солнца, в которой энергия из недр наружу передается в основном конвективным путем. Конвекция на Солнце развита сильно, напоминает бурное кипение в гигантских масштабах и проявляет себя на фотосфере в виде грануляций и супергрануляций. Под конвективной зоной располагается, самая протяженная область, зона лучистого переноса энергии, а под ней находится ядро Солнца. Средний период вращения нашего светила составляет 27 земных суток. Вращение является дифференциальным .

Магнитные поля Солнца. На Солнце и на более удаленных небесных телах магнитные поля измеряют лишь косвенно. Впервые это сделал Д. Хейл в 1908 г., который обнаружил, что в солнечных пятнах имеются магнитные поля до 0,3 Тл (3000 Гс). Он был первым, кто обнаружил существование магнетизма за пределами Земли. Более слабые поля измеряют изобретенным Г. Бэбкоком магнитографом, который дает возможность измерить продольную (вдоль луча зрения) компоненту индукции магнитного поля, равную примерно 10 -4 Тл (1 Гс) и даже меньше. Многолетние наблюдения показали, что сильные магнитные поля имеются лишь в так называемых активных областях Солнца – в солнечных пятнах, где магнитная индукция порядка десятых долей Тесла (тысячи Гаусс). В других местах типичны поля 0,1 – 0,2 мТл (1 – 2 Гс). В околополярных областях магнитное поле имеет структуру близкую к дипольной с магнитными полюсами, примерно совпадающими с осью вращения. В умеренных широтах Солнца (|φ |<=50 о) преобладают биполярные (двуполярные) области, вытянутые вдоль экватора и униполярные (однополярные) области. Характерной чертой магнитных полей Солнца оказалось то, что изменения их полярности имеют 11-летнюю периодичность. Таким образом, полный инверсионный цикл магнитных полей Солнца (далее МПС) составляет порядка 22-23 года . Наиболее ярким наблюдательным проявлением 11-летнего цикла являются периодические вариации количества активных областей (пятен) на Солнце. Новый цикл солнечной активности начинается с того, что в период минимума числа пятен появляются активные области на гелиографических широтах ±30 о. Далее, с течением цикла, средняя широта пятен убывает до нуля. Получающаяся диаграмма распределения пятен по широтам в функции времени напоминает бабочек. Ее часто называют «бабочками» Маундера, по фамилии ученого впервые построившего такую зависимость (Рис. 2) .

Вид внешних частей солнечной короны сильно зависит от фазы солнечной активности. В период минимума солнечной активности корона имеет «приглаженный» симметричный вид (Рис. 3), а в периоды максимума более сложный «растрепанный» вид .

В начале прошлого XX столетия исследователями Солнца было внесено понятие активных долгот. Речь идет о существовании отдельных долготных интервалов в 30–40 о, проявляющих повышенную активность в течение нескольких (от 1 до нескольких) 11-летних солнечных циклов. Также удалось установить, что эти активные долготы не связаны с дифференциальным вращением Солнца .

На протяжении примерно 70 лет (с 1645 по 1715 г.г.) солнечных пятен практически не было. Это явление получило название минимума Маундера. Радиоуглеродным методом удалось установить, что аналогичные минимумы то большей, то меньшей глубины и продолжительности имели место и раньше каждые несколько веков. Однако, не смотря на отсутствие пятен, 11-летние периоды солнечного магнетизма все же проявляли себя .

Со времени открытия МПС были предложены целый ряд гипотетических моделей генерации этих полей. Эти модели можно условно подразделить на три типа гипотез. 1- й тип: те, которые предполагают причины солнечной активности за пределами

Солнца; 2-й тип: те, которые предполагают причины солнечной активности в самом Солнце и 3-й тип промежуточный . Последним словом гипотетических моделей является, как ее сторонники называют, «господствующая динамо теория», которая основана на усилении затравочного незначительного магнитного поля асимметричными потоками (вихрями) электропроводной среды. Для полной ясности приведем цитату из , поясняющую динамо процессы в упрощенном виде: «далеко не всякий вид движений электропроводной среды способно приводить к усилению магнитных полей. Как показали специальные исследования, никакие симметричные движения, сводящиеся к двумерным или центрально-симметричным, осе – симметричным или зеркально-симметричным, не способны привести к устойчивому усилению поля и, в конечном счете, вызывают диссипацию (исчезновение) его. Тип движений способный привести к усилению поля, схематически показан на рис. 4. Представим себе исходную магнитную трубку (вещество с вмороженным в него полем) в виде тора (1). Если движения вещества таковы, что, растягивая тор, они перекручивают его в «восьмерку» (2), а затем складывают эту «восьмерку» в два кольца (3), так что в результате получается тор тех же размеров, что и вначале, то напряженность поля станет в два раза больше, чем в исходной ситуации (1), при сохранении геометрии поля». Однако в этой гуще случайных событий, трудно представить, что этот вид движений будет идти именно в нужном направлении.

Сущность предлагаемой модели МПС. В данной работе автор предлагает альтернативную теоретическую модель, призванную описать генерацию и инверсионно -циклическое развитие МПС. Эта модель, являясь универсальной, логически вписывается в имеющиеся данные и факты магнетизма Солнца и не требует особых условий для ее реализации. Необходимыми условиями являются наличие вращения небесного тела вокруг своей оси, существование проводящих слоев в его толще и затравочного (внешнего или собственного) магнитного поля .

Если проводящий шар (Солнце) вращается вокруг собственной оси в магнитном поле (затравочное поле), имеющем составляющую вектора индукции B o , направленную вдоль оси вращения с юга на север (рис.5, а), то на каждый заряд (электрон, протон, ион), находящийся в нем и вращающийся вместе с ним, с линейной скоростью

v = ω · r

действует сила Лоренца со стороны затравочного магнитного поля

F = q · v · B o · sin α

где ω – угловая скорость вращения, r – расстояние от оси вращения до заряда q . Угол α = 90 º т.к. векторы v иB o перпендикулярны. Применив соответствующее правило (левой руки) легко убедиться, что эта сила разделяет свободные заряды, отрицательные – к оси вращения, а положительные – к внешнему краю вращающегося шара. В результате длительного действия этих сил на свободные заряды во вращающемся теле образуются две кольцевые области в виде полых концентрических цилиндров, имеющие некомпенсированные противоположные заряды, отрицательная Q – (внутреннее кольцо) вблизи оси вращения, и положительная Q + (внешнее кольцо) дальние от оси вращения края шара (небесного тела) (рис.5, а). Эти области имеют суммарные некомпенсированные заряды противоположного знака, равные по модулю

| Q + | = | Q | .

