Теплопроводность. Уравнение теплопроводности. Уравнение теплопроводности Фундаментальное решение уравнения теплопроводности

Вывод уравнения теплопроводности

Представим однородное тело и вычленим из него элементарный объем со сторонами, (рисунок 1).

Рисунок 1. Контрольный объем в прямоугольной системе координат

Входящие потоки тепла, расположенные перпендикулярно к поверхностям обозначим как, . Потоки на противоположных поверхностях выразим из рядов Тейлора:

Внутри тела так же могут быть внутренние источники тепла, если и стоки, если:

Изменение внутренней энергии:

Подставим уравнения (1.1.1) в получившееся уравнение (1.1.5):

Подставив их в уравнение (1.1.6), получим уравнение теплопроводности в общем виде для трехмерного пространства:

Введем коэффициент температуропроводности:

и опустим внутренние источники тепла. Получим уравнение теплопроводности в трехмерном пространстве без внутренних источников тепла:

Условия однозначности

Уравнение (1.1) описывает процесс в общем виде. Для ее применения к конкретной задаче необходимы дополнительные условия, называемые условиями однозначности. Данные условия включают в себя геометрические(форма и размеры тела), физические (физические свойства тела), временные(начальное распределение температуры) и граничные условия(описывают процесс теплообмена с окружающей средой).

Граничные условия можно разделить на три основных рода :

1. Граничные условия Дирихле: задано значение функции на границе.

В случае задачи теплопроводности задают значения температуры на поверхности тела.

2. Граничные условия Неймана: задана нормальная производная функции на границе.

Задают плотность теплового потока на поверхности тела.

3. Граничные условия Робена: задана линейная комбинация значения функции и ее производной на границе.

Описывают теплообмен между поверхностью тела и окружающей средой по закону Ньютона-Рихмана.

В данной работе будут использованы только граничные условия Дирихле, в силу сложности реализации остальных граничных условий.

При построении математической модели распространения тепла в стержне сделаем следующие предположения:

1) стержень сделан из однородного проводящего материала с плотностью ρ ;

2) боковая поверхность стержня теплоизолирована, то есть тепло может распространяться только вдоль осиОХ ;

3) стержень тонкий - это значит, что температура во всех точках любого поперечного сечения стержня одна и та же.

Рассмотрим часть стержня на отрезке [х, х + ∆х ] (см. рис. 6) и воспользуемся законом сохранения количества тепла:

Общее количество тепла на отрезке [х, х + ∆х ] = полному количеству тепла, прошедшему через границы + полное количество тепла, образованного внутренними источниками.

Общее количество тепла, которое необходимо сообщить участку стержня, чтобы повысить его температуру на ∆U , вычисляется по формуле: ∆Q=CρS∆x∆U , где С -удельная теплоемкость материала (=количеству тепла, которое нужно сообщить 1 кг вещества, чтобы поднять его температуру на 1°), S - площадь поперечного сечения.

Количество тепла, прошедшее через левый конец участка стержня за время ∆t (тепловой поток) вычисляется по формуле: Q 1 = -kSU x (x, t)∆t , где k - коэффициент теплопроводности материала (= количеству тепла, протекающего в секунду через стержень единичной длины и единичной площади поперечного сечения при разности температур на противоположных концах, равной 1°). В этой формуле особого пояснения требует знак минус. Дело в том, что поток считается положительным, если он направлен в сторону увеличения х , а это, в свою очередь, означает, что слева от точки х температура больше, чем справа, то есть U x < 0 . Следовательно, чтобыQ 1 был положительным, в формуле стоит знак минус.

Аналогично, тепловой поток через правый конец участка стержня вычисляется по формуле: Q 2 = -kSU x (x +∆x,t)∆t .

Если предположить, что внутренних источников тепла в стержне нет, и воспользоваться законом сохранения тепла, то получим:

∆Q = Q 1 - Q 2 => CpS∆x∆U = kSU x (x + ∆х, t) ∆t - kSU x (x, t)∆t .

Если это равенство поделить на S∆x∆t и устремить ∆х и ∆t к нулю, то будем иметь:

Отсюда уравнение теплопроводности имеет вид

U t =a 2 U xx ,

где - коэффициент температуропроводности.

