Свойство целостности системы соответствует следующему понятию. Между целостной системой и системной целостностью. Целостность файловой системы

Лекция 2: Системные свойства. Классификация систем

Свойства систем.

Итак, состоянием системы называется совокупность существенных свойств, которыми система обладает в каждый момент времени.

Под свойством понимают сторону объекта, обуславливающую его отличие от других объектов или сходство с ними и проявляющуюся при взаимодействии с другими объектами.

Характеристика — то, что отражает некоторое свойство системы.

Какие свойства систем известны.

Из определения «системы» следует, что главным свойством системы является целостность, единство, достигаемое посредством определенных взаимосвязей и взаимодействий элементов системы и проявляющиеся в возникновении новых свойств, которыми элементы системы не обладают. Это свойство эмерджентности (от анг. emerge — возникать, появляться).

  1. Эмерджентность — степень несводимости свойств системы к свойствам элементов, из которых она состоит.
  2. Эмерджентность — свойство систем, обусловливающее появление новых свойств и качеств, не присущих элементам, входящих в состав системы.

Эмерджентность — принцип противоположный редукционизму, который утверждает, что целое можно изучать, расчленив его на части и затем, определяя их свойства, определить свойства целого.

Свойству эмерджентности близко свойство целостности системы. Однако их нельзя отождествлять.

Целостность системы означает, что каждый элемент системы вносит вклад в реализацию целевой функции системы.

Целостность и эмерджентность — интегративные свойства системы.

Наличие интегративных свойств является одной из важнейших черт системы. Целостность проявляется в том, что система обладает собственной закономерностью функциональности, собственной целью.

Организованность — сложное свойство систем, заключающиеся в наличие структуры и функционирования (поведения). Непременной принадлежностью систем является их компоненты, именно те структурные образования, из которых состоит целое и без чего оно не возможно.

Функциональность — это проявление определенных свойств (функций) при взаимодействии с внешней средой. Здесь же определяется цель (назначение системы) как желаемый конечный результат.

Структурность — это упорядоченность системы, определенный набор и расположение элементов со связями между ними. Между функцией и структурой системы существует взаимосвязь, как между философскими категориями содержанием и формой. Изменение содержания (функций) влечет за собой изменение формы (структуры), но и наоборот.

Важным свойством системы является наличие поведения — действия, изменений, функционирования и т.д.

Считается, что это поведение системы связано со средой (окружающей), т.е. с другими системами с которыми она входит в контакт или вступает в определенные взаимоотношения.

Процесс целенаправленного изменения во времени состояния системы называется поведением . В отличие от управления, когда изменение состояния системы достигается за счет внешних воздействий, поведение реализуется исключительно самой системой, исходя из собственных целей.

Поведение каждой системы объясняется структурой систем низшего порядка, из которых состоит данная система, и наличием признаков равновесия (гомеостаза). В соответствии с признаком равновесия система имеет определенное состояние (состояния), которое являются для нее предпочтительным. Поэтому поведение систем описывается в терминах восстановления этих состояний, когда они нарушаются в результате изменения окружающей среды.

Еще одним свойством является свойство роста (развития). Развитие можно рассматривать как составляющую часть поведения (при этом важнейшим).

Одним из первичных, а, следовательно, основополагающих атрибутов системного подхода является недопустимость рассмотрения объекта вне его развития , под которым понимается необратимое, направленное, закономерное изменение материи и сознания. В результате возникает новое качество или состояние объекта. Отождествление (может быть и не совсем строгое) терминов «развитие» и «движение» позволяет выразиться в таком смысле, что вне развития немыслимо существование материи, в данном случае — системы. Наивно представлять себе развитие, происходящее стихийно. В неоглядном множестве процессов, кажущихся на первый взгляд чем-то вроде броуновского (случайного, хаотичного) движения, при пристальном внимании и изучении вначале как бы проявляются контуры тенденций, а затем и довольно устойчивые закономерности. Эти закономерности по природе своей действуют объективно, т.е. не зависят от того, желаем ли мы их проявления или нет. Незнание законов и закономерностей развития — это блуждание в потемках.

Кто не знает, в какую гавань он плывет, для того нет попутного ветра

Поведение системы определяется характером реакции на внешние воздействия.

Фундаментальным свойством систем является устойчивость , т.е. способность системы противостоять внешним возмущающим воздействиям. От нее зависит продолжительность жизни системы.

Простые системы имеют пассивные формы устойчивости: прочность, сбалансированность, регулируемость, гомеостаз. А для сложных определяющими являются активные формы: надежность, живучесть и адаптируемость.

Если перечисленные формы устойчивости простых систем (кроме прочности) касается их поведения, то определяющая форма устойчивости сложных систем носят в основном структурный характер.

Надежность — свойство сохранения структуры систем, несмотря на гибель отдельных ее элементов с помощью их замены или дублирования, а живучесть — как активное подавление вредных качеств. Таким образом, надежность является более пассивной формой, чем живучесть.

Адаптируемость — свойство изменять поведение или структуру с целью сохранения, улучшения или приобретение новых качеств в условиях изменения внешней среды. Обязательным условием возможности адаптации является наличие обратных связей.

Всякая реальная система существует в среде. Связь между ними бывает настолько тесной, что определять границу между ними становится сложно. Поэтому выделение системы из среды связано с той или иной степенью идеализации.

Можно выделить два аспекта взаимодействия:

  • во многих случаях принимает характер обмена между системой и средой (веществом, энергией, информацией);
  • среда обычно является источником неопределенности для систем.

Воздействие среды может быть пассивным либо активным (антогонистическим, целенаправленно противодействующее системе).

Поэтому в общем случае среду следует рассматривать не только безразличную, но и антогонистическую по отношению к исследуемой системе.

Рис. — Классификация систем

Основание (критерий) классификации Классы систем
По взаимодействию с внешней средой Открытые
Закрытые
Комбинированные
По структуре Простые
Сложные
Большие
По характеру функций Специализированные
Многофункциональные (универсальные)
По характеру развития Стабильные
Развивающиеся
По степени организованности Хорошо организованные
Плохо организованные (диффузные)
По сложности поведения Автоматические
Решающие
Самоорганизующиеся
Предвидящие
Превращающиеся
По характеру связи между элементами Детерминированные
Стохастические
По характеру структуры управления Централизованные
Децентрализованные
По назначению Производящие
Управляющие
Обслуживающие

Классификацией называется разбиение на классы по наиболее существенным признакам. Под классом понимается совокупность объектов, обладающие некоторыми признаками общности. Признак (или совокупность признаков) является основанием (критерием) классификации.

Система может быть охарактеризована одним или несколькими признаками и соответственно ей может быть найдено место в различных классификациях, каждая из которых может быть полезной при выборе методологии исследования. Обычно цель классификации ограничить выбор подходов к отображению систем, выработать язык описания, подходящий для соответствующего класса.

Реальные системы делятся на естественные (природные системы) и искусственные (антропогенные).

Естественные системы: системы неживой (физические, химические) и живой (биологические) природы.

Искусственные системы: создаются человечеством для своих нужд или образуются в результате целенаправленных усилий.

Искусственные делятся на технические (технико-экономические) и социальные (общественные).

Техническая система спроектирована и изготовлена человеком в определенных целях.

К социальным системам относятся различные системы человеческого общества.

Выделение систем, состоящих из одних только технических устройств почти всегда условно, поскольку они не способны вырабатывать свое состояние. Эти системы выступают как части более крупных, включающие людей — организационно-технических систем.

Организационная система, для эффективного функционирование которой существенным фактором является способ организации взаимодействия людей с технической подсистемой, называется человеко-машинной системой.

Примеры человеко-машинных систем: автомобиль — водитель; самолет — летчик; ЭВМ — пользователь и т.д.

Таким образом, под техническими системами понимают единую конструктивную совокупность взаимосвязанных и взаимодействующих объектов, предназначенная для целенаправленных действий с задачей достижения в процессе функционирования заданного результата.

Отличительными признаками технических систем по сравнению с произвольной совокупностью объектов или по сравнению с отдельными элементами является конструктивность (практическая осуществляемость отношений между элементами), ориентированность и взаимосвязанность составных элементов и целенаправленность.

Для того чтобы система была устойчивой к воздействию внешних влияний, она должна иметь устойчивую структуру. Выбор структуры практически определяет технический облик как всей системы, так ее подсистем, и элементов. Вопрос о целесообразности применения той или иной структуры должен решаться исходя из конкретного назначения системы. От структуры зависит также способность системы к перераспределению функций в случае полного или частичного отхода отдельных элементов, а, следовательно, надежность и живучесть системы при заданных характеристиках ее элементов.

Абстрактные системы являются результатом отражения действительности (реальных систем) в мозге человека.

Их настроение — необходимая ступень обеспечения эффективного взаимодействия человека с окружающим миром. Абстрактные (идеальные) системы объективны по источнику происхождения, поскольку их первоисточником является объективно существующая действительность.

Абстрактные системы разделяют на системы непосредственного отображения (отражающие определенные аспекты реальных систем) и системы генерализирующего (обобщающего) отображения. К первым относятся математические и эвристические модели, а ко вторым — концептуальные системы (теории методологического построения) и языки.

На основе понятия внешней среды системы разделяются на: открытые, закрытые (замкнутые, изолированные) и комбинированные. Деление систем на открытые и закрытые связано с их характерными признаками: возможность сохранения свойств при наличии внешних воздействий. Если система нечувствительна к внешним воздействиям ее можно считать закрытой. В противном случае — открытой.

Открытой называется система, которая взаимодействует с окружающей средой. Все реальные системы являются открытыми. Открытая система является частью более общей системы или нескольких систем. Если вычленить из этого образования собственно рассматриваемую систему, то оставшаяся часть — ее среда.

Открытая система связана со средой определенными коммуникациями, то есть сетью внешних связей системы. Выделение внешних связей и описание механизмов взаимодействия «система-среда» является центральной задачей теории открытых систем. Рассмотрение открытых систем позволяет расширить понятие структуры системы. Для открытых систем оно включает не только внутренние связи между элементами, но и внешние связи со средой. При описании структуры внешние коммуникационные каналы стараются разделить на входные (по которым среда воздействует на систему) и выходные (наоборот). Совокупность элементов этих каналов, принадлежащих собственной системе называются входными и выходными полюсами системы. У открытых систем, по крайней мере, один элемент имеет связь с внешней средой, по меньшей мере, один входной полюс и один выходной, которыми она связана с внешней средой.