При вращении небесного тела вокруг собственной оси эти области, вращаясь вместе с ней, создают концентрические кольцевые токи противоположного направления (I + – с запада на восток и I – с востока на запад).

I + = Q + / T ; I = Q / T ,

где T – период вращения. Эти кольцевые токи создадут собственные магнитные поля с векторами индукции B + и B – соответственно. Определив направления кольцевых токов и их полей (правило буравчика), легко убедиться, что направления векторов B + , B – и B o в промежутке между кольцевыми токами I + и I – совпадают и взаимно усиливают друг друга, следовательно, способствуют дальнейшему разделению зарядов и увеличению магнитных сил отталкивания (закон Ампера) между этими кольцевыми токами противоположного направления. Заметим, что наряду с магнитным полем возникнет и электрическое поле, противодействующее разделению зарядов. Однако это электрическое поле, практически полностью, будет экранировано , разделяющим кольцевые области, высоко проводящим веществом солнечной плазмы. Таким образом, этот механизм сохраняет «жизнеспособность» и в отсутствие затравочного поля B o . При этом значение вектора индукции B собственного магнитного поля вращающегося небесного тела (шара) в каждой точке пространства вне и внутри шара определяется суперпозицией векторов B + и B – . В дальнейшем главным необходимым условием существования и развития собственного магнитного поля небесного тела становится лишь наличие его вращения вокруг собственной оси .

Проанализируем существование и дальнейшее развитие этой модели генерации магнитного поля применительно к условиям Солнца. Итак, мы имеем два кольцевых тока I + и I в проводящей плазме Солнца (Рис.5, а). По мере накопления зарядов растут силы магнитного отталкивания между кольцевыми токами (закон Ампера), а также силы электрического отталкивания между близлежащими одноименными зарядами внутри каждого кольца (стремление некомпенсированного заряда к поверхности проводящей среды ). Результирующее действие этих сил в течение длительного времени приведет к росту диаметров обоих кольцевых областей и постепенному входу внешней кольцевой области Q + в пределы конвективной зоны, где ее северные и южные концы начнут разрушать конвективные процессы. В то же самое время внутри достаточно расширившейся полости внутреннего кольца Q – , под действием той же силы Лоренца, начнет зарождаться новая (зародышевая) кольцевая область с положительным некомпенсированным зарядом q + вокруг оси вращения Солнца, т.е. зарождается новый кольцевой ток J + (Рис.5, б). Отметим, что зарождение этого кольцевого тока есть начало инверсии МПС в будущем.

Количество зарядов в этом зародышевом кольце q + постепенно растет, набирая силу и расширяясь в диаметре. Рост количества зарядов в этой области q + сопровождается одновременным убыванием их во внешней областиQ + за счет

потерь по причине их разрушения конвективными процессами. В этот период равновесие зарядов Солнца в целом сохраняется и выражается как

| Q | = ‌| Q + | + | q + ‌| .

Таким образом, в этот период в солнечном шаре образуются три концентрических кольцевых тока I + , I и J + , которые создают магнитные поля с векторами индукции B + , B – и b + соответственно. При дальнейшем развитии МПС расширение колец приведет к постепенному входу внешнего кольца Q + сначала в пределы конвективной зоны, затем (через процесс образования пятен) и через фотосферу к внешнему краю активно вращающейся части солнечной атмосферы, вплоть до полного уничтожения его конвективными и прочими процессами Солнца (Рис.5, в, г). К этому времени кольцевая область q + станет полноценным кольцевым током, и количество зарядов в ней достигнет до уровня количества зарядов в кольце Q – т.е.,

| Q | = | q + | .

Этим завершается первая 11-летняя часть инверсионного цикла основного (дипольного) поля Солнца, составляющий половину одного полного 22-летнего цикла (Рис.5, д). Должно быть, читателю уже стал ясен сценарий дальнейшего непрерывного инверсионно-циклического развития МПС. Оно сопровождается расширением колец Q – и q + , образованием нового зародышевого кольца q вокруг оси Солнцас отрицательным некомпенсированным зарядом (Рис.5, е), и дальнейшим циклическим повторением процесса. Одним словом течение этого процесса в целом аналогично инверсионно – циклическому развитию магнитного поля Земли , с учетом поправок на отличия во внутреннем строении и других параметров Солнца и его атмосферы. Математическое обеспечение этой модели МПС также аналогично земному, которое подробно приведено в , и поэтому здесь не дается. Это и есть краткое описание модели основного магнитного поля Солнца (иногда его называют дипольным или полоидальным), которое имеет непрерывное инверсионно – циклическое развитие. Кроме этого основного магнитного поля на Солнце наблюдаются, упомянутые выше, магнитные поля солнечных пятен, механизму возникновения которых, посвящается нижеследующий абзац.