В случае, когда внутри стержня имеются источники тепла, непрерывно распределенные с плотностью q(x,t) , получится неоднородное уравнение теплопроводности

U t = a 2 U xx + f(x,t) ,
где .

Начальные условия и граничные условия.

Для уравнения теплопроводности задается только одно начальное условие U| t=0 = φ(х) (или в другой записиU(x,0) = φ(х) ) и физически оно означает, что начальное распределение температуры стержня имеет вид φ(х) . Для уравнений теплопроводности на плоскости или в пространстве начальное условие имеет такой же вид, только функция φ будет зависеть, соответственно, от двух или трех переменных.

Граничные условия в случае уравнения теплопроводности имеют такой же вид, как и для волнового уравнения, но физический смысл их уже иной. Условия первого рода (5) означают, что на концах стержня задана температура. Если она не изменяется со временем, то g 1 (t) ≡ Т 1 и g 2 (t) ≡ Т 2 , где Т 1 и Т 2 - постоянные. Если концы поддерживаются все время при нулевой температуре, то Т 1 = Т 2 = 0 и условия будут однородными. Граничные условия второго рода (6) определяют тепловой поток на концах стержня. В частности, если g 1 (t) = g 2 (t) = 0 , то условия становятся однородными. Физически они означают, что через концы не происходит теплообмен с внешней средой (эти условия еще называют условиями теплоизоляции концов). Наконец, граничные условиятретьего рода (7) соответствуют случаю, когда через концы стержня происходит теплообмен с окружающей средой по закону Ньютона (напомним, что при выводе уравнения теплопроводности мы считали боковую поверхность теплоизолированной). Правда, в случае уравнения теплопроводности условия (7) записываются немного по-другому:

Физический закон теплообмена со средой (закон Ньютона) состоит в том, что поток тепла через единицу поверхности в единицу времени пропорционален разности температур тела и окружающей среды. Таким образом, для левого конца стержня он равен Здесь h 1 > 0 - коэффициент теплообмена с окружающей средой, g 1 (t) - температура окружающей среды на левом конце. Знак минус поставлен в формуле по той же причине, что и при выводе уравнения теплопроводности. С другой стороны, в силу теплопроводности материала поток тепла через этот же конец равен Применив закон сохранения количества тепла, получим:

Аналогично получается условие (14) на правом конце стержня, только постоянная λ 2 может быть другой, так как, вообще говоря, среды, окружающие левый и правый конец, бывают разные.

Граничные условия (14) являются более общими по сравнению с условиями первого и второго рода. Если предположить, что через какой-либо конец не происходит теплообмена со средой (то есть коэффициент теплообмена равен нулю), то получится условие второго рода. В другом случае предположим, что коэффициент теплообмена, например h 1 , очень большой.

Перепишем условие (14) при х = 0 в виде и устремим . В результате будем иметь условие первого рода:

Аналогично формулируются граничные условия и для большего числа переменных. Для задачи о распространении тепла в плоской пластине условие означает, что температура на ее краях поддерживается нулевой. Точно так же, условия и внешне очень похожи, но в первом случае оно означает, что рассматривается плоская пластина и края ее теплоизолированы, а во втором случае оно означает, что рассматривается задача о распространении тепла в теле и поверхность его теплоизолирована.

Решение первой начально-краевой задачи для уравнения теплопроводности.

Рассмотрим однородную первую начально-краевую задачу для уравнения теплопроводности:

Найти решение уравнения

U t = U xx , 00,

удолетворяющее граничным условиям

U(0,t) = U(l,t)=0, t>0 ,

и начальному условию

Решим эту задачу методом Фурье.

Шаг 1 . Будем искать решения уравнения (15) в виде U(x,t) = X(x)T(t) .

Найдем частные производные:

Подставим эти производные в уравнение и разделим переменные:

По основной лемме получим

Отсюда следует

Теперь можно решить каждое из этих обыкновенных дифференциальных уравнений. Обратим внимание на то, что используя граничные условия (16), можно искать не общее решение уравнения б), а частные решения, удолетворяющие соответствующим граничным условиям:

Шаг 2. Решим задачу Штурма-Лиувилля

Эта задача совпадает с задачей Штурма-Лиувилля, рассмотренной в лекции 3. Напомним, что собственные значения и собственные функции этой задачи существуют только при λ>0.