Для каждой системы связи со всеми подчиненными ей подсистемами и между последним, являются внутренними, а все остальные — внешними. Связи между системами и внешней средой также, как и между элементами системы, носят, как правило, направленный характер.

Важно подчеркнуть, что в любой реальной системе в силу законов диалектики о всеобщей связи явлений число всех взаимосвязей огромно, так что учесть и исследования абсолютно все связи невозможно, поэтому их число искусственно ограничивают. Вместе с тем, учитывать все возможные связи нецелесообразно, так как среди них есть много несущественных, практически не влияющих на функционирование системы и количество полученных решений (с точки зрения решаемых задач). Если изменение характеристик связи, ее исключение (полный разрыв) приводят к значительному ухудшению работы системы, снижению эффективности, то такая связь — существенна. Одна из важнейших задач исследователя — выделить существенные для рассмотрения системы в условиях решаемой задачи связи и отделить их от несущественных. В связи с тем, что входные и выходные полюса системы не всегда удается четко выделить, приходится прибегать к определенной идеализации действий. Наибольшая идеализация имеет место при рассмотрении закрытой системы.

Закрытой называется система, которая не взаимодействует со средой или взаимодействует со средой строго определенным образом. В первом случае предполагается, что система не имеет входных полюсов, а во втором, что входные полюса есть, но воздействие среды носит неизменный характер и полностью (заранее) известно. Очевидно, что при последнем предположении указанные воздействия могут быть отнесены собственно к системе, и ее можно рассматривать, как закрытую. Для закрытой системы, любой ее элемент имеет связи только с элементами самой системы.

Разумеется, закрытые системы представляют собой некоторую абстракцию реальной ситуации, так как, строго говоря, изолированных систем не существует. Однако, очевидно, что упрощение описания системы, заключаются в отказе от внешних связей, может привести к полезным результатам, упростить исследование системы. Все реальные системы тесно или слабо связаны с внешней средой — открытые. Если временный разрыв или изменение характерных внешних связей не вызывает отклонения в функционировании системы сверх установленных заранее пределов, то система связана с внешней средой слабо. В противном случае — тесно.

Комбинированные системы содержат открытые и закрытые подсистемы. Наличие комбинированных систем свидетельствует о сложной комбинации открытой и закрытой подсистем.

В зависимости от структуры и пространственно-временных свойств системы делятся на простые, сложные и большие.

Простые — системы, не имеющие разветвленных структур, состоящие из небольшого количества взаимосвязей и небольшого количества элементов. Такие элементы служат для выполнения простейших функций, в них нельзя выделить иерархические уровни. Отличительной особенностью простых систем является детерминированность (четкая определенность) номенклатуры, числа элементов и связей как внутри системы, так и со средой.

Сложные — характеризуются большим числом элементов и внутренних связей, их неоднородностью и разнокачественностью, структурным разнообразием, выполняют сложную функцию или ряд функций. Компоненты сложных систем могут рассматриваться как подсистемы, каждая из которых может быть детализирована еще более простыми подсистемами и т.д. до тех пор, пока не будет получен элемент.

Определение N1: система называется сложной (с гносеологических позиций), если ее познание требует совместного привлечения многих моделей теорий, а в некоторых случаях многих научных дисциплин, а также учета неопределенности вероятностного и невероятностного характера. Наиболее характерным проявлением этого определения является многомодельность.

Модель — некоторая система, исследование которой служит средством для получения информации о другой системе. Это описание систем (математическое, вербальное и т.д.) отображающее определенную группу ее свойств.

Определение N2: систему называют сложной если в реальной действительности рельефно (существенно) проявляются признаки ее сложности. А именно:

  1. структурная сложность — определяется по числу элементов системы, числу и разнообразию типов связей между ними, количеству иерархических уровней и общему числу подсистем системы. Основными типами считаются следующие виды связей: структурные (в том числе, иерархические), функциональные, каузальные (причинно-следственные), информационные, пространственно-временные;
  2. сложность функционирования (поведения) — определяется характеристиками множества состояний, правилами перехода из состояния в состояние, воздействие системы на среду и среды на систему, степенью неопределенности перечисленных характеристик и правил;
  3. сложность выбора поведения — в многоальтернативных ситуациях, когда выбор поведения определяется целью системы, гибкостью реакций на заранее неизвестные воздействия среды;
  4. сложность развития — определяемая характеристиками эволюционных или скачкообразных процессов.

Естественно, что все признаки рассматриваются во взаимосвязи. Иерархическое построение — характерный признак сложных систем, при этом уровни иерархии могут быть как однородные, так и неоднородные. Для сложных систем присущи такие факторы, как невозможность предсказать их поведение, то есть слабо предсказуемость, их скрытность, разнообразные состояния.

Сложные системы можно подразделить на следующие факторные подсистемы:

  1. решающую, которая принимает глобальные решения во взаимодействии с внешней средой и распределяет локальные задания между всеми другим подсистемами;
  2. информационную, которая обеспечивает сбор, переработку и передачу информации, необходимой для принятия глобальных решений и выполнения локальны задач;
  3. управляющую для реализации глобальных решений;
  4. гомеостазную, поддерживающую динамическое равновесие внутри систем и регулирующую потоки энергии и вещества в подсистемах;
  5. адаптивную, накапливающую опыт в процессе обучения для улучшения структуры и функций системы.

Большой системой называют систему, ненаблюдаемую одновременно с позиции одного наблюдателя во времени или в пространстве, для которой существенен пространственный фактор, число подсистем которой очень велико, а состав разнороден.

Система может быть и большой и сложной. Сложные системы объединяет более обширную группу систем, то есть большие — подкласс сложных систем.

Основополагающими при анализе и синтезе больших и сложных систем являются процедуры декомпозиции и агрегирования.

Декомпозиция — разделение систем на части, с последующим самостоятельным рассмотрением отдельных частей.

Очевидно, что декомпозиция представляют собой понятие, связанное с моделью, так как сама система не может быть расчленена без нарушений свойств. На уровне моделирования, разрозненные связи заменятся соответственно эквивалентами, либо модели систем строится так, что разложение ее на отдельные части при этом оказывается естественным.

Применительно к большим и сложным системам декомпозиция является мощным инструментом исследования.

Агрегирование является понятием, противоположным декомпозиции. В процессе исследования возникает необходимость объединения элементов системы с целью рассмотреть ее с более общих позиций.

Декомпозиция и агрегирование представляют собой две противоположные стороны подхода к рассмотрению больших и сложных систем, применяемые в диалектическом единстве.

Системы, для которых состояние системы однозначно определяется начальными значениями и может быть предсказано для любого последующего момента времени, называются детерминированными.

Стохастические системы — системы, изменения в которых носят случайный характер. При случайных воздействиях данных о состоянии системы недостаточно для предсказания в последующий момент времени.

По степени организованности: хорошо организованные, плохо организованные (диффузные).

Представить анализируемый объект или процесс в виде хорошо организованной системы означает определить элементы системы, их взаимосвязь, правила объединения в более крупные компоненты. Проблемная ситуация может быть описана в виде математического выражения. Решение задачи при представлении ее в виде хорошо организованной системы осуществляется аналитическими методами формализованного представления системы.

Примеры хорошо организованных систем: солнечная система, описывающая наиболее существенные закономерности движения планет вокруг Солнца; отображение атома в виде планетарной системы, состоящей из ядра и электронов; описание работы сложного электронного устройства с помощью системы уравнений, учитывающей особенности условий его работы (наличие шумов, нестабильности источников питания и т. п.).

Описание объекта в виде хорошо организованной системы применяется в тех случаях, когда можно предложить детерминированное описание и экспериментально доказать правомерность его применения, адекватность модели реальному процессу. Попытки применить класс хорошо организованных систем для представления сложных многокомпонентных объектов или многокритериальных задач плохо удаются: они требуют недопустимо больших затрат времени, практически нереализуемы и неадекватны применяемым моделям.

Плохо организованные системы. При представлении объекта в виде плохо организованной или диффузной системы не ставится задача определить все учитываемые компоненты, их свойства и связи между ними и целями системы. Система характеризуется некоторым набором макропараметров и закономерностями, которые находятся на основе исследования не всего объекта или класса явлений, а на основе определенной с помощью некоторых правил выборки компонентов, характеризующих исследуемый объект или процесс. На основе такого выборочного исследования получают характеристики или закономерности (статистические, экономические) и распространяют их на всю систему в целом. При этом делаются соответствующие оговорки. Например, при получении статистических закономерностей их распространяют на поведение всей системы с некоторой доверительной вероятностью.

Подход к отображению объектов в виде диффузных систем широко применяется при: описании систем массового обслуживания, определении численности штатов на предприятиях и учреждениях, исследовании документальных потоков информации в системах управления и т. д.

С точки зрения характера функций различаются специальные, многофункциональные, и универсальные системы.

Для специальных систем характерна единственность назначения и узкая профессиональная специализация обслуживающего персонала (сравнительно несложная).

Многофункциональные системы позволяют реализовать на одной и той же структуре несколько функций. Пример: производственная система, обеспечивающая выпуск различной продукции в пределах определенной номенклатуры.

Для универсальных систем: реализуется множество действий на одной и той же структуре, однако состав функций по виду и количеству менее однороден (менее определен). Например, комбайн.

По характеру развития 2 класса систем: стабильные и развивающиеся.

У стабильной системы структура и функции практически не изменяются в течение всего периода ее существования и, как правило, качество функционирования стабильных систем по мере изнашивания их элементов только ухудшается. Восстановительные мероприятия обычно могут лишь снизить темп ухудшения.

Отличной особенностью развивающихся систем является то, что с течением времени их структура и функции приобретают существенные изменения. Функции системы более постоянны, хотя часто и они видоизменяются. Практически неизменными остается лишь их назначение. Развивающиеся системы имеют более высокую сложность.

В порядке усложнения поведения: автоматические, решающие, самоорганизующиеся, предвидящие, превращающиеся.

Автоматические: однозначно реагируют на ограниченный набор внешних воздействий, внутренняя их организация приспособлена к переходу в равновесное состояние при выводе из него (гомеостаз).

Решающие: имеют постоянные критерии различения их постоянной реакции на широкие классы внешних воздействий. Постоянство внутренней структуры поддерживается заменой вышедших из строя элементов.

Самоорганизующиеся: имеют гибкие критерии различения и гибкие реакции на внешние воздействия, приспосабливающиеся к различным типам воздействия. Устойчивость внутренней структуры высших форм таких систем обеспечивается постоянным самовоспроизводством.