Образование солнечных пятен. Любая модель, посвященная объяснению МПС должна содержать описание процесса образования солнечных пятен (далее пятен). Для этого обратимся к некоторым известным процессам, происходящим в атмосфере Земли – к вихрям (циклоны, тайфуны, торнадо, смерчи). Сравнение параметров земной атмосферы с параметрами атмосферы Солнца, включая конвективную зону, (вертикальную мощность, высокую температуру, бурлящее кипение), дает полную уверенность в том, что в солнечной атмосфере вихри (назовем их солнечными торнадо) гигантских, соответствующих параметрам атмосферы Солнца, размеров и мощностей есть явления часто происходящие. В те периоды, когда в эти солнечные торнадо вовлекаются части кольцевых областей с некомпенсированными зарядами (Рис. 5, б–е), очень сильное вращение некомпенсированного заряда в торнадо создает сильные магнитные поля (помимо основного дипольного поля). Этот процесс на фотосфере Солнца наблюдается в виде пятен. Темный цвет пятен автор связывает не спадом температур как в , а отсутствием возможности для рекомбинации (зарядов) ионов вследствие очень сильного разделения зарядов быстрым вращением плазмы в мощном магнитном поле (сила Лоренца). Автор также придерживается мнения, что магнитные поля в пятнах являются локальными и виртуальными (временными) полями. Эти поля лишь косвенно связаны с основным инверсионно-циклически развивающимся (дипольным) магнитным полем Солнца. Они появляются при условии совмещения кольцевой области с некомпенсированным зарядом с соответствующим солнечным торнадо, «проглотившим» клочок этой кольцевой области, следовательно, обусловлены не общепринятыми магнитными трубками вмороженного тороидального поля, т.е. никакого тороидального поля вовсе не существует. Здесь важно понять то, что не все торнадо могут образовать пятна, а лишь «проглотившие» клочок некомпенсированного заряда от кольцевой области. Все сопутствующие явления вокруг солнечного пятна связаны с процессами развития и угасания соответствующего торнадо в реальных условиях высоких температур, быстрых движений и бурлящего кипения. Второму концу (хвосту) торнадо касаться или не касаться (оставаться ниже или выше) фотосферы, конечно, решают соответствующие процессы в атмосфере Солнца. С другой стороны солнечные вихри могут быть как восходящими (начинаться со стороны конвективной зоны), так и нисходящими (начинаться со стороны хромосферы). Это создает дополнительные трудности при объяснении наблюдаемых процессов. Пятна могут наблюдаться группами оттого, что около основного крупного торнадо часто образуются вторичные вихри поменьше . Чтобы глубже понять эти процессы следует глубже изучить, более доступные нам, земные вихри (циклоны, тайфуны, торнадо, смерчи). Должно быть, они подчиняются одним и тем же законам природы. Известно, что направление вращения крупных земных вихрей в разных полушариях Земли разное. В северном полушарии – против часовой стрелки, а в южном – по часовой стрелке, если смотреть сверху . Этот закон природы действует и на солнечные вихри. Это положение дает объяснение тому, что магнитные поля ведущих пятен в северном и южном полушариях Солнца имеют противоположные направления. Оно также, через понимание процессов в солнечных пятнах, дает возможность прийти к очень важному обратному умозаключению, что направление вращения вихрей (быть может, и процесс образования вихрей) определяется основным магнитным полем небесного тела.

Диаграмма «бабочек» Маундера . Со времени первого получения подобных диаграмм прошло уже более века, но природа этих периодичных диаграмм в виде «бабочек» до настоящего времени остается загадкой. Однако если рассматривать процессы с точки зрения модели, предложенной автором, то объяснения этих диаграмм «приходят» сами собой (Рис. 5). Ведь пятна могут образоваться лишь в тех поясах, где происходят соприкосновения расширяющейся кольцевой области с некомпенсированным зарядом в форме полого цилиндра с конвективной зоной. В процессе расширения кольцевых областей, с течением времени, по обе стороны от экватора широты этих поясов убывают. Цикл завершается, когда конвективная зона полностью раскромсает в клочья расширяющуюся кольцевую область с некомпенсированным зарядом (см. Рис. 5 связывая по вертикали с Рис. 6) и широты этих поясов достигнут до нуля. А к тому времени расширяющаяся следом кольцевая область с противоположным некомпенсированным зарядом уже успевает подойти вплотную к конвективной зоне со сторон более высоких широт (Рис. 5, д) и процесс повторяется в следующем 11-летнем цикле солнечных пятен.

Активные долготы . Описание предложенной модели выше велось для идеального случая протекания солнечных процессов, где кольцевые области с некомпенсированными зарядами представляют собой симметричных полых цилиндрических поверхностей правильной формы. Однако в реальном процессе эти кольцевые области далеки от идеала (серые кольца 2, 3 на Рис.7). Явления активных долгот вызваны несимметричностью и неравномерностью толщины внешней кольцевой области с некомпенсированным зарядом, недостатки которой будут переняты («унаследованы» через магнитное поле) вновь образованными внутренними кольцевыми областями. Таким образом, первопричины этих неравномерностей находятся во внутренних областях зарождения колец (Рис. 5), поэтому и не связаны с дифференциальным вращением. При этом долготы, которые совпадают с широкими участками внешнего кольца (отмечены кружками на Рис. 7), должны проявлять высокую активность, чем другие участки. Из вышеизложенного следует, что активные долготы проявляют себя в нескольких 11-летних циклах, т. к. их первопричины «наследуются» и находятся в околоосевых зонах Солнца, где зарождаются кольцевые области с некомпенсированными зарядами.

Минимумы солнечной активности . Солнечный «климат», так же как земной, видимо периодами бывает суровым (активным), или тихим (без торнадо). Если нет крупных солнечных торнадо, следовательно, и нет пятен, т.к. в процессе образования пятен необходимо совмещение торнадо с частью кольцевой области с некомпенсированным зарядом. В периоды минимума солнечной активности отсутствие крупных торнадо не означает абсолютное спокойствие, т.к. в эти периоды разрушителями кольцевых областей являются бурлящее конвективное течение и относительно мелкие вихри (не наблюдаемые с Земли), которые создают магнитные поля от десятков до сотен Гаусс. В эти периоды относительного спокойствия все остальные процессы, кроме торнадо, (основное инверсионно – циклическое (дипольное) магнитное поле Солнца и его 11- и 22-летние циклы) протекают без особенностей.

Выводы . Основной целью данной работы является информирование ведущих специалистов в области астрофизики и других читателей, о выдвинутой автором модели генерации и непрерывного инверсионно-циклического развития магнитных полей Солнца, претендующей на научное открытие. Эта точка зрения опирается на фундаментальных законах электродинамики и, по мнению автора, основывается на новом явлении (эффекте) – генерации собственного магнитного поля проводящих тел, вращающихся вокруг собственной оси во внешнем или собственном (затравочном) магнитном поле, вследствие разделения зарядов под действием сил Лоренца . Это явление проливает свет на многие факты магнетизма Солнца, как инверсии МПС, образования пятен и диаграммы «бабочек», активные долготы и т.п., доселе считающиеся загадочными. Эта точка зрения является универсальной для описания магнетизма планет и звезд.

Магнитное поле солнца

Магнитное поля присутствуют, по-видимому, на всех звёздах. Впервые магнитное поле было обнаружено на ближайшей к нам звезде - Солнце - в 1908 г. амереканскмй астрономом Дж. Хейлом, измерившим зеемановское расщепление спектральных линий в солнечных пятнах.