Собственные значения равны

Собственные функции равны (См. решение задачи)

Уравнение теплопроводности для нестационарного случая

нестационарным , если температура тела зависит как от положения точки, так и от времени.

Обозначим через и = и (М , t ) температуру в точке М однородного тела, ограниченного поверхностью S , в момент времени t . Известно, что количество теплоты dQ , поглощаемой за время dt , выражается равенством

где dS − элемент поверхности, k − коэффициент внутренней теплопроводности, − производная функции и по направлению внешней нормали к поверхности S . Так как распространяется в направлении понижения температуры, то dQ > 0, если > 0, и dQ < 0, если < 0.

Из равенства (1) следует

Теперь найдем Q другим способом. Выделим элемент dV объема V , ограниченного поверхностью S . Количество теплоты dQ , получаемой элементом dV за время dt , пропорционально повышению температуры в этом элементе и массе самого элемента, т.е.

где плотность вещества, коэффициент пропорциональности, называемый теплоемкостью вещества.

Из равенства (2) следует

Таким образом,

где . Учитывая, что = , , получим

Заменяя правую часть равенства с помощью формулы Остроградского – Грина, получим

для любого объема V . Отсюда получаем дифференциальное уравнение

которое называют уравнением теплопроводности для нестационарного случая .

Если тело есть стержень, направленный по оси Ох , то уравнение теплопроводности имеет вид

Рассмотрим задачу Коши для следующих случаев.

1. Случай неограниченного стержня. Найти решение уравнения (3) (t > 0, ), удовлетворяющее начальному условию . Используя метод Фурье, получим решение в виде

− интеграл Пуассона.

2. Случай стержня , ограниченного с одной стороны. Решение уравнения (3), удовлетворяющее начальному условию и краевому условию , выражается формулой

3. Случай стержня , ограниченного с двух сторон. Задача Коши состоит, чтобы при х = 0 и х = l найти решение уравнения (3), удовлетворяющее начальному условию и двум краевым условиям, например, или .

В этом случае частное решение ищется в виде ряда

для краевых условий ,

и в виде ряда

для краевых условий .

Пример. Найти решение уравнения

удовлетворяющее начальным условиям

и краевым условиям .

□ Решение задачи Коши будем искать в виде

Таким образом,

Уравнение теплопроводности для стационарного случая

Распределение тепла в теле называют стационарным , если температура тела и зависит от положения точки М (х , у , z ), но не зависит от времени t , т.е.


и = и (М ) = и (х , у , z ).

В этом случае 0 и уравнение теплопроводности для стационарного случая обращается в уравнение Лапласа

которое часто записывают в виде .

Чтобы температура и в теле определялась однозначно из этого уравнения, нужно знать температуру на поверхности S тела. Таким образом, для уравнения (1) краевая задача формулируется следующим образом.

Найти функцию и , удовлетворяющую уравнению (1) внутри объема V и принимающую в каждой точке М поверхности S заданные значения

Эта задача называется задачей Дирихле или первой краевой задачей для уравнения (1).

Если на поверхности тела температура неизвестна, а известен тепловой поток в каждой точке поверхности, который пропорционален , то на поверхности S вместо краевого условия (2) будем иметь условие

Задача нахождения решения уравнения (1), удовлетворяющего краевому условию (3), называется задачей Неймана или второй краевой задачей .

Для плоских фигур уравнение Лапласа записывается в виде

Такой же вид имеет уравнение Лапласа и для пространства, если и не зависит от координаты z , т.е. и (М ) сохраняет постоянное значение при перемещении точки М по прямой, параллельной оси Oz .

Заменой , уравнение (4) можно преобразовать к полярным координатам

С уравнением Лапласа связано понятие гармонической функции. Функция называется гармонической в области D , если в этой области она непрерывна вместе со своими производными до второго порядка включительно и удовлетворяет уравнению Лапласа.

Пример. Найти стационарное распределение температуры в тонком стержне с теплоизолированной боковой поверхностью, если на концах стержня , .