Самоорганизующиеся системы обладают признаками диффузных систем: стохастичностью поведения, нестационарностью отдельных параметров и процессов. К этому добавляются такие признаки, как непредсказуемость поведения; способность адаптироваться к изменяющимся условиям среды, изменять структуру при взаимодействии системы со средой, сохраняя при этом свойства целостности; способность формировать возможные варианты поведения и выбирать из них наилучший и др. Иногда этот класс разбивают на подклассы, выделяя адаптивные или самоприспосабливающиеся системы, самовосстанавливающиеся, самовоспроизводящиеся и другие подклассы, соответствующие различным свойствам развивающихся систем.

Примеры: биологические организации, коллективное поведение людей, организация управления на уровне предприятия, отрасли, государства в целом, т.е. в тех системах, где обязательно имеется человеческий фактор.

Если устойчивость по своей сложности начинает превосходить сложные воздействия внешнего мира — это предвидящие системы: она может предвидеть дальнейший ход взаимодействия.

Превращающиеся — это воображаемые сложные системы на высшем уровне сложности, не связанные постоянством существующих носителей. Они могут менять вещественные носители, сохраняя свою индивидуальность. Науке примеры таких систем пока не известны.

Систему можно разделить на виды по признакам структуры их построения и значимости той роли, которую играют в них отдельные составные части в сравнение с ролями других частей.

В некоторых системах одной из частей может принадлежать доминирующая роль (ее значимость >> (символ отношения «значительного превосходства») значимость других частей). Такой компонент — будет выступать как центральный, определяющий функционирование всей системы. Такие системы называют централизованными.

В других системах все составляющие их компоненты примерно одинаково значимы. Структурно они расположены не вокруг некоторого централизованного компонента, а взаимосвязаны последовательно или параллельно и имеют примерно одинаковые значения для функционирования системы. Это децентрализованные системы.

Системы можно классифицировать по назначению. Среди технических и организационных систем выделяют: производящие, управляющие, обслуживающие.

В производящих системах реализуются процессы получения некоторых продуктов или услуг. Они в свою очередь делятся на вещественно-энергетические, в которых осуществляется преобразование природной среды или сырья в конечный продукт вещественной или энергетической природы, либо транспортирование такого рода продуктов; и информационные — для сбора, передачи и преобразования информации и предоставление информационных услуг.

Назначение управляющих систем — организация и управление вещественно-энергетическими и информационными процессами.

Обслуживающие системы занимаются поддержкой заданных пределов работоспособности производящих и управляющих систем.

Существует множество понятий системы. Рассмотрим понятия, которые наиболее полно раскрывают ее существенные свойства (рис. 1).

Рис. 1. Понятие системы

«Система – это комплекс взаимодействующих компонентов».

«Система – это множество связанных действующих элементов».

«Система – это не просто совокупность единиц... а совокупность отношений между этими единицами».

И хотя понятие системы определяется по-разному, обычно все-таки имеется в виду, что система представляет собой определенное множество взаимосвязанных элементов, образующих устойчивое единство и целостность, обладающее интегральными свойствами и закономерностями.

Мы можем определить систему как нечто целое, абстрактное или реальное, состоящее из взаимозависимых частей.

Системой может являться любой объект живой и неживой природы, общества, процесс или совокупность процессов, научная теория и т. д., если в них определены элементы, образующие единство (целостность) со своими связями и взаимосвязями между ними, что создает в итоге совокупность свойств, присущих только данной системе и отличающих ее от других систем (свойство эмерджентности).

Система (от греч. SYSTEMA, означающего «целое, составленное из частей») представляет собой множество элементов, связей и взаимодействий между ними и внешней средой, образующих определенную целостность, единство и целенаправленность. Практически каждый объект может рассматриваться как система.

Система – это совокупность материальных и нематериальных объектов (элементов, подсистем), объединенных какими-либо связями (информационными, механическими и др.), предназначенных для достижения определенной цели и достигающих ее наилучшим образом. Система определяется как категория, т.е. ее раскрытие производится через выявление основных, присущих системе свойств. Для изучения системы необходимо ее упростить с удержанием основных свойств, т.е. построить модель системы.



Система может проявляться как целостный материальный объект, представляющий собой закономерно обусловленную совокупность функционально взаимодействующих элементов.

Важным средством характеристики системы являются ее свойства . Основные свойства системы проявляются через целостность, взаимодействие и взаимозависимость процессов преобразования вещества, энергии и информации, через ее функциональность, структуру, связи, внешнюю среду.

Свойство – это качество параметров объекта, т.е. внешние проявления того способа, с помощью которого получают знания об объекте. Свойства дают возможность описывать объекты системы. При этом они могут изменяться в результате функционирования системы . Свойства – это внешние проявления того процесса, с помощью которого получается знание об объекте, ведется за ним наблюдение. Свойства обеспечивают возможность описывать объекты системы количественно, выражая их в единицах, имеющих определенную размерность. Свойства объектов системы могут изменяться в результате ее действия.

Выделяют следующиеосновные свойства системы :

· Система есть совокупность элементов . При определенных условиях элементы могут рассматриваться как системы.

· Наличие существенных связей между элементами . Под существенными связями понимаются такие, которые закономерно, с необходимостью определяют интегративные свойства системы.

· Наличие определенной организации , что проявляется в снижении степени неопределенности системы по сравнению с энтропией системоформирующих факторов, определяющих возможность создания системы. К этим факторам относят число элементов системы, число существенных связей, которыми может обладать элемент.

· Наличие интегративных свойств , т.е. присущих системе в целом, но не свойственных ни одному из ее элементов в отдельности. Их наличие показывает, что свойства системы, хотя и зависят от свойств элементов, но не определяются ими полностью. Система не сводится к простой совокупности элементов; декомпозируя систему на отдельные части, нельзя познать все свойства системы в целом.

· Эмерджентностъ несводимость свойств отдельных элементов и свойств системы в целом.

· Целостность – это общесистемное свойство, заключающееся в том, что изменение любого компонента системы оказывает воздействие на все другие ее компоненты и приводит к изменению системы в целом; и наоборот, любое изменение системы отзывается на всех компонентах системы.

· Делимость – возможна декомпозиция системы на подсистемы с целью упрощения анализа системы.

· Коммуникативность . Любая система функционирует в окружении среды, она испытывает на себе воздействия среды и, в свою очередь, оказывает влияние на среду. Взаимосвязь среды и системы можно считать одной из основных особенностей функционирования системы, внешней характеристикой системы, в значительной степени определяющей ее свойства.

· Системе присуще свойство развиваться , адаптироваться к новым условиям путем создания новых связей, элементов со своими локальными целями и средствами их достижения. Развитие – объясняет сложные термодинамические и информационные процессы в природе и обществе.

· Иерархичность . Под иерархией понимается последовательная декомпозиция исходной системы на ряд уровней с установлением отношения подчиненности нижележащих уровней вышележащим. Иерархичность системы состоит в том, что она может быть рассмотрена как элемент системы более высокого порядка, а каждый ее элемент, в свою очередь, является системой.

· Важным системным свойством является системная инерция, определяющая время, необходимое для перевода системы из одного состояния в другое при заданных параметрах управления.

· Многофункциональность – способность сложной системы к реализации некоторого множества функций на заданной структуре, которая проявляется в свойствах гибкости, адаптации и живучести.

· Гибкость – это свойство системы изменять цель функционирования в зависимости от условий функционирования или состояния подсистем.

· Адаптивность – способность системы изменять свою структуру и выбирать варианты поведения сообразно с новыми целями системы и под воздействием факторов внешней среды. Адаптивная система – такая, в которой происходит непрерывный процесс обучения или самоорганизации.

· Надежность это свойство системы реализовывать заданные функции в течение определенного периода времени с заданными параметрами качества.

· Безопасность способность системы не наносить недопустимые воздействия техническим объектам, персоналу, окружающей среде при своем функционировании.

· Уязвимость – способность получать повреждения при воздействии внешних и (или) внутренних факторов.

· Структурированность – поведение системы обусловлено поведением ее элементов и свойствами ее структуры.

· Динамичность – это способность функционировать во времени.

· Наличие обратной связи .

Любая система имеет цель и ограничения. Цель системы может быть описана целевой функцией U1 = F (х, у, t, ...), где U1 – экстремальное значение одного из показателей качества функционирования системы.

Поведение системы можно описать законом Y = F(x), отражающим изменения на входе и выходе системы. Это и определяет состояние системы.

Состояние системы – это мгновенная фотография, или срез системы, остановка ее развития. Его определяют либо через входные взаимодействия или выходные сигналы (результаты), либо через макропараметры, макросвойства системы. Это совокупность состояний ее n элементов и связей между ними. Задание конкретной системы сводится к заданию ее состояний, начиная с зарождения и кончая гибелью или переходом в другую систему. Реальная система не может находиться в любом состоянии. На ее состояние накладывают ограничения – некоторые внутренние и внешние факторы (например, человек не может жить 1000 лет). Возможные состояния реальной системы образуют в пространстве состояний системы некоторую подобласть Z СД (подпространство) – множество допустимых состояний системы.

Равновесие – способность системы в отсутствие внешних возмущающих воздействий или при постоянных воздействиях сохранять свое состояние сколь угодно долго.

Устойчивость – это способность системы возвращаться в состояние равновесия после того, как она была из этого состояния выведена под влиянием внешних или внутренних возмущающих воздействий. Эта способность присуща системам, когда отклонение не превышает некоторого установленного предела.

3. Понятие структуры системы .

Структура системы – совокупность элементов системы и связей между ними в виде множества.Структура системы означает строение, расположение, порядок и отражает определенные взаимосвязи, взаимоположение составных частей системы, т.е. ее устройства и не учитывает множества свойств (состояний) ее элементов.

Система может быть представлена простым перечислением элементов, однако чаще всего при исследовании объекта такого представления недостаточно, т.к. требуется выяснить, что представляет собой объект и что обеспечивает выполнение поставленных целей.


Рис. 2. Структура системы

Понятие элемента системы. По определению элемент – это составная часть сложного целого. В нашем понятии сложное целое – это система, которая представляет собой целостный комплекс взаимосвязанных элементов.

Элемент – часть системы, обладающая самостоятельностью по отношению ко всей системе и неделимая при данном способе выделения частей. Неделимость элемента рассматривается как нецелесообразность учета в пределах модели данной системы его внутреннего строения.

Сам элемент характеризуется только его внешними прояв­лениями в виде связей и взаимосвязей с остальными элемен­тами и внешней средой.