Согласно современным измерениям, максимальная напряжённость магнитного поля пятен = 4000 Э. Поле в пятнах есть проявление общего азимутального магнитного поля Солнца, силовые линии которого имеют различное направление в Северном и Южном полушариях Солнца

В отличие от ближайшего космического пространства, непосредственное измерение магнитных полей на Солнце магнитометрами невозможно не только из-за технических трудностей посылки космического зонда к Солнцу, но также из-за высокой температуры его вещества, которую не может выдержать ни один прибор). Поэтому как на Солнце, так тем более и на других более удаленных объектах, магнитные поля можно измерять лишь косвенно -- анализируя электромагнитное излучение.

На Солнце магнитное поле захватывается горячим веществом или "вмораживается" в него. При своем движении солнечное вещество увлекает за собой столько магнитного поля, сколько сможет. Так как скорость вращения на экваторе опережает скорость вращения на полюсах, силовые линий магнитного поля растягиваются, но линии поля при таком наматывании не обрываются; они скорее похожи на чрезвычайно эластичную резину. Как и у резины, чем больше они растягиваются, тем больше в них запас энергии.

Магнитное поле пятен подавляет конвекцию в верхних слоях конвективной зоны, перенос энергии здесь резко уменьшается, поэтому температура газа в области пятна уменьшается на 1 500--2 000 К. В близких же окрестностях пятна, где напряженность поля относительно невелика, магнитное поле, наоборот, усиливает конвективный перенос энергии. Именно так и возникают яркие образования -- факелы.

Оценки показывают, что плавучесть эффективна до глубин порядка 15 000 км, тогда как толщина конвективной зоны примерно в семь раз больше. Отсюда следует, что магнитные поля пятен формируются в верхней части конвективной зоны Солнца.

В связи с этим возникает следующий вопрос: каким же образом поддерживается неоднородное вращение Солнца? Ведь усиление магнитных полей и образование магнитных трубок происходит за счет торможения вращательного движения экваториальных областей, и если бы эта энергия не поступала непрерывно, то уже после нескольких оборотов Солнце начало бы вращаться как абсолютно твердое тело, т. е. угловая скорость вращения у полюсов и на экваторе была бы одинаковой.

Солнце как переменная звезда

Переменными звездами называются такие светила, светимость которой изменяется со временем в результате происходящих в её районе физических процессов.

Оказывается, наше Солнце - такая звезда.

Собранная информация датчиком частиц солнечного ветра Swoops зонда Ulysses , позволила сделать вывод о непрерывном - начиная с середины 1990-х годов - "ослабевании" солнечного ветра. Более того - процесс этот начался, по всей видимости, гораздо раньше. В настоящее время скорость солнечного ветра достигла абсолютного минимума по крайней мере за полвека - с тех пор, как начались непосредственные его исследования с использованием космических аппаратов. Снижение скорости солнечного ветра за десятилетие относительно невелико - около 3%, однако оно является следствием снижения температуры и давления частиц солнечного ветра на 13% и 20% соответственно. Насколько длителен процесс и насколько далеко он зашел, сказать пока невозможно. Охлаждение солнечного ветра сопровождается также снижением напряженности магнитного поля Солнца на треть за тот же период.

Тем самым обострилась радиационная обстановка в Солнечной системе и в околоземном пространстве - плотность потока особо опасных протонов высоких энергий, приходящих из глубокого космоса, возросла примерно на 20%.

.

Аномальное снижение активности солнечного ветра дополняет картину трудно объяснимых аномалий в поведении самого светила. Уникальная активность светила в конце прошлого цикла сменилась ненормально длительным отсутствием пятен - показателя активности - на светиле.

Снижение числа пятен, вообще говоря, характерно для минимумов солнечной активности, однако на этот раз процесс слишком затянулся. Уже почти год на Солнце пятен практически не наблюдается вообще.

Очевидно, что масштаб происходящих на Солнце в настоящее время процессов выходит за рамки гипотезы их 11-летней цикличности.

Конечно) число зондов, направленных на его исследование уступает таковому же числу для и . Однако с учётом того что значительная часть аппаратов, отправленных к Венере и Марсу были потеряны, а среднее время их работы не превышало пары лет (против десятилетий у множества аппаратов, исследующих Солнце) - ситуация в показателе исследовательских аппарато-лет оказывается всё-таки в пользу Солнца.

Луна-1 - запущенна 2 января 1959 года. Несмотря на то что основная цель (попадание в ) не удалась, её миссия была весьма успешна. Одним из достижений этого аппарата является первое в истории прямое наблюдение характеристик .

Пионер-5 - произвёл первые измерения межпланетного магнитного поля, уровня радиации и свойств солнечных вспышек. Не смотря на быстрый выход из строя (он проработал на орбите с 11 марта до 30 апреля 1960 года) этот крохотный спутник весом в 45 кг при диаметре в 66 см считается самым успешным из всей серии спутников «Пионер».

Спутники серии «Орбитальная солнечная обсерватория» (Orbiting Solar Observatory) - это 8 последовательно запускавшихся аппарата направленных для изучения 11-летних циклов Солнца в ультрафиолетовых и рентгеновских лучах. С запуска первой обсерватории 7 марта 1962 и до окончания работы последней из них в октябре 1978 года обычно на орбите находилось по 2-3 аппарата этой серии. Ориентация аппаратов на Солнце осуществлялась вращением.

С вторым аппаратом связана серьёзная авария: 14 апреля 1964 на тестах интеграции аппарата с третьей твердотопливной ступенью ракеты Дельта-С один из техников случайно поджёг её разрядом статического электричества, при этом происшествии сгорело трое человек, а сам же аппарат срикошетив от крыши упал в углу здания. Потребовалось 10 месяцев на его восстановление, после чего он всё-таки был запущен 3 февраля 1965 года.

Третий аппарат и вовсе пришлось изготавливать в двух экземплярах, так как модификации в третьей ступени Дельта-С (сделанные после предыдущего случая) привели к её преждевременному запуску в полёте, а сам аппарат сгорел в плотных слоях . Несмотря на это новый «третий» аппарат смог установить равномерность гамма-излучения по всему небу, а также обнаружил рентгеновские вспышки от объекта Scorpius X-1. Шестой аппарат одним из первых зафиксировал гамма-всплески, седьмой обнаружил гамма-лучи в солнечных вспышках, а восьмой обнаружил линии железа в скоплениях .

Аппараты серии Пионер-6-9 (их запуски производились с 16 декабря 1965 по 8 ноября 1968) - эти проводили долговременное измерение космической погоды, солнечного ветра и космических лучей. Их можно отнести к первым «долгосрочным» научным миссиям - последняя связь с аппаратом Пионер-6 была установлена 8 декабря 2000 года (в честь его 35-летия).