□ Имеем одномерный случай. Требуется найти функцию и , удовлетворяющую уравнению и краевым условиям , . Общее уравнение указанного уравнения имеет вид . Учитывая краевые условия, получим

Таким образом, распределение температуры в тонком стержне с теплоизолированной боковой поверхностью линейно. ■

Задача Дирихле для круга

Пусть дан круг радиуса R с центром в полюсе О полярной системы координат. Надо найти функцию , гармоническую в круге и удовлетворяющую на его окружности условию , где − заданная функция, непрерывная на окружности. Искомая функция должна удовлетворять в круге уравнению Лапласа

Используя метод Фурье, можно получить

− интеграл Пуассона.

Пример. Найти стационарное распределение температуры на однородной тонкой круглой пластинке радиуса R , верхняя половина поддерживается при температуре , а нижняя – при температуре .

□ Если , то , а если , то . Распределение температуры выражается интегралом

Пусть точка расположеиа в верхнем полукруге, т.е. ; тогда изменяется от до , и этот интервал длины не содержит точек . Поэтому введем подстановку , откуда , . Тогда получим

Так правая часть отрицательна, то и при удовлетворяет неравенствам . Для этого случая получаем решение

Если же точка расположена в нижнем полукруге, т.е. , то интервал изменения содержит точку , но не содержит 0, и можно сделать подстановку , откуда , , Тогда для этих значений имеем

Проведя аналогичные преобразования, найдем

Так как правая часть теперь положительна , то . ■

Метод конечных разностей для решения уравнения теплопроводности

Пусть требуется найти решение уравнения

удовлетворяющее:

начальному условию

и краевым условиям

Итак, требуется найти решение уравнения (1), удовлетворяющее условиям (2), (3), (4), т.е. требуется найти решение в прямоугольнике, ограниченном прямыми , , , , если заданы значения искомой функции на трех его сторонах , , .

Построим прямоугольную сетку, образованную прямыми

− шаг вдоль оси Ох ;

− шаг вдоль оси Оt .

Введем обозначения:

Из понятия конечных разностей можно записать

аналогично

Учитывая формулы (6), (7) и введенные обозначения, запишем уравнение (1) в виде

Отсюда получим расчетную формулу

Из (8) следует, что если известны три значения к k -ом слое сетки: , , , то можно определить значение в (k + 1)-ом слое.

Начальное условие (2) позволяет найти все значения на прямой ; краевые условия (3), (4) позволяют найти значения на прямых и . По формуле (8) находим значения во всех внутренних точках следующего слоя, т.е. для k = 1. Значения искомой функции в крайных точках известны из граничных условий (3), (4). Переходя от одного слоя сетки к другому, определяем значения искомого решения во всех узлах сетки. ;


Ниже будут рассмотрены несколько задач на определение температурных полей для относительно простых геометрических и физических условий, которые допускают несложные по форме аналитические решения и вместе с тем дают полезную иллюстрацию характерных физических процессов, связанных с теплопередачей в твердом теле.

Рассмотрим стержень с термоизолированной боковой поверхностью (рис. 38). В этом случае теплопередача может осуществляться вдоль стержня. Если совместить стержень с осью декартовой системы координат, то стационарное уравнение теплопроводности будет иметь вид

При постоянных значениях коэффициента теплопроводности объемной мощности тепловыделения последнее уравнение можно дважды проинтегрировать

(75)

Постоянные интегрирования можно найти из граничных условий. Например, если на концах стержня задана температура , . Тогда из (75) имеем

Отсюда найдем постоянные интегрирования и . Решение при указанных граничных условиях получит вид

Из последней формулы видно, что при отсутствии источников тепловыделения . Температура в стержне меняется по линейному закону от одного граничного значения до другого

Рассмотрим теперь другое сочетание граничных условий. Пусть на левом конце стержня внешний источник создает тепловой поток . На правом конце стержня сохраним прежнее условие, таким образом, имеем

Выражая эти условия с помощью общего интеграла (75), получим систему относительно постоянных интегрирования

Найдя из полученной системы неизвестные постоянные, получим решение в виде

Как и в предыдущем примере при отсутствии внутренних источников тепловыделения распределение температуры вдоль стержня будет линейным

При этом температура на левом конце стержня, где расположен внешний источник тепла, будет равна .