Понятие связи. Связь – совокупность зависимостей свойств одного элемента от свойств других элементов системы. Установить связь между двумя элементами – это значит выявить наличие зависимостей их свойств. Зависимость свойств элементов может иметь односторонний и двусторонний характер.

Взаимосвязи – совокупность двухсторонних зависимостей свойств одного элемента от свойств других элементов системы.

Взаимодействие – совокупность взаимосвязей и взаимоотношений между свойствами элементов, когда они приобретают характер взаимосодействия друг другу.

Понятие внешней среды. Система существует среди других материальных или нематериальных объектов, которые не вошли в систему и объединяются поняти­ем «внешняя среда» – объекты внешней среды. Вход характеризует воздействие внешней среды на систему, выход – воздействие системы на внешнюю среду.

По сути дела, очерчивание или выявление системы есть разделение некоторой области материального мира на две части, одна из которых рассматривается как система – объект анализа (синтеза), а другая – как внешняя среда.

Внешняя среда – набор существующих в пространстве и во времени объектов (систем), которые, как предполагается, оказывают действие на систему.

Внешняя среда – это совокупность естественных и искусственных систем, для которых данная система не является функциональной подсистемой.

Типы структур

Рассмотрим ряд типовых структур систем, использующихся при описании организационно-экономических, производственных и технических объектов.

Обычно понятие "структура" связывают с графическим отображением элементов и их связей. Однако структура может быть представлена и в матричной форме, форме теоретико-множественного описания, с помощью языка топологии, алгебры и других средств моделирования систем .

Линейная (последовательная) структура (рис. 8) характеризуется тем, что каждая вершина связана с двумя соседними При выходе из строя хотя бы одного элемента (связи) структура разрушается. Примером такой структуры является конвейер.

Кольцевая структура (рис. 9) отличается замкнутостью, любые два элемента обладают двумя направлениями связи. Это повышает скорость общения, делает структуру более живучей.

Сотовая структура (рис. 10) характеризуется наличием резервных связей, что повышает надежность (живучесть) функционирования структуры, но приводит к повышению ее стоимости.

Многосвязная структура (рис. 11) имеет структуру полного графа. Надежность функционирования максимальная, эффективность функционирования высокая за счет наличия кратчайших путей, стоимость - максимальная.

Звездная структура (рис. 12) имеет центральный узел, который выполняет роль центра, все остальные элементы системы являются подчиненными.

Графовая структура (рис. 13) используется обычно при описании производственно-технологических систем.

Сетевая структура (сеть) - разновидность графовой структуры, представляющая собой декомпозицию системы во времени.

Например, сетевая структура может отображать порядок действия технической системы (телефонная сеть, электрическая сеть и т. п.), этапы деятельности человека (при производстве продукции - сетевой график, при проектировании - сетевая модель, при планировании - сетевая модель, сетевой план и т. д.).

Иерархическая структура получила наиболее широкое распространение при проектировании систем управления, чем выше уровень иерархии, тем меньшим числом связей обладают его элементы. Все элементы кроме верхнего и нижнего уровней обладают как командными, так и подчиненными функциями управления.

Иерархические структуры представляют собой декомпозицию системы в пространстве. Все вершины (узлы) и связи (дуги, ребра) существуют в этих структурах одновременно (не разнесены во времени).

Иерархические структуры, в которых каждый элемент нижележащего уровня подчинен одному узлу (одной вершине) вышестоящего (и это справедливо для всех уровней иерархии), называют древовидными структурами (структурами типа "дерева"; структурами, на которых выполняются отношения древесного порядка, иерархическими структурами с сильными связями) (рис 14, а).

Структуры, в которых элемент нижележащего уровня может быть подчинен двум и более узлам (вершинам) вышестоящего уровня, называют иерархическими структурами со слабыми связями (рис 14, б).

В виде иерархических структур представляются конструкции сложных технических изделий и комплексов, структуры классификаторов и словарей, структуры целей и функций, производственные структуры, организационные структуры предприятий.

В общем случае термин иерархия шире, он означает соподчиненность, порядок подчинения низших по должности и чину лиц высшим, возник как наименование "служебной лестницы" в религии, широко применяется для характеристики взаимоотношений в аппарате управления государством, армией и т.д., затем концепция иерархии была распространена на любой согласованный по подчиненности порядок объектов.

Таким образом, в иерархических структурах важно лишь выделение уровней соподчиненности, а между уровнями и компонентами в пределах уровня могут быть любые взаимоотношения. В соответствии с этим существуют структуры, использующие иерархический принцип, но имеющие специфические особенности, и их целесообразно выделить особо.

В нашем мире существует ряд понятий, которые на первый взгляд имеют достаточно простую трактовку. При этом они применяются в совершенно разных сферах деятельности. В зависимости от того, в каком контексте мы их употребляем, и объясняется их смысл. Одним из подобных сложных и многогранных терминов является «целостность». Это слово часто встречается в повседневной жизни, но мало кто может дать ему четкое определение. Что же, попробуем сейчас справиться с этим непростым заданием.

Обобщенная краткая трактовка

Итак, согласно толковому словарю, целостность - это общая характеристика предметов или объектов, которые обладают сложной внутренней структурой. Данное понятие является олицетворением автономности, самодостаточности, а также интегрированности определенных объектов. Дополнительно можно сказать, что целостность - это характеристика качества, уникальность, своеобразие, которые сформировались в определенной среде обитания и соответствуют лишь конкретному предмету. Иными словами, термин указывает на сочетание определенного количества составляющих в одном объекте, которые развиваются и функционируют сообща, образуя, таким образом, замкнутую и полноценную систему. Такой системой может быть любая биологическая единица (как клетка, так и человек), государство или маленькое общество, программное обеспечение и т. д.

Наука и философия

Очевидно, что слово «целостность» - это производное от «целого» или «единого». Часто мы употребляем их для того, чтобы охарактеризовать нечто отдельное, что полностью сформировалось и стало самодостаточным. Пример, который был предоставлен выше - клетка как биологическая единица. Она обрамлена специальной мембраной, через которую не может просочиться, а внутри нее находятся все те компоненты, которые обеспечивают необходимый обмен веществ внутри этой системы. Из таких клеток состоят все живые организмы - люди, животные, растения. Клетки входят в состав каждого внутреннего органа, определяя его целостность. В совокупности мы получаем полноценный живой организм, работа которого слажена и не зависит от других подобных ему. Но она зависит от окружающей среды - воздуха, воды, света. Эти компоненты, состоящие из молекул, также самодостаточны и индивидуальны, но в сочетании с человеком, животными и всеми остальными жителями нашей планеты они образуют биомассу. В свою очередь, биомасса также является единой структурой, внутри которой слаженно функционируют все живые организмы.

Психология

На примере точных наук мы только что рассмотрели, Теперь же давайте обратимся к психологам и к терминам, которые они употребляют чаще всего. Одним из таковых является «принцип целостности личности». Человеческая личность - понятие духовное. Ее нельзя пощупать, вдохнуть или ощутить на себе, как, допустим, человека или воду. Но личность строится на основе компонентов, которые ее формируют и совершенствуют. Среди таковых назовем жизненный опыт, ошибки, страдания, радости, дружбу и предательство, любовь, построение семьи, карьерный рост, и пристрастия, интересы и многое другое. Формирование личности - процесс крайне индивидуальный. В истории человечества есть люди, которые стали самодостаточными и независимыми в совсем юном возрасте. А в некоторых случаях бывает так, что зрелый человек, проведший на Земле более полувека, до сих пор не сумел сделать свою духовную и самодостаточной.

Границы государств

Политологам и историкам постоянно приходится сталкиваться с таким понятием, как территориальная целостность. Суть ее ничем не отличается от всего, что было описано выше. Разница лишь в том, что в данном случае мы говорим о конкретных земельных границах определенной страны, о ее национальном языке, флаге, гимне и прочих атрибутах. Ранее в политическом понятии принцип целостности государства строился также на национальных принципах. Ассимиляция народов если и имела место, то была незначительной. Поэтому на территории современной Италии жили латины, во Франции - кельты, в Германии - готы, а на наших землях - предки-славяне. Сегодня народы, которые населяют то или иное государство, не влияют на его целостность.

Информатика и современные технологии

Целостность - понятие, которое с недавних пор стало широко применяться в сфере научных технологий, в программировании и ведении интернет-деятельности. В частности, речь идет о первозданности и неизменности исходных кодов программ и файлов. Для примера возьмем самый обыкновенный сайт, составленный программистом из ряда исходных кодов. Для каждой отдельной страницы использовались определенные шифры, сочетания символов, цифр и знаков. В совокупности они образовали целостную картину, которая стала основой для интернет-ресурса. При некорректном обращении с исходным кодом происходит нарушение деятельности дочернего продукта. Сбиваются настройки, в результате общая картинка исчезает. Следует отдельно отметить, что в данной ситуации будет уместна проверка целостности информации. Сделать это можно, выполнив определенный набор функций. Также для восстановления исходных данных можно провести операцию отката системы.

Нарушение целостности

В биологии, психологии, географии и политике, в информатике и высоких технологиях - везде присутствует целостность. Но в любом из этих случаев это самое единство может быть нарушено. Что касается биологии, то ярким примером нарушения целостности служат болезни, прекращение работы определенных органов, ампутации. В психологии нарушение целостности личности - это различные ментальные расстройства. Тут можно упомянуть шизофрению, амнезию, психоз, неврастению и многие другие душевные недуги. Покушение на территорию государства, разрушение ее символики - это крах его единства. Такое явление наблюдается во время войны и вооруженных международных конфликтов. Ну а вопрос о том, как может быть нарушена целостность интернет-продуктов, мы уже подробно рассмотрели.

Другой механизм в этой системе - оценка фотографий. Он особенно важен для девушек. Они отбирают свои лучшие фотографии, критически их отсеивают и постоянно обновляют. Почему? Потому что им ставят оценки - совершенно незнакомые люди.

Многие полагают, что для них неважно мнение других людей, и тем более незнакомых. На самом деле это самообман. Человек - социальное существо, и для него всегда важно мнение любых других людей:

Одноклассница выкладывает фотографии на сайт, потому что одноклассники на пятой воде ставят ей оценки

Итак, на «Одноклассниках» одновременно работают три разных формулы, дополняющие друг друга. Формула ностальгии - для первоначального интереса и привлечения аудитории. Оценки фотографий - для самоутверждения женской половины. Мужской интерес - для оценок фотографий женской половины.