Предположительно за исключением Пионера-9 вышедшего из строя в 1983 году, они все ещё функциональны. Основная причина отказа от дальнейшего их использования - это архаичность приборов (возможности которых перекрывали новые спутники) и средств связи (требовавших огромных тарелок при скорости связи в 512 бит\сек).

Пара аппаратов серии Helios (запуск 10 декабря 1974 и 15 января 1976) - совместная разработка NASA и DFVLR (тогда ещё в составе ФРГ). Ими изучалась межпланетная среда включая исследования космической пыли, космических лучей, межпланетного магнитного поля. С помощью них также впервые были обнаружены ионы гелия в солнечном ветре.

Для более подробного исследования Солнца они были отправлены на гелиоцентрическую с перигелием в 0,3 астрономических единиц (до них так близко к Солнцу из АМС никто не подбирался). Аппаратам удалось обнаружить «магнитные облака» из плазмы (вместе с другим спутником - SMM), однако связать их происхождение с корональными выбросами массы в тот момент не получилось.

Международный исследователь - запущенный 12 августа 1978 года стал первым аппаратом запущенным на орбите Лиссажу, на которой он вращается вокруг точки L1 находящейся между Землёй и Солнцем. Аппарат имеет три детектора космических лучей различных энергий, детекторы протонов и магнитных полей, волн в плазме и рентгеновских лучей. Закончив 10 июня 1982 года свою основную миссию по изучению солнечно-земных связей, солнечного ветра и космических лучей, он был направлен на изучения кометы Джакобини-Циннера, хвост которой он прошёл 11 сентября 1985 года.

5 мая 1997 года аппарат был отправлен NASA на «пенсию» с отключением всех научных приборов. В 1999 и 2008 годах NASA осуществляло проверку его состояния. В апреле 2014 года на краудфайдинговой платформе RocketHub появился проект по восстановления связи с этим аппаратом, который собрал почти 160 тыс. $. Уже 29 мая 2014 года этой команде удалось установить связь с аппаратом (с разрешения NASA конечно). А 2 июля они попытались запустить его двигатели впервые с 1987 года, но это не удалось из-за недостатка азота для наддува баков. Команда продолжила работать с научными приборами вплоть до 16 сентября, когда контакт с аппаратом был потерян. Предположительно это произошло из-за снижения выделения энергии солнечными батареями, так как аппарат пролетал в этот момент мимо Земли улетая от Солнца (так связь с аппаратом уже терялась в 1981 году). Следующая встреча аппарата с Землёй должна произойти в 2031 году.

Вояджер-1 и 2 - хотя основная цель эти аппаратов и заключалась в исследование внешних Солнечной системы, они также внесли вклад и в исследование Солнца: с помощью них были уточнены свойства солнечного ветра на различном удалении от Солнца, скорости распространения корональных выбросов вещества и расположение головной ударной волны Солнечной системы (места где солнечный ветер сталкивается с межзвёздной средой).

Solar Maximum Mission (также известный как SolarMax или просто SMM) был запущен 14 февраля 1980 года для изучения солнечных явлений. Уже к 21 июня ему удалось обнаружить нейтроны образующиеся во время солнечной вспышки (это довольно редкое событие и регистрируется в среднем раз в год) и также быстро выйти из строя - уже в ноябре. Аппарат потерял ориентацию на Солнце и провёл в этом состоянии до апреля 1984 года, когда миссия «Спейс Шаттла» STS-41-C не починила его.

Поймать спутник для ремонта получилось не сразу: в начале это пытались сделать с помощью пилотируемого маневрового модуля (MMU, к сожалению после катастрофы «Челленджера» от использования его и вовсе отказались), затем попытались воспользоваться манипулятором Canadarm. В итоге состыковаться удалось только на следующий день после выдачи аппарату сигналов с земли и снижения частоты его вращения.

Вся миссия Шаттла в конечном счёте прошла успешно и систему ориентации спутника с одним из научных приборов удалось починить, а также сделать его фотографию представленную выше. Не смотря на такую альтернативную эмблему миссии (обозначающую дату посадки, произведённую в пятницу 13-е) SMM проработал до входа в атмосферу 2 декабря 1989 года, попутно открыв несколько околосолнечных комет.

Также аппарату удалось установить что во время солнечного максимума (когда число солнечных пятен резко увеличивается) светимость Солнца не падает, а наоборот увеличивается - это связано с наличием вокруг пятна солнечных факелов которые наоборот имеют увеличенную светимость.

АМС «Улисс» - запущенный 6 октября 1990 года совместный проект ESA и NASA. Это был первый аппарат, запущенный под большим углом к плоскости эклиптики Солнечной системы. В его задачи входило изучение полюсов Солнца и немного Юпитера (в ходе гравитационного манёврова по выходу на требуемую орбиту и пролёте мимо в 2004 году). Аппарат смог установить что южный полюс Солнца не имеет фиксированного положения (впрочем как и северный), а пройдя сквозь хвосты нескольких комет ему удалось установить что их длинна может простираться на несколько астрономических единиц в длину.

Но у всего есть своя цена, так и Улисс выводимый как основная нагрузка Спейс шаттла «Дискавери» (имеющего грузоподъёмность 24,4 тонны на НОО) и разгоняемый двумя дополнительными ступенями, имел общую массу всего 365 кг из которых только 55 кг приходилось на научную аппаратуру. В связи с этим аппарат имел весьма ограниченный набор приборов: детекторы ионов и электронов, космической пыли и лучей. В этот список не входило никаких камер, так что мы до сих пор не имеем никаких фотографий полюсов Солнца.

Так как АМС «Улисс» в ходе выведения на орбиту приходилось отдаляться аж до Юпитера, то в качестве источника питания на нём использовался РИТЭГ, а так как масса аппарата была сильно ограничена - то мощность его была весьма невелика. Так снижение мощности РИТЭГа привело к тому что даже 70-метровые тарелки сети дальней космической связи NASA в конце жизни аппарата стали терять его сигнал, а в 2008 году снижение его мощности вовсе вызвало замерзание топлива (гидразина), аппарат не смог маневрировать и был потерян (правда проработав к тому времени уже 17 лет и в 4 раза превысив расчётный срок эксплуатации).