В качестве следующего примера найдем стационарное распределение температуры по радиусу в сплошном длинном круговом цилиндре (рис. 39). Существенно упростит задачу в этом случае применение цилиндрической системы координат. В случае цилиндра с большим отношением длины к радиусу и постоянным распределени

ем внутреннего источника тепловыделения, температуру вдали от концов цилиндра можно считать независящей от осевой координаты цилиндрической системы . Тогда стационарное уравнение теплопроводности (71) получит вид

Двукратное интегрирование последнего уравнения (при постоянной ) дает

Условие симметрии распределения температуры на оси цилиндра () дает

Откуда имеем

Последнее условие будет выполнено при . Пусть на поверхности цилиндра () задана температура . Тогда можно найти вторую постоянную интегрирования из уравнения

Отсюда найдем и запишем решение в окончательном виде

В качестве численного примера применения полученного результата рассмотрим распределение температуры в плазме цилиндрического дугового разряда радиусом мм. Граница разрядного канала формируется как область, где прекращаются ионизационные процессы. Выше мы видели, что заметная ионизация газа при нагреве прекращается при K. Поэтому приведенное значение можно принять в качестве граничного K. Объемную плотность мощности тепловыделения в плазме разряда найдем из закона Джоуля–Ленца , где σ - электропроводность плазмы, E - напряженность электрического поля в канале разряда. Характерные для дугового разряда значения составляют 1/Ом м, В/м. Теплопроводность дуговой плазмы выше, чем в нейтральном газе, при температурах порядка 10000 К ее значение может принято равным . Таким образом, параметр . Распределение температуры по радиусу показано на рис. 39. При этом температура на оси разряда () составит 8000 K.

В следующем примере мы рассмотрим тепловое поле, обладающее сферической симметрией. Такие условия возникают, в частности, если источник тепловыделения малого размера размещен в крупном массиве, например межвитковое дуговое замыкание в обмотке крупной электрической машины. В этом случае совмещая центр сферической системы координат с источником тепловыделения мы можем привести стационарное уравнение теплопроводности (64) к виду:

Дважды интегрируя это уравнение, найдем

Возвращаясь к нашему примеру, предположим, что дуговое замыкание имеет место внутри сферической полости радиуса (рис. 40). Примем сопротивление дугового разряда равным Ом, ток разряда А. Тогда мощность, выделяемая в полости составит . Рассмотрим решение вне области действия источника тепловыделения .

Тогда интеграл уравнения теплопроводности упростится

Для вычисления постоянных интегрирования воспользуемся во-первых условием в бесконечно удаленных от места разряда точках , где C - температура окружающей среды. Из последнего выражения находим . Для определения постоянной примем, что выделяющаяся в разряде тепловая энергия равномерно распределяется по поверхности сферической полости радиуса . Поэтому тепловой поток на границе полости составит

Поскольку , то из двух последних уравнений имеем

а решение в окончательном виде

При этом температура на границе полости ( мм) при Вт/мК составит K (рис. 40).

В качестве первого примера этой группы рассмотрим тепловое поле в сечении провода круглого сечения, имеющего канал охлаждения (рис. 41, а ). Провода с каналами охлаждения применяют в обмотках мощных электрических машин и катушек для получения сильных магнитных полей. Для данных устройств характерно длительное протекание токов с амплитудой в сотни и даже тысячи Ампер. Например, прокачивается жидкость, например вода, или газ (водород, воздух), что обеспечивает отбор тепловой энергии с внутренней поверхности канала и охлаждение провода в целом. В данном случае мы имеем дело с принудительным конвективным охлаждением поверхности канала, для которой можно использовать обоснованное выше граничное условие третьего рода (67). Если совместить ось цилиндрической системы координат с осью провода, то температура будет зависеть только от радиальной координаты. Общий интеграл стационарного уравнения теплопроводности для этого случая был получен нами ранее

Объемная плотность мощности тепловыделения находится из закона Джоуля-Ленца: , j - плотность тока, σ - электропроводность,

где R - радиус сечения провода, a - радиус охлаждающего канала. Провод снаружи окружен слоями изоляции, обладающей, по сравнению с проводником, относительно низкой теплопроводностью. Поэтому в первом приближении примем внешнюю поверхность провода теплоизолированной, т. е. тепловой поток на ней

На поверхности охлаждающего канала тепловой поток определяется условием третьего рода

где - коэффициент теплоотдачи, - температура охлаждающего потока. Знак минус в правой части взят вследствие того, что нормаль к внутренней поверхности канала направлена в противоположном к оси направлении.