Главная формула Ютуба - досуг. Но на входе его воронки работает подсистема вирусного распространения видеороликов:

Пользователи делятся видеороликами с друзьями, потому что хвастаются удачной добычей

А на выходе - подсистема удержания внимания - рекомендации:

Внимание пользователя притягивается к рекомендованным видеороликам,
поэтому он остаётся посмотреть ещё и ещё

На страницах фильмов и концертов сайта « Яндекс-афиша » была зелёная кнопка «Присоединиться»:


Когда пользователи на неё нажимали, число рядом с ней увеличивалось и показывало, сколько людей хотят посмотреть этот фильм или концерт. Полезное действие в том, чтобы Яндекс мог узнать, насколько популярно то или иное событие.

В чём проблема? На эту красивую блестящую кнопочку нажимало очень мало людей. Когда она только появилась, это число на самых популярных хитах измерялось единицами: два, три, десять человек. «Фильм „Годзилла“ - идут три человека». Потом картина несколько улучшилась. Но стоит иметь в виду, что показано количество всех людей, которые собирались на этот фильм во всех кинотеатрах в течение всего времени, что фильм в прокате. Для Москвы это ничтожное число.

Кнопке недостаточно красивого карамельного вида, чтобы на неё нажимали. Должна появиться сила, которая будет заставлять людей на неё нажимать.

Другой пример - сайт «Ласт.фм». На этом музыкальном сервисе тусуются любители музыки. На этом сайте есть страница концерта, в данном случае - Мэрилина Мэнсона 13 ноября 2009 года в Москве в клубе Б-2:


На странице тоже есть блок, в котором написано, что на концерт идут 208 человек. Это число сопоставимо с числом, что мы видели на Яндексе, но это концерт, который идёт один раз в конкретном месте. Значит, система работает гораздо более эффективно.

Секрет в том, что у каждого пользователя Ласт.фм на сайте есть профиль:


Мы видим страничку пользователя, на которой отображается список концертов, на которые он ходил. Люди общаются на сайте, и этот профиль является для них неким мерилом их статуса. Можно козырнуть в споре: «Я был на тридцати концертах, что вы мне лапшу на уши вешаете». Страсть к собирательству и тщеславие заставляют людей культивировать свой профиль.

Таким образом, две разные подсистемы - страницы концерта и профиля пользователя связаны в надсистеме. Авторы сайта организовали «сквозной проход тщеславия».

    В сфере услуг

    «Представьте, что вы работаете менеджером по продажам. Клиент звонит вам (потому что знает вас), чтобы рассказать о неприятной ошибке на вашем сайте. Естественно, вы перенаправляете проблему в отдел ИТ . Но как вы узнаете, решена ли проблема? Позаботился ли айтишник о клиенте? Вы узнаете, переспросив. Клиенты хотят, чтобы вы, их изначальный союзник, следили за решением таких вопросов, а не „ кто-то там из ИТ “, даже если вы по определению знаете, что айтишники лучше справятся».

    Леонардо Ингильери, Мика Соломон. Исключителный сервис, исключительная прибыль . 2010

Интернет-магазин «Амазон» одним из первых решил продавать огромное количество товаров через интернет. Если у вас пятьдесят тысяч товаров, нужно понять, как дать человеку к ним доступ.

    Вместо того, чтобы вываливать на пользователей тяжеловесное меню с классификатором товаров, «Амазон» построил сайт вокруг рекомендаций. Идея в том, чтобы на первый план вышел товар, который, вероятно, более интересен клиенту. (Тяжеловесное меню тоже имеется, но оно вываливается лишь при наведении мыши).

    Идеальное решение должно залезть в мозг к человеку. Как же это сделать? «Амазон» нашёл гениальное решение - использовать самого человека.

    Когда пользователь приходит в первый раз, он видит главную страницу и самые популярные товары. Если он заинтересовался продуктом на витрине, попадает на подробную страницу товара.

    Ему тут же предлагают похожие товары. Раз ему интересна эта книга, значит, будут интересны и другие, близкие по каким-то параметрам - например, по статистике покупок других пользователей.

    Переход на страницу товара тут же записывается. «Амазон» ещё не знает, как этого человека зовут и какая у него электронная почта, но на него уже есть досье. Всё что он делает, клики, история запросов и дальнейшие покупки запоминаются в базу данных. С помощью технологии «куки» в браузер кладётся числовой идентификатор, по которому человек, пользующийся конкретным компьютером, связывается со своим досье.

    Благодаря тому, что «Амазон» накапливает информацию о реальных действиях и интересах человека, рекомендации становятся всё более и более точными.

В «Амазоне» организован сквозной проход энергии и информации - пользователь елозит мышкой, греет стол, кликает по сайту, сам генерирует информацию о собственной истории посещений, запросов и покупок, и в итоге сам направляет на себя нужные товары.

В компаниях Элона Маска источником энергии выступает солнце, и полученная энергия буквально сквозь них проходит. Энергетическая сеть Соларсити питается от солнечного света. Компания разрабатывает, устанавливает и даёт в лизинг домашние и коммерческие системы преобразования солнечной энергии и накопления электроэнергии, то есть поставляет электроэнергию в частные дома и на станции бесплатной зарядки автомобилей другой его компании - Тесла.

Интерфейс - зло

С точки зрения теории систем любой интерфейс - узкое место с низким КПД , в котором теряется энергия, скорость, пропускная способность, время, аудитория и деньги. Самый неэффективный вид интерфейса - пользовательский. В отличие от аппаратных и программных, пользовательский интерфейс открывает безграничный простор для человеческих решений и ошибок.

Другой пример - обязательная регистрация в интернет-магазине. Покупатель вынужден придумать логин и пароль, а потом подтвердить почтовый адрес, как бы оправдываясь перед системой. Эти бессмысленные для пользователя действия оттягивают момент покупки, отсеивая неопытных покупателей и уменьшая оборот магазина.

Работоспособный магазин продаёт товар без искусственных преград:


Регистрация объединена с покупкой, как бы замаскирована там.

После регистрации в Апсторе все приложения покупаются в один-два клика:


Вся информация о пользователе и его банковской карточке хранится в системе, поэтому ему не нужно лезть за кошельком. Деньги списываются автоматически:


На первый взгляд кажется, что это невозможно - продать что-то человеку без его желания. Но мобильные операторы не дают в руки абонентов кнопку «купить СМС » или «купить минуты разговора». Если абонент не принимает всякий раз решение о покупке, ему проще тратить деньги с собственного счёта. Покупка есть, интерфейса нет.

Единственная задача подсистемы интерфейса - обеспечить проход информации между другими подсистемами. Идеально, если информация пройдёт напрямую.

Запуск и развитие

В бюро работают над продуктами итерационно по принципу «ФФФ» . Аббревиатура ФФФ означает fix time, fix budget, flex scope. Мы работаем с фиксированными сроками и бюджетом, а функциональность оставляем гибкой.

Если приближается дедлайн, приходится отказываться от отдельных функций или даже целых подсистем. Особенно важны эти решения при первом запуске продукта. Критический контур определяет, от каких функций можно временно отказаться, а без каких продукт не заработает вовсе.

Но продукт необязательно запускать целиком. Представление о критическом контуре помогает спланировать постепенный запуск автономных подсистем, входящих в критический контур будущего продукта.

    В авиации

    Пионер авиации Отто Лилиенталь продвигал концепцию «подпрыгнуть прежде, чем полететь», которая заключалась в том, что изобретатели должны начать с планеров и суметь их поднять в воздух, вместо того, чтобы просто разрабатывать машину с двигателем на бумаге и надеяться, что она будет работать.

Это дизайн более высокого уровня - система проектируется не на одном «чертеже», а на многоэкранной схеме - во времени. Каждый «экран» представляет собой работоспособное состояние системы на выбранном этапе развития.

Ниже представлена упрощённая многоэкранная схема развития экосистемы Эпла в течение последних пятнадцати лет. Для упрощения картины я исключил планшеты, часы и будущие телевизоры - логика их появления и взаимодействия с другими подсистемами мало чем отличается от генеральной линии.

Данная информация предназначена для специалистов в области здравоохранения и фармацевтики. Пациенты не должны использовать эту информацию в качестве медицинских советов или рекомендаций.

Целостная система и количественное измерение ее состояния. Живой организм, как выраженная целостная система

А.П. Хускивадзе

Аннотация.

Приведено обоснование понятия «Теория целостности». Рассмотрены вопросы сходства и различия между общей теорией систем Л. Фон Берталанфи, единой теорией поля и теорией целостности.

Сформулировано понятие целостной системы и показано, что живой организм является выраженной целостной системой. Приведен способ количественного измерения состояния целостной системы.

Работа выполнена на стыке фундаментальной медицины, биологии, физики и философии. Она представляет интерес, в первую очередь, для специалистов, работающих в области доказательной медицины.

Ключевые слова: общая теория систем, целостная система, математическое описание, количественные показатели состояния целостной системы, вероятностный предел познания истины.

Все права на материалы статьи защищены.

1. Общая теория систем Л. Фон Берталанфи, единая теория поля и теория целостности

Во второй половине двадцатого столетия в биологии, медицинской науке и философии основательно укоренилось словосочетание: «Общая теория систем» . Этим словосочетанием стали пользоваться и многие математики . Однако, большинство математиков все же предпочитают говорить о «Математической тернии систем» . В физике, как правило, оперируют словосочетанием: «Единая теория поля» или «Теории всего (англ. Theory of everything, TOE)» .

Все эти теорий, по сути дела, ставят перед собой одну и ту же задачу: найти самые общие закономерности природы. Различие между этими теориями в подходах решения проблемы. Так, единая теория поля путь решения проблемы видит в изучении самих глубинных процессов, происходящих в неживой природе . Здесь интуитивно работает логика: «Неживая природа –первична, а живая природа – вторична, Следовательно, закономерности, общие для всей неживой природы, должны быть общими и для всей живой природы». Надо полагать, что именно этой логикой руководствовался В. Гейзенберг, видя пути решения т.н. «проблемы центрального порядка» в познаний тайн атома .

Под «Проблемой центрального порядка» понимают проблему поиска закономерности, обусловливающей то значительное различие , которое имеется между продолжительностями существования целого и его составных частей . Например, гибнут сотни и тысячи особ, а биологический вид продолжает существование, рушатся целые множество улиц, но в целом город продолжает существовать и т.д. .

Как видно, словосочетанием «Проблема центрального порядка» обозначена та же проблема поиска общих закономерностей природы.