Solar-A и Solar-B - аппараты которые после запуска получили более благозвучные имена «Yohkoh» (Солнечный луч) и «Hinode» (Восход Солнца). Это совместный проект Японии, Великобритании и США. Аппараты по этому проекту были запущены 30 августа 1991 года (проработал до 14 декабря 2001) и 23 сентября 2006 года (всё ещё продолжает работать).

«Солнечный луч» впервые имел ПЗС-матрицу среди космических рентгеновских , а также имел ещё один рентгеновский телескоп более жёсткого спектра и пару спектрометров для поиска ионов железа, серы и кальция. «Восход Солнца» получил 0,5 метровый оптический и рентгеновский телескоп, а также ультрафиолетовый спектрометр.

Основной целью работы обоих аппаратов было изучение магнитного поля Солнца посредством различных его проявлений. Второму аппарату удалось обнаружить альфвеновские волны на Солнце, а также найти прямое доказательство того что магнитное пересоединение является источником солнечных вспышек.

Серия аппаратов Коронас - совместный проект Роскосмоса и РАН (а ранее также Украины), предусматривавший исследование Солнца в ходе одного 11-летнего цикла. Программа исследований должна была осуществляться посредством последовательного запуска 3 аппаратов: Коронас-И, Коронас-Ф и Коронас-Фотон. У аппаратов был широкий спектр задач: исследование различных проявлений солнечной погоды, сейсмологические исследования внутреннего строения Солнца, изучение взаимодействия активных явлений на Солнце с выбросами заряженных частиц и их взаимодействие уже с верхними слоями атмосферы.

Для этого на аппаратах были установлены приёмники практически всего спектра электромагнитного излучения: от радио до гамма. В создании приборов для него участвовали Россия, Украина, Индия и Польша. Проблемы с финансированием вынудили сместить даты запусков, но надёжная работа первых двух аппаратов позволила практически нивелировать последствия этого: Коронас-И запущенный 2 марта 1994 года проработал до марта 2001, а Коронас-Ф запущенный 31 июля 2001 года сошёл с орбиты в декабре 2005 года (меньший срок службы второго аппарата был вызван влиянием солнечного максимума на атмосферу Земли и следовательно более быстрым торможением аппарата на низкой орбите, которая в случае обоих аппаратов составляла около 550 км).

Однако третьему аппарату (Коронас-Фотон) запущенному 30 января 2009 года повезло меньше: он смог проработать только 278 дней после чего вышел из строя из-за сбоев в работе платформы «Метеор» (хотя все научные приборы продолжали действовать). В ходе работы Коронас-Фотон было собрано 380 Гбайт научной информации.

WIND был предназначенный для изучения солнечного ветра. Хотя он был запущен 1 ноября 1994 года до следующего в этом списке аппарата, но из-за желания учёных подробнее изучить магнитное поле Земли и окружающую Луну среду он присоединился к нему в точке Лагранжа L1 только спустя 10 лет. WIND имеет 2,4 м в диаметре при высоте 1,8 м и сухом весе в 895 кг, при этом стабилизация аппарата вращением позволило установить на нём 2 «коротких» магнетометра в 12 и 15 м длинной, и один длинный 100-метровый магнетометр регулируемой длинны из проволоки. На аппарате также стоят детекторы ионов и электронов двух диапазонов энергий и два гамма-спектрометра, один из которых был отключен из-за исчерпания запасов, а другой (произведённый ФТИ РАН) продолжает работать, как и сам аппарат до сих пор. За это время WIND стал источником для 4300 научных публикаций. Остатков от 300 кг топлива аппарату должно хватить ещё на 50 лет нахождения в точке L1.

SOHO - совместный проект NASA и ESA запущенный ещё 2 декабря 1995 года, который продолжает свою работу до сих пор. На его борту находится целых 12 приборов некоторые из которых остаются уникальными и поныне (правда другую часть уже была отключена в связи с выводом на орбиту более нового SDO)

SOHO имеет весьма уникальную и интересную историю: изначально миссия аппарата рассчитывалась на два года, но приступив к работе в мае 1996 года уже 24 июня 1998 года связь с аппаратом была потеряна в ходе плановых калибровок гироскопов (аппарат потерял ориентацию на Солнце, которую не смог самостоятельно восстановить).

Так как аппарат был весьма ценен и терять его совершенно не хотелось, специалисты ESA тут же отправились в США для того чтобы иметь возможность кроме своих тарелок воспользоваться помощью Сети дальней космической связи НАСА. Однако целый месяц ежедневных попыток связи с аппаратом результатов не дал, и специалисты пошли практически на беспрецедентный шаг: используя одновременно 305-метровый радиотелескоп в Аресибо на передачу и 70-метровый Голдстоунский телескоп на приём, они в течении более часа пытались установить текущее положение SOHO. В ходе этого аппарат был обнаружен вблизи ожидаемой позиции, но данные свидетельствовали о том, что он вращается со скоростью 1 оборот в 53 секунды с солнечными батареями потерявшими ориентацию на Солнце.

Только к 3 августа, когда ориентация солнечных батарей частично восстановилась и аккумуляторы аппарата начали заряжаться, от него был получен короткий сигнал в несколько секунд длинной. После зарядки обоих батарей 12 августа SOHO была подана команда на включения нагревателей баков с гидразином, который к тому моменту уже полностью замёрз. Несколько раз процесс разогрева приходилось приостанавливать так как телеметрия показывала, что аккумуляторы начинали разряжаться (ориентация солнечных батарей была не точной и потребности нагревателей в энергии они не покрывали, а «спасательная команда» SOHO не хотела рисковать снижая заряд батарей). После процесса разогрева баков топлива и топливных трубопроводов SOHO снова был сориентирован на Солнце 16 сентября. Затем началось постепенное восстановление работоспособности приборов: SUMER – был запущен первым 7 октября, COSTEP и ERNE включены 9-го числа, UVCS - 10-го, MDI - 12-го, LASCO и EIT - 13-го, CDS и SWAN - 17-го, и только 23-го октября с запуском последнего прибора (CELIAS) аппарат полностью восстановил свою функциональность.

Однако это был не конец его приключений: после восстановления работоспособности научных приборов оказалось что только 1 из 3-х гироскопов аппарата продолжает работать, а 21 декабря вышел из строя и оставшийся гироскоп. ESA пришлось разработать для SOHO новую программу работы, для того чтобы он мог продолжать работать не расходуя остатки драгоценного топлива. Перепрограммирование аппарата было осуществлено 1 февраля 1999 года.