Подставляя в первое из выписанных граничных условий выражение для температуры (76), получим

откуда . Второе граничное условие дает

откуда находим

Вместе с тем из (76)

Сравнивая последние два выражения, найдем

После подстановки найденных постоянных в общее решение (76) и преобразований получим

Температура на границах сечения провода из полученного решения будет рассчитываться по формулам

Распределение температуры по радиусу сечения для провода с каналом охлаждения с параметрами: A, Вт/мК, 1/Ом м, о С, мм, см показано на рис. 41, б .

Из рис. 41, б следует, что в пределах сечения провода изменение температуры относительно мало по сравнению с ее средней величиной, что объясняется высокой теплопроводностью λ и относительно малыми размерами сечения провода.

Иная ситуация возникает в распределении температуры вдоль провода, состоящего из отдельных участков, контактирующих друг с другом. Ухудшение качества контактов между соединяемыми проводниками приводит к повышению тепловыделения в месте соединения двух проводов по сравнению с самим проводом. Дистанционное измерение температуры провода с помощью тепловизоров или пирометров позволяет диагностировать качество контактных соединений.

Рассчитаем распределение температуры вдоль провода при наличии дефектного контакта. Предыдущий пример показал, что даже в самых жестких условиях изменение температуры в пределах сечения провода весьма мало. Поэтому для нашего расчета можно в первом приближении принять распределение температуры в пределах сечения провода однородным. Распределение тепловыделения вдоль провода зависит от распределения электрического сопротивления вдоль провода, которое однородно вдали от контакта и возрастает при приближении к нему. Совместим ось декартовой системы координат с осью провода, а начало координат - с центром контактной области (рис. 42). В качестве модели распределения сопротивления вдоль провода возьмем следующее распределение погонного сопротивления

где , - параметр, характеризующий линейный размер контактной области . Мощность тепловыделения на единицу длины провода составляет . В расчете на единицу объема мощность тепловыделения равна

где S - сечение провода. Охлаждение провода осуществляется естественной конвекцией с его поверхности. Конвективный тепловой поток с единицы длины провода есть

где α - коэффициент теплоотдачи, - температура окружающего воздуха, p - периметр сечения провода. Теплоотдача в окружающую среду в расчете на единицу объема проводника составит

Стационарное распределение температуры вдоль провода будет подчиняться уравнению теплопроводности

Для дальнейших преобразований полученного уравнения примем постоянным вдоль провода коэффициент теплопроводности , подставим полученные выше выражения для и , а также в качестве искомой функции вместо T возьмем :

придем к линейному неоднородному дифференциальному уравнению

Решение полученного уравнения будем искать в виде суммы общего решения однородного уравнения

и частного решения в форме правой части

.

Уравнение теплопроводности в однородной среде, как мы видели, имеет вид

Коэффициент внутренней теплопроводности, с - теплоемкость вещества и - плотность. Кроме уравнения (1), нужно иметь в виду начальное условие, дающее начальное распределение температуры и при

Если тело ограничено поверхностью (S), то на этой поверхности мы будем иметь и предельное условие, которое может быть различным, смотря по физическим обстоятельствам. Так, например, поверхность (S) может поддерживаться при определенной температуре, которая может и меняться с течением времени. В этом случае предельное условие сводится к заданию функции U на поверхности (S), причем эта заданная функция может зависеть и от времени t. Если температура поверхности не фиксирована, но имеется лучеиспускание в окружающую среду данной температуры то по закону Ньютона, правда, далеко не точному, поток тепла через поверхность (S) пропорционален разности температур окружающего пространства и поверхности тела (S). Это дает предельное условие вида

где коэффициент пропорциональности h называется коэффициентом внешней теплопроводности.

В случае распространения тепла в теле линейных размеров, т. е. в однородном стержне, который мы считаем расположенным вдоль оси вместо уравнения (1) мы будем иметь уравнение

При такой форме уравнения не учитывается, конечно, тепловой обмен между поверхностью стержня и окружающим пространством.

Уравнение (S) можно получить также из уравнения (1), предполагая U не зависящей от . Начальное условие в случае стержня

Поделиться