Общая теория систем путь решения проблемы видит в изучении процессов, которые, как в живой, так и не живой природе происходят одинаково . Разумеется, глубинные процессы, происходящие во всех проявлениях – формах - неживой природы одинаково, будут происходить одинаково и во всех формах живой природы. Однако, общая теория систем исходит из того, что кроме этих процессов, существуют и общие процессы, которые являются далеко не глубинными . Например, мы все знаем, что если в течение пяти минут головной мозг человека останется без кислорода, то, как мозг, так и сам человек, погибнут. Аналогично, если приостановит подачу электроэнергии и газа в доменную печь и дать ей остыть, то она остановиться совсем. Остановленную доменную печь, как известно, не восстанавливают, а предпочитают построить ее заново.

Что общего мозгом человека и доменной печью металлургического завода?

Головной мозг человека и доменная печь металлургического завода имеют одно общее: оба они являются выраженными целостными системами , служащими, со своей стороны, самыми важными элементами соответствующих целостных образований.

Смысл словосочетания «Выраженная целостная система» вроде интуитивно понятно. Строгое определение понятия, обозначаемого этим словосочетанием, приведено в . Интуитивно также понятно смысл словосочетания: «Самый важный элемент соответствующего целостного образования». Однако, опирая на одно это интуитивное представление, невозможно должным образом формализовать то общее, что объединяет головной мозг человека и доменную печь металлургического завода.

Надо полагать, что когда создатель общей теории систем, человек по профессии биолог, Фон Берталанфи, говорил о задачах, стоящих перед этой теорией, то он, в первую очередь, имел в виду изучение того общего, что объединяет различные формы живой природы, т.е. выраженная целостность живых организмов.

Выраженная целостность, как указывалось выше, характерна и для доменной печи металлургического завода.

Следовательно, целостность является характеристикой не только живой природы. Она характерна и для неживой природы тоже.

Можно показать, что целостность является самым общим способом существования нашей действительности.

В самом деле, каждый биологический вид, как известно, представляет собой целостное образование, элементарными кирпичиками которого служат пары , составленные представителями противоположных полов этого биологического вида.

Представители противоположных полов биологического вида, разумеется, могут создавать и другие целостные образования. Существуют, например, целостные образования. обозначенные словосочетаниями: «Мужская футбольная команда», «Женская волейбольная команда», «Семья», «Родители» и т.д. Все эти целостные образования, как видно, составлены людьми, т.е. представителями одного и того же биологического вида. Однако, когда речь идет о целостном образовании, обозначенном словосочетанием «Биологический вид», то в качестве элементарных кирпичиков выступают именно пары, составленные представителями противоположных полов этого биологического вида.

Следует особо обращать внимание на следующее: когда говорят, что наша действительность представляет собой единство противоположностей, всегда имеют виду н е куча противоположных сторон, а организованные должным образом целостные образования. При этом эти целостные образования могут быть составлены не только реальностями одной природы. Примерами целостных образований служат как реальности типа «Человеческое общество» и «Мир животных», так и реальности типа «Город Москва» и «Река Волга» и т.д.

Все примеры, приведенные выше, относятся к «неглубинным» процессам. А что происходит в микромире?

Оказывается, все, так называемые сильно взаимодействующие элементарные частицы – адроны – представляют собой такие же выраженные целостные системы, какими являются живые организмы: как функциональные части живого организма не могут существовать вне этого организма, так и кварки не могут существовать вне адрона, к которому они принадлежат .

Можно говорить, что все то, что мы видим вокруг нас, и все то, что мы не видим, но существует объективно, представляет собой некое целостное образование. Точнее, оно является целостным образованием с вероятностью: 0.5 ≤ P

Итак, целостность – это, то общее, что одинаково характерно как у живой, так и у неживой природе. Следовательно, закономерности целостности и должны являться закономерностями, одинаково справедливыми как для живой, так и для неживой природы. Изучение этих закономерностей – задача теории целостности.

Как видно, теория целостности, в отличие от общей теории систем и единой теории поля, ограничивается изучением одних закономерностей целостности форм существования живой и неживой природы. Следовательно, эта теория является частью как общей теории систем Фон Берталанфи, так и единой теории поля, т.е. она представляет собой еще более общей теорией.

Следует отметить, что словосочетание «Теория целостности», во-первых, лаконично. Во - вторых, что гораздо более важно, в этом словосочетание акцент делается на самом главном: - самом общем свойстве живой и неживой природы, т.е. об их целостности

В заключение обратим внимание на различие в языковых средствах, применяемых в единой теории поля и в теории целостности.

Единая теория поля, как известно, оперирует понятийным аппаратом современной физики. Это язык – понятный физикам и тем математикам, которые работают на стыке физики и математики.

Теория целостности, как указывалось выше, является частью общей теории систем. А

в общей теории систем, кроме математиков и физиков, работают биологи, медики, социологи и философы. Основоположник общей теории систем Фон Берталанфи, как указывалось выше, является биологом. Ясно, что в общей теории систем требуется языковое средство, одинаково понятное всем: биологам, медикам, физикам, математикам, социологам и философам. Таким языковым средством в настоящее время является понятийный аппарат современной математической статистики.

Кроме понятийного аппарата математической статистики очень редко нам приходится оперировать и такими самыми общими понятиями теории множеств, как «Открытое множество», «Пересечение множеств», «Отношение» и т.д. Этими последними понятиями мы оперируемся, в частности, при формализации таких фундаментальных понятий для теории целостности, какими являются понятия «Система» и «Функциональный элемент системы» .

Понятие целостной системы

Первые попытки математического определения понятия «Целостная система» нами были предприняты в . Позже, ознакомившись с работами академика В.Г.Афанасьва и других философов , мы пришли к выводу, что понятие «Целостная система» является философским понятием, не поддающимся математической формализации. Отсюда идея выделить класс так называемых эмпирических целостных систем . Однако, дальнейшие исследования показали, что понятие целостной системы все же вполне формализуемо. Ниже мы оперируем математическим понятием целостной системы, введенной нами в .

Понятие «Множество», как известно, является первичным математическим понятием. Если множество бинарное, то говорят, что оно является отношением.

Итак, пусть

Являются скалярными измеряемыми величинами, каждая j-ая из которых имеет трех или более возможных значений.

Обозначим

Y = í y j ; j = 1..N} (1)

A, A j ; j = 1..N

Непустые конечные множества, а

H и H j ; j = 1..N

Непустые конечные множества отношений такие, что для каждой пары

имеет место

S j = S j 0 Û y j = y j 0 ,

а для пары s = выполняется условие

s = s 0 Û Y = Y 0 ,

т.е. вообще имеют место

s = s 0 Û Y = Y 0 и S j = S j0 Û y j = y j 0 ; j = 1..N, (2)

s 0 , Y 0 , S j 0 и y j 0

являются фиксированными значениями

s, Y, S j и y j

соответственно.

Определение 1

Пусть, имеет место (2) и при этом

2 ≤ N и s = s 0 Û S j = S j 0 для всех j = 1.. N (3)

Тогда и только тогда говорят, что пара s является системой функциональных элементов

Определение 2

Пусть, пара s является системой, т.е. выполняется совокупность условий (2) и (3).

Тогда и только тогда говорят, что множество (1) является генеральной совокупностью первичных показателей состояния системы s и пишут:

Y = Y(G) º í y j ; j = 1..N(G)}, (4)

где N(G) – объем Y(G).

Согласно (1) и (4) имеем

Следовательно, можно говорить, что система s состоит из N(G) количества функциональных элементов.

2 ≤ N(G) ≤ M(A) ,

где M(A) – объем A.

В виду того, что

H ¹ Æ , (5)

элементы системы s, в отличие от элементов множества A, всегда являются взаимно связанными. Эта взаимосвязанность выражается в том, что процессы, происходящие в элементах системы s, являются в той или иной, отличной от нуля , степени согласованными.

Вообще, если выполняется условие (5), то можно говорить, что система s является в той или иной, отличной от нуля , степени целостной. В противном случае можно говорить, что система s не является целостной. Например, труп скорей всего не является целостной системой.

Согласно В.Г. Афанасьеву главным признаком целостности системы s является наличие у этой системы т.н. единого интегративного качества (ЕИК) . Под ЕИК системы s понимают качество, которое этой системой проявляется в той мере, в какой это качество проявляется каждым ее функциональным элементом, т.е. имеет место

g = g 0 Û g j = g 0 для всех j = 1..N(G), (6)

g - мера проявления ЕИК системой s: 0 £ g £ 1;

g 0 – фиксированное значение g ;

g j – мера проявления ЕИК j –ым функциональным элементом системы s.

Вторым важным признаком целостности системы s, согласно В.Г. Афанасьеву, является ее историчность , т.е. то, что для этой системы условие

выполняется в течение вполне определенного интервала времени от t к до t н,

t к – время появления системы s: t к ≥ 0;

t н – время исчезновения системы s: t к

Определение 3.

Пусть, в момент времени t = t 0 (t к £ t 0 £ t н) условие (6) выполняется,

t 0 – фиксированное значение t.

Пусть, при этом в момент времени t = t 0 имеет место неравенство (7).

Тогда и только тогда говорят, что система s на изменение среды своего существования в момент времени t = t 0 реагирует как единое целое .

Под средой существования системы s понимают совокупность внутренних и внешних факторов (условий), при которой имеет место неравенство (7).

Любая другая среда не является средой существования системы s и, следовательно, она на изменение такой среды, как единое целое реагировать не может.

Определение 4.

Пусть, система s в момент времени t = t 0 (t к £ t 0 £ t н) на изменение среды своего существования реагирует как единое целое.

Тогда и только тогда говорят, система s в момент времени t = t 0 является целостной системой.

О величине g 0 говорят, что она является фактическим значением g при t = t 0 . Говорят также, что g 0 является характеристикой фактического состояния целостной системы s в момент времени

Если g = g 0 = 1, то можно говорить, что целостная система s в момент времени t = t 0 находится в наилучшем – нормальном – состоянии. А вообще о величине g можно говорить, что она является

мерой близости фактического состояния целостной системы s к ее возможному в момент времени t = t 0 нормальному состоянию.

Аналогично, о величине g j можно говорить, что она является мерой близости фактического состояния j -го функционального элемента целостной системы s к его возможному в момент времени t = t 0 нормальному состоянию.

Итак, мера проявления ЕИК и мера близости фактического состояния к возможному нормальному состоянию – два различных названия одной и той же величины. Первое название, быть может, имеет смысл применять в среде философов, а второе – в среде биологов, медиков, инженеров, социологов и физиков.