Не смотря на такое начало ужасное начало, аппарат продолжает работать уже без существенных сбоев. Но любое оборудование в конце концов устаревает, и с выводом на орбиту SDO в начале 2010 года часть приборов SOHO, имеющих общие с ним задачи, начали постепенно отключать: уже в июле 2010 года прибор EIT был переведён в ограниченный режим и делает только два набора снимков в сутки (ради сохранения непрерывного ряда наблюдений), с 12 апреля 2011 года был отключен прибор MDI, 23 явнаря 2013 года - UVCS, 8 августа 2014 года - SUMER, а 5 сентября - CDS.

Кроме своей основной миссии SOHO при помощи добровольцев помог открыть 2 тысячи комет к 26 декабря 2010 года, а к 13 сентября 2015-го их число перевалило уже за 3 тысячи - таким образом с помощью SDO было открыто более половины от всех известных на данный момент комет.

Advanced Composition Explorer - это аппарат запущенный 25 августа 1997 года для изучения высокоэнергетических частиц солнечного ветра и межпланетной среды. На данный момент ACE служит в основном для уточнения прогнозов по магнитным бурям за полчаса-час до их прихода, благодаря его положению в точке Лагранжа L1 в 1,5 млн. км от Земли на линии Земля-Солнце. Расположение этой точке также позволяет ему значительно экономить топливо: 15 августа будет исполняться 20 лет с момента его запуска, а остатков топлива у него составляет примерно 37 кг, чего ему должно хватить ещё до 2026 года.

TRACE - это небольшой телескоп с апертурой в 30 см запущенный 2 апреля 1998 года как часть проекта «Малые исследовательские программы» (SMEX) NASA предусматривающую проекты дешевле 120 млн $. Аппарат осуществлял съёмку участков Солнца в 8,5 угловых минут (примерно 14 часть его общей площади) с помощью ПЗС-матрицы разрешением 1000×1000 пикселей в диапазоне от видимого до дальнего ультрафиолета. С 20 апреля 1998 года до 2010-го года он осуществлял поиск связей магнитных полей с плазменной структурой в атмосфере Солнца (фотосфере, хромосфере и короне).

«Солнечный спектрограф высоких энергий имени Реувена Рамати» или RHESI - обсерватория рентгеновского и гамма спектра, направленная на изучение солнечных вспышек, которая была запущенна 5 февраля 2002 года по программе SMEX. Ей впервые удалось заснять гамма-излучение от вспышки и определить то что частота таких гамма-всплесков чаще, чем ранее предполагалось. RHESI продолжает работать до сих пор, а с помощью его данных уже написано 774 научные статьи.

«Исследователь межзвёздных границ» или IBEX - это крохотный спутник весом всего 80 кг запущенный с самолёта на ракете «Пегас» 19 октября 2008 года как часть программы SMEX. Он имеет два детектора нейтральных частиц высоких и низких энергий которые предназначены для измерения пределов гелиосферы Солнца. В конце своей основной 2-летней миссии спутнику удалось уточнить скорость движения нашей Солнечной системы относительно межзвёздной среды (скорость по измерениям составила 23,2 км/с относительно измеренных ранее с помощью АМС «Улисс» 26,3 км/с). А в конце своей расширенной миссии IBEX обнаружил плазменный хвост у Солнечной системы. Спутник продолжает работать до сих пор, скорость связи с ним составляет всего 16 кбит/с.

Пара аппаратов STEREO-A и B запущенных в 2006 году имеют в своём составе 4 набора инструментов: SECCHI - для исследования короны и гелиосферы (одна камера дальнего ультрафиолетового спектра и по две пары коронографов и камер для съёмки солнечного ветра); IMPACT - детекторы частиц коронарных выбросов; PLASTIC - детекторы протонов, альфа-частиц и тяжёлых ионов; SWAVES - антенна для измерения возмущений в радиодиапазоне по направлению Солнце-Земля.

Основной задачей этих аппаратов является построение 3D-моделей корональных выбросов массы, что было очень важно для построения модели их образования (дело в том что солнечные вспышки и коронарные выбросы всегда снимаются разными камерами, из-за чего на 2D-снимках их было очень сложно связать между собой). Для осуществления своей задачи они были отправлены на орбиты во круг Солнца с таким расчётом чтобы один аппарат немного обгонял Землю, а другой немного отставал от неё. Таким образом они получали картинку из двух равноотстоящих от Земли точек которые постепенно отдалялись. С середины 2011 года их отдаление от Земли позволило получать полную картину Солнца (до тех пор, пока аппарат STEREO-B не потерял ориентацию 1 октября 2014)

Так как аппараты в процессе работы должны были отдаляться далеко от Земли (до 2 а.е.) для связи они используют направленные антенны, которые должны быть точно направлены на Землю. Проблемы со STEREO-B случились в ходе плановых тестов, имитирующих потерю связи аппаратов в процессе прохождения их за Солнцем (такие же проблемы испытывают марсоходы и спутники на орбите Марса которые теряют связь с Землёй на пару недель когда Марс заходит за Солнце).

Связь с аппаратом временно восстановилась 21 августа 2016, но из-за слишком быстрого вращения восстановить его ориентацию на Землю не удалось так как момента вращения маховиков для полной остановки вращения было недостаточно, а времени для разморозки баков с горючим до новой потери связи у ЦУПа не было. К сожалению следующая возможность наладить с ним связь появится только в 2022 году (когда его антенна снова окажется направлена на Землю). Команда миссии учла ошибку и STEREO-A без проблем пережил прохождение соединения с Солнцем в течении нескольких месяцев в 2015 году и продолжает работать до сих пор в штатном режиме.

Обсерватория солнечной динамики (SDO) была запущенна на орбиту 11 февраля 2010 года ракетой Атлас-5 с двигателем РД-180, после чего заняла свою позицию на геосинхронной орбите. Эта обсерватория имеет на своём борту магнетометр и 11 камер различных диапазонов снимающих всю поверхность Солнца с интервалом в 12 секунд и разрешением 4096×4096 пикселей, что даёт поток данных около 1,5 терабайт данных в сутки.

Столь большой поток данных потребовал особых усилий для его поддержания: аппарат имеет две остронаправленных антенны для передачи данных и одну отдельную для телеметрии. Наземное оборудование состоит из двух 18-метровых антенн, предназначенных исключительно для связи с SDO. Такая система позволяет иметь суммарный канал в 130 Мбит/с при работе сразу двух антенн.

Аппарат имеет собственный сайт, на котором можно увидеть фотографии Солнца в режиме реального времени. А каждый год, примерно в «день рождения» SDO Центр космических полётов Годдарта выкладывает видео составленное из фотографий, сделанных им за это время: 1 год, 2 год, 3 год, 4 год, 5 год, 6 год, 7 год.

Наличие у Солнца общего дипольного магнитного поля (как и у планет) – твёрдо установленный факт. Так же известно, что оно изменяется и по величине напряжённости, и по направлению. Эти изменения синхронизированы с изменением солнечной активности, характеризуемой количеством солнечных пятен на видимой поверхности Солнца, но сдвинутой по фазе на 90?. Смена полярности его общего магнитного поля, регистрируемой на его полюсах, когда напряжённость равна 0, происходит в эпохи максимума солнечной активности, а его максимальная напряжённость – около 1 Гаусса – регистрируется в эпохи минимума солнечной активности. Существование указанной взаимосвязи не вызывает сомнений из-за своей очевидности, но не ясна её физическая сущность. Как пишет американский астрофизик Э. Гибсон в своей книге «Спокойное Солнце»: «Из-за предательской запутанности физической картины здесь трудно отличить причины от следствия … Общее магнитное поле Солнца не имеет вполне определённой (постоянной) оси и не симметрично. Следовательно, нельзя считать, что его создаёт какой-то диполь, находящийся в Солнце». Это мнение имеет основание, так как часто имели место случаи, когда в течение целого года на обоих гелиографических полюсах Солнца одновременно регистрируется наличие или только южных, или только северных магнитных полюсов его общего магнитного поля. На основе выясненного механизма дифференциального вращения Солнца, в основе которого лежит падение на Солнце космических тел, позволяет раскрыть природу его общего магнитного поля. Доводом следует считать выяснение физической сущности взаимосвязи общего магнитного поля Солнца с солнечной активностью посредством возникновения дифференциального характера его вращения. Известный английский физик Ампер утверждал, что магнитное поле Земли создано электрическим током, идущим в объёме Земли вокруг оси её вращения. До сих пор неизвестно, так ли это и как это происходит, учитывая то обстоятельство, что и магнитное поле Земли меняется и по величине, и по направлению. Теперь вернёмся к магнитному полю Солнца, опираясь на утверждение Ампера относительно Земли. Наличие синхронизации процессов солнечной активности, его дифференциального вращения и характера изменения магнитного поля позволяет утверждать следующее. Угловая скорость видимой поверхности Солнца изменяется с периодичностью изменения солнечной активности. Она увеличивается, когда направление движения падающих на него крупных космических тел совпадает с направлением вращения Солнца, и уменьшается, когда эти тела падают навстречу его вращению. Такие изменения угловой скорости происходят не во всём объёме вещества Солнца, а только в той его части, которая примыкает к видимой поверхности, где происходит взаимодействие с этой частью вещества Солнца вещества падающих на него космических тел. Исходя из этого можно утверждать, что часть солнечного вещества, располагающаяся ближе к центру Солнца, сохраняет свою угловую скорость неизменной, поскольку она не испытывает внешнего воздействия, без чего не может измениться величина её момента количества движения. Следовательно, примыкающая к видимой поверхности Солнца часть его вещества, включая расположенную выше солнечную хромосферу, то опережает, то отстаёт в движении от остальной части вещества Солнца. Наличие мощного потока радиационного излучения Солнца из его объёма в направлении наружной поверхности приводит к смещению (под воздействие излучения) в том же направлении части свободных электронов. Наличие постоянного смещения электронов и его величина (в состоянии динамического равновесия) обусловлены возникновением компенсационной излучению силы, возникающей при смещении электронов электрического поля. Избыток электронов в наружной области атмосферы Солнца при таком же по величине избытке положительных электрических зарядов во внутренней части солнечного вещества приводит к возникновению кругового электрического тока, обусловленного отличием угловых скоростей их движения. При этом в случае, когда угловая скорость внешней части Солнца будет больше угловой скорости его внутренней части, направление движения электрического тока будет соответствовать движению электронов, а в противоположном случае – движению положительных электрических зарядов. Соответственно будет меняться и направление силовых линий создаваемого электрическим током общего магнитного поля Солнца. Учитывая то обстоятельство, что число и суммарная масса космических тел, упавших за одно и то же время (месяц, год) на северное и южное полушария как правило не совпадают, то и степень дифференциальности их вращения отличаются. Например, за 11 лет 21-го цикла солнечной активности на северное полушарие упало 1777 космических тел, а на южное – 1886, каждое из которых привело к возникновению одной группы солнечных пятен. Разницей суммарных масс и количества выпавших на оба полушария космических тел и обусловлены и отсутствие у общего магнитного поля вполне определённой (постоянной) оси, и его несимметричность, и возможность возникновения одновременной одинаковой магнитной полярности на обоих полюсах Солнца, поскольку по существу в каждом его полушарии создаётся собственное магнитное поле. Факт изменения полярности общего магнитного поля с переходом его напряжённости через 0 обусловлен тем обстоятельством, что в эпоху максимума активности Солнца текущего цикла достигается полная компенсация ускорения или торможения угловой скорости вращения внешней части атмосферы Солнца, которые были достигнуты в предшествующем ему цикле активности в результате соответствующего торможения или ускорения её вращения в текущем цикле. Это и приводит к отмеченному в начале статьи факту сдвига синхронизации изменения этих двух явлений на 90?. Таким образом, гипотеза Ампера об электрической природе магнитного поля Земли нашла своё подтверждение в отношении магнитного поля Солнца. Есть все основания считать этот механизм общим и для планет. Нет никакого сомнения, что и на всех четырёх больших планетах (Юпитер, Сатурн, Уран, Нептун), вещество которых находится в газообразном состоянии и на поверхность которых, как и на Солнце, падают космические тела, их дипольные магнитные поля создаются в результате различной угловой скорости внутренней и наружной частей их вещества. Сложнее механизма формирования дипольного магнитного поля планет, вещество которых в основной своей массе находится в твёрдом состоянии – Марс, Земля, Венера и Меркурий. Но и у них физическая природа магнетизма электрическая.Владимиров Е.А. и Владимиров А.Е.

Поделиться