Вообще,согласно (7), имеет место

g min £ g £ 1, (8)

g min – минимально допустимое в момент времени t = t 0 значение g для целостной системы s.

g j ≥ 0; j = 1.. N(G)

Однако, для целостной системы s, согласно (1) и (3), имеет место

g j ≥ g jmin > 0; j = 1.. N(G) (9)

Говорят, что j –ий функциональный элемент системы s при t = t 0 является активным , если

g min £ g j £ g

Обозначим

h j = 1, если g min £ g j £ g

h j = 0, во всех других случаях

Согласно (6) имеет место

g = 1 Þ g j = 1; j = 1..N(G)

С учетом этого из (11) и (12) получаем

m = N(G) при g = 1 и m

т.е. вообще

m £ N(G)

g min £ g j

g j = 1 при j = m +1, m + 2,.., N(G)

О величине m говорят, что она является количеством активных функциональных элементов системы s при t = t 0 .

С учетом (13) зависимость (6) можно переписать в виде

g = 1 Û g j = 1 для всех j = 1.. m (14)

Как видно, для достижения цели

при t = t 0 необходимо и достаточно достижение совокупности целей

g j → 1; j = 1.. m (16)

2. Измерение единого интегративного качества

Пусть, задана совокупность данных

M j1 , S j 1 и N j 1 ; j = 1..N (17)

M j1 – выборочное среднее арифметическое величины y j Î Y, служащей характеристикой фактического состояния j –го функционального элемента целостной системы s при t = t 0 ;

Y – изучаемая совокупность количественно измеряемых величин, служащих при t = t 0 первичными показателями состояния целостной системы s: Y 0í Y í Y(G);

Y 0 – генеральная совокупность количественно измеряемых величин, служащих при t = t 0 первичными показателями фактического состояния активных функциональных элементов целостной системы s: h j = 1 при y j Î Y 0 ; j = 1..m;

S j 1 – выборочное средне квадратичное отклонение величины y j Î Y, служащей характеристикой фактического состояния j –го функционального элемента целостной системы s при t = t 0 ;

N j 1 – объем выборки результатов измерений величины y j Î Y в течение времени от t j0 – Δ j0 до t 0: N j 1 ≥ 1 ;

Δ j0 – интервал времени, в течение которого состояние j –го функционального элемента целостной системы s остается практически неизменным ;

N– объем Y: m £ N £ N(G).

M j0 , S j 0 и N j 0 ; j = 1..N, (18)

служащие выборочными характеристиками нормального состояния типичного представителя однородной группы целостных систем, к которой система s в нормальном состоянии принадлежит.

Обозначим

δ j * = и τ j * = τ(P,(N j 0 + N j 1 – 2)),

τ j * - критическое значение критерия Стьюдента при заданной доверительной вероятности P и степени свободы N j 0 + N j 1 – 2.

P ≥ 0.95 и N j 0 >> 1 ; j = 1..N,

Положим, что выборки, по данным которых совокупности (11) и (12) установлены, являются репрезентативными с вероятностью P и при этом выполняется условие

Тогда можно оперировать зависимостью :

│M j1 - M j0 │

Если это условие выполнятся, то с вероятностью P.утверждают, что величина y j Î Y находится в пределах общепринятой статистической нормы и пишут :

g j = 1 при │M j1 - M j0 │

Обозначим.

d j 1 = S j 1 и t j 1 = t(P, 2(N j 1 – 2)),

t j 1 - критическое значение критерия Стьюдента при заданных доверительной вероятности P и степени свободы 2(N j 1 – 1).

d j 1 t j 1 > 0 (21)

Обозначим.

δ j = δ j * и τ j = τ j * при d j 1 t j 1 £ δ j * τ j *

δ j = d j 1 и τ j = t j 1 при d j 1 t j 1 > δ j * τ j *

Согласно (2), (14) и (15) имеет место

0 £ δ j * τ j * (23)

Следовательно

│M j1 - M j0 │

Отсюда и из (13) имеем

g j = 1 при │M j1 - M j0 │

Обозначим

A j = (M j 0 - Δ j , M j 0 + Δ j), (24)

Δ j = δ j τ j (25)

При заданной доверительной вероятности P все значения величины y j Î Y в области A j являются фактически неразличимыми друг от друга . Вместе с тем в закрытой области

A j * =

друг от друга различаются следующие три значения величины y j Î Y:

y j = M j 0 - Δ j , y j = M j 0 и y j = M j 0 + Δ j

Это означает, что в области A j * величина y j Î Y наиболее точно фактически измеряется в единицах Δ j . Но тогда эта величина и в остальной области своего задания должна быть измерена в единицах Δ j . В противном случае не будет выполняться условие равноточности измерения и, следовательно, значения величины y j Î Y, установленные в области A j * , не будут сопоставимыми со значениями из остальной области ее задания.

Согласно (16) и (18) имеет место

Δ j > 0; j = 1..N

Это указывает на то, что вообще

где P max – максимально возможное значение P для системы s при t = t 0 .

Обозначим через Δ j (G) значение Δ j такое, что

Δ j = Δ j (G)приP = P max

Величина Δ j (G) представляет собой объективную местную – локальную – единицу измерения величины y j Î Y в системе s при t = t 0 .

О величинеΔ j говорят, что она является оценкой Δ j (G). Говорят также, что Δ j является субъективной местной – локальной – единицей измерения величины y j Î Y в системе s при t = t 0 .

Если выполнятся условие

M j1 Î A j ,

то с вероятностью P.утверждают, что величина y j Î Y находится в пределах своей субъективной индивидуальной нормы и пишут:

MZ j = M j1 при M j1Î A j и MZ j = M j0 при M j1Ï A j , (26)

MZ j – субъективная точечная индивидуальная норма величины y j Î Y для системы s при

Обозначим

a = max(a j ; j = 1..N(G)), (28)

a j = при £ 0.5 и a j = 0.5 при > 0.5 (29)

Согласно (16), (20), (21) и (22) имеем

Обозначим

3 £ NO £ PO £ PZ(G)

PZ(G) – максимально возможное значение PO для системы s при t = t 0:

PO = PZ при P = P max

Величина PZ(G) является вероятностным пределом познания истины в системе s при t = t 0 .

ВеличинаPO, в отличие от PZ(G), зависит от доверительной вероятности P. О величине PO говорят, что она является субъективной вероятностью фактического познания истины в системе s при t = t 0 . Говорят также, чтоPO является вероятностью принятия наилучшего решения в системе s при t = t 0 .

Обозначим

MZ j = MZ j (G) при PO = PZ(G)

Величина MZ j (G) представляет собой объективную точечную индивидуальную норму

y j Î Y для системы s при t = t 0 .

Согласно (26) имеет место

M j 1 = MZ j при M j 1Î A j

или, с учетом (24) и (25),

│M j1 - M j0 │

При заданной доверительной вероятности P в открытой области A j все значения величины y j Î Y, как указывалось выше, являются фактически неразличимыми друг от друга. Ввиду этого

a j = a jmin при M j 1 = MZ j и a j ≥ a jmin при M j 1 ¹ MZ j ,

где a jmin – значение a j такое, что

a j = a jmin при │M j1 - M j0 │

Вообще в целостной системе имеют место :

a jmin = a min для всех j = 1..N(G)

a j > a min при j = 1..m и a j = a min при j = m +1, m +2, ..,N(G)

и, следовательно,

a = max(a j ; j = 1..N(G)) = max(a j ; j = 1..N) = max(a j ; j = 1.. m) (33)

Благодаря этому для достижения цели (15) достаточно, чтобы были реализованы цели (16). Это давно известно врачам: при каждой патологии врач всегда добивается реализации целей (16) для тех показателей состояния здоровья человека, которые при данной патологии вообще бывают отклоненными от своих статистических норм.

Обозначим

ΔO j = (1 – PO) MZ j

Принимая во внимание (25), (28) и (29), можно проверить, что

ΔO j ≥ Δ j = δ j τ j ; j = 1..N

и, следовательно,

│M i1 – M i0 │≥ ΔO i Þ │M j1 - M j0 │≥ δ j τ j для всех i,j = 1..N (G)

Так что, для выполнения условия

│M j1 - M j0 │≥ δ j τ j для всех i,j = 1..N (G)

вполне достаточно, чтобы существовало хоть одно i = i 0 такое, что выполнялось бы условие

│M i1 – M i0 │≥ ΔO i при i = i 0 . (34)

Это указывает на то, что каждая величина ΔO i содержит в себе сведения о состоянии всей совокупности функциональных элементов системы s, т.е. она представляет собой общесистемную характеристику.

Величина y j Î Y, согласно (34), в области

AO j =

имеет три друга от друга различимых значения:

y j = M i 0 - ΔO i , y j = M i 0 и y j = M i 0 + ΔO i

Следовательно, в том случае, когда оперируют зависимостью (34), величина должна быть измерена в единицах ΔO i .

Обозначим

ΔO j = ΔO j (G) при PO = PZ и MZ j = MZ j (G); j = 1..N ,

ΔO j = (1 – PO) MZ j

Величина ΔO j (G) является объективной системной единицей измерения y j Î Y для системы s при t = t 0 .

О величинеΔO j можно говорить, что она является оценкой ΔO j (G). Можно также говорить, что ΔO j является субъективной системной единицей измерения y j Î Y для системы s при t = t 0 .

Обозначим

MO j = round(, 2) ΔO j ; j = 1..N

aO j = ΔO j , если MO j ≤ MZ j и aO j = 2 MZ j - ΔO j , если MO j > MZ j ; j = 1..N

Пусть, MO j (G) - значение MO j такое, что

MO j = MO j (G) при PO = PZ(G)

Если система s является типичным представителем , то будет иметь место

MO j (G) = M j 1 (G),

где M j 1 (G) – генеральное среднее M j 1 .

│MO j (G) - M j 1 (G)│≥ 0

Величина MO j (G) является такой же объективной характеристикой состояния системы s, какой для типичного представителя является величина M j 1 (G).

Можно говорить, что MO j (G) является объективной индивидуальной характеристикой фактического состояния системы s при t = t 0 . А о величине MO j можно говорить, что она является субъективной индивидуальной характеристикой фактического состояния системы s при t = t 0 .

О величине aO j говорят, что она является субъективным предельно допустимым значением величины y j Î Y для системы s при t = t 0 и пишут:

g j = g min при MO j = aO j (36)

Обозначим

dO j = +1 , если MO j ≤ MZ j и dO j = -1, если MO j > MZ; j = 1..N ; (37)

βO1 j = 1, если (MO j -aO j) dO j ≥ 0 и βO1 j = 0, если (MO j - aO j) dO j

βO j = βO1 j , если │MO j - aO j │βO1 j ≤ │MZ j - aO j │

и j = 1..N (39)

βO j = 0 , если │MO j - aO j │βO1 j > │MZ j - aO j │;

βO j 0 = 1, если (│MO j - aO j │ ≤ │MZ j - aO j │) Ù (βO1 j = 1)

βO j 0 = 0 – во всех других случаях.;

SO j = S 11 , если S 11 > 0 и N j1 ≥ 2

SO j = S 10 - во всех других случаях;

δO j = SO j ; j =1..N

γO j = 1, если │MO j - MZ j │

γO j = [(NO - 2) βO j + 1], если │MO j - MZ j │≥ δO j tO j

Cогласно (30) имеет место

γO j = при βO j = 0

Отсюда и из (23), (28) и (29) имеем

g min = 1 – PO

и, следовательно, согласно (24),

g min = 0.5 Û PO = 0.5

Согласно (25), (28) и (30) имеет место

γO j = 1 при MO j = MZ j и γO j = g min при MO j = aO j (43)

Обозначим

Совокупность условий (1), (2), (3), (4), (6) и (32) будет выполняться, если положим, что вообще

h j = βO j 0 ; j = 1..N

γ j = γO j ; j = 1..N

С учетом этого из (6), (30), (34) и (36) получаем

γ j = 1, если │MO j - MZ j │

γ j = [(NO - 2) βO j + 1], если │MO j - MZ j │≥ δO j tO j

h j = 1, если (│MO j - aO j │ ≤ │MZ j - aO j │) Ù (βO1 j = 1)

h j = 0 – во всех других случаях.

Согласно выше приведенному алгоритму, при определении γ каждую величину y j Î Y последовательно измеряют в трех различных единицах измерения :

Δ(П) j , Δ j и ΔO j ; j = j 0 ; j 0 = 1..N,

Δ(П) j – точность измерительного прибора величины y j Î Y, используемого при сборе исходных данных

B jk = {b jl k ; j = 1..N jk); k = 0,1; j = j 0 ; j 0 = 1..N; (47)

Δ j - точность измерения величины y j Î Y, установленная в результате анализа данных (46);

ΔO j - точность измерения величины y j Î Y, установленная в результате анализа всей совокупности данных

B jk = {b jl k ; j = 1..N jk); k = 0,1; j = 1..N (48)

При этом имеет место

ΔO j ≥ Δ j ≥ Δ(П) j > 0; j = j 0 ; j 0 = 1..N

Величина Δ j представляет собой локальную единицу измерения y j Î Y, а величина ΔO j является системной единицей измерения y j Î Y.

Как видно, локальная единица измерения Δ j величины y j Î Y используется на местном – элементном - уровне управления системы s, а системная единица измерения ΔO j - на верхнем уровне управления этой системы.

В результате анализа данных (47) на местном уровне управления, кроме Δ j , устанавливают и величину MZ j , служащую субъективной точечной индивидуальной нормой величины y j Î Y в системе s при t = t 0 .

В результате анализа данных (48) на системном уровне управления, кроме величин

ΔO j ; j = 1..N,

устанавливают и величины

MO j ; j = 1..N,

служащие субъективными точечными индивидуальными характеристиками фактического состояния системы s при t = t 0 .

ΔO j ≥ ΔZ j ≥ Δ j ≥ Δ(П) j > 0; j = 1..N, (49)

ΔZ j – значение ΔO j такое, что

MZ j = round(, 2) ΔZ j при ΔO j =ΔZ j ; j = 1..N

и, следовательно, согласно (35), имеет место

MO j = MZ j при ΔO j =ΔZ j ; j = 1..N

Однако, если при t = t 0 система s находится в нормальном состоянии в широком смысле и, следовательно, имеет место γ = 1, то

ΔO j = ΔZ j = Δ j ≥ Δ(П) j > 0 для всех j = 1..N, (50)

т.е. в нормальном состоянии на обоих уровнях управления системы s каждая величина

y j Î Y измеряется в одних и тех же единицах ΔZ j .

Следует отметить, что в современных социальных системах, как правило, имеет место:

ΔO j >ΔZ j > 0; j = 1..N

Итак, если заданы совокупности (10) и (11), то с помощью соотношения (46) можно количественно измерить, насколько фактическое состояние целостной системы s близко к ее возможному нормальному состоянию в данный момент времени.

Подробное обоснование способа определения величины γ приведено в .

Заключение

1. С применением понятийного аппарата математической статистики описаны общие закономерности процессов, происходящих в целостных системах, и составлен алгоритм определения величины γ,

γ - количественная мера близости фактического состояния системы к ее к возможному в данный момент времени нормальному состоянию:

γ min £ γ £ 1,

γ min – минимально возможное для системы значение γ в данный момент времени:

0.5 ≥ γ min > 0.

2. Настоящий алгоритм, представляя собой последовательность объективных закономерностей природы, определяет величину γ с той точностью, с какою обследованы фактическое и возможное нормальное состояния системы.

При этом, алгоритм применим к любой системе живой и неживой природы, которая является целостной с вероятностью PO = PO(G),

PO(G) – вероятность фактического познания истины в системе в данный момент времени

0.5 £ PO(G) £ PZ(G)

PZ(G) – вероятностный предел познания истины в системе в данный момент времени.

3. Система, для которой PZ(G) = 0.5, является простейшей целостной системой . Простейшими целостными системами являются, например, пары: «Мужчина + женщина» и «Электрон + позитрон».

Для простейшей целостной системы имеет место

PO(G) = PZ(G) = 0.5

и, в конечном счете,

γ = γ min = 0.5,

т.е. эти системы имеют одно единственное – неопределенное – состояние. Это состояние является неопределенным в том смысле, что оно является и не является нормальным в одной и той же мере.

4. Для каждой биологической и другой сложной системы величина PZ(G) является возрастающей функцией времени t до достижения момента t = t н, где t н – начало периода времени, когда величина PZ(G) становится наиболее близкой к 1.

В течение времени от t = t н до t = t к величина PZ(G) остается неизменной, где t к – конец периода времени, когда величина PZ(G) является наиболее близкой к 1. О периоде времени от t н до t к говорят, что он является периодом расцвета целостной системы . Считают, что для современного здорового человека таким является период от t н = 25 лет до t к = 45 лет.

С момента t = t н для сложной системы величина PZ(G) становится убывающей функцией времени t до достижения момента, когда PZ(G) = 0.5.

5. Положение «Наша действительность является единством противоположностей» эквивалентно положения: «Наша действительность является единством простейших целостных систем». Из этого следует, что каждая сложная система представляет собой вполне определенное единство соответствующих простейших целостных систем.

6. Простейшие целостные системы неживой природы являются первичными, а простейшие целостные системы живой природы – вторичными. Ввиду этого каждая сложная система, являясь историчной , в конце концов, становится множеством – кучей – простейших целостных систем неживой природы.

Таким образом, любая сложная система, в конечном счете, превращается в кучу простейших целостных систем неживой природы.

Литература

1. Фон Берталанфи Л. История и статус общей теории систем. – В кн.: Системные исследования: Ежегодник, 1973.- М.: - 1973. – с. 20 - 37

2. Садовский В.И. Основания общей теории систем. Логико-методологический анализ. –М.: - Наука.- 1974.-279 с.

3. Исследования по общей теории систем. Сб. переводов/ Под ред. Садовского В.И.и Юдина Э.Г. – М.: - Прогресс.- 1969.- 520 с.

4. Уемов А.И Системный подход и общая теория систем.- М.: - Мысль. – 1979. -272 с.

5. Гайдес М.А. Общая теория систем. Medliks.ru Медицинская библиотека / Раздел «Книги и руководства» / Общая теория систем (системы и системный анализ)

6. Портер У. Современные основания общей теории систем. / пер. с англ. – М.: - Наука, - 1971. – 556 с.

7. Кальман Р., Фалб И., Арбиб М. Очерки по математической теории систем. / Под ред. Я.З, Ципкина. – М.:- Мир.- 1971. – 389 с.

8. Единая теория поля – решена? http://www.newsru.com/worl.../lisi.html

9.Николаев И. Исключительно простая теория всего на свете http://backreaction.blogspot.com/007/11/theoretically-simple-exception-of.htm

10. Вайнберг С. Единая физика к 2050 ? / перевод с английского Андрея Крашеницы. http://www.sciam.com/1999/1299issue/1299weinberg.html

11. Гинзбург В. Часть и целое. Тбилиси, - Ганатлеба.- 1983.- 331 с.

13. Афанасьев В.Г. О целостных системах. / Вопросы философии. -1980. № 6.- с. 62 - 78

14. Афанасьев В.Г. Общество, системность, познание и управление. – М.: - Изд. Полит. Литературы. – 1981. 282 с.

15. Абрамова Н.Т. Целостность и управление. – М.: - Наука.- 1974. – 248 с.

16. Копытин И.В. Как возник и устроен мир. Современная физика о происхождении Вселенной. Часть 1, № 15 , - www. relga.ru

17 Хускивадзе А.А., Хускивадзе А.П. Вероятностный предел познания истины и вопросы математического моделирования живого организма как единого целого.

18. Хускивадзе А.А., Хускивадзе А.П. Естественный глобальный оптимум и вероятностный предел познания истины. Индивидуальная норма человека .

19. Хускивадзе А.А., Хускивадзе А.П. Количественное измерение здоровья человека.

20. Хускивадзе А.А., Хускивадзе А.П. Закономерности целостного организма.

21. Хускивадзе А. П. Целостные системы, - Тбилиси. – Изд. «Собчота Сакартвело». -1979. – 265 с

22. Хускивадзе А.П. Задачи многокритериальной оптимизации и оценивания в эмирических целостных системах и их решения. – Тбилиси: - Изд. «Сакартвело», - 1991, - 120 с.

23.Большев Л.И., Смирнов Н.В. Таблицы математической статистики. –М.: - Наука,- 1983. – 416 с.

24. Хускивадзе А.А., Хускивадзе А.П. Способ определения степени переносимости организмом больного тревожно – депрессивными расстройствами врачебных и других воздействий. Заявка на изобретение RU 2007 140016 A, Бюл. № 13, 2008

25. Хускивадзе А.А., Хускивадзе А.П. Способ определения степени переносимости организмом больного с пневмонией активной ортостатической пробы. Заявка на изобретение RU 2008 140229 A, Бюл. № 6, 2009

Поделиться