Три фракции днк эукариот, их локализация в хромосомах и функции. Гистоны и нуклеосомы

1. Виды хроматина

2. Гены, спейсеры

3. Последовательность нуклеотодов в ДНК

4. Пространственная организация ДНК

1. Во время покоя между актами деления определенные участки хромосом и целые хромосомы остаются компактными. Эти участки хроматина называют гетерохроматином. Он хорошо прокрашивается.

После деления ядра хроматин разрыхляется и в таком виде на­зывается эухроматином. Гетерохроматин в отношении транс­крипции неактивен, а в отношении репликации ДНК ведет се­бя иначе, чем эухроматин.

Факультативный гетерохроматин бывает гетерохроматичным только временами. Он информативен, т. е. содержит гены. Ко­гда он переходит в эухроматическое состояние, эти гены могут становиться доступными для транскрипции. Из двух гомоло­гичных хромосом одна может быть гетерохроматической. Эта факультативная гетерохроматизация тканеспецифична и в оп­ределенных тканях не происходит.

Конститутивный гетерохроматин всегда гетерохроматичен. Он состоит из многократно повторяющихся последовательно­стей оснований, неинформативен (не содержит генов) и по­этому всегда неактивен в отношении транскрипции. Его мож­но видеть и во время деления ядер. Он встречается :

Чаще всего у центромеры;

На концах хромосом (включая сателлиты);

Вблизи организатора ядрышка;

Вблизи гена 5S-PHK.

Гетерохроматин, прежде всего факультативный, во время ин­терфазы может объединяться в интенсивно окрашивающийся хромоцентр, который находится в большинстве случаев у края клеточного ядра или ядрышка.

2. Каждая хромосома - это непрерывная двойная спираль ДНК, ко­торая у высших организмов состоит более чем из 10 8 пар осно­ваний. В хромосомах высших растений и животных каждая двойная спираль ДНК (диаметром 2 нм) имеет длину от одно­го до нескольких сантиметров. В результате многократного за­кручивания она упакована в хроматиду длиной несколько мик­рометров.

Вдоль этой двойной спирали линейно распределены гены, ко­торые составляют вместе до 25% ДНК.

Ген - это функциональная единица ДНК, содержащая информа­цию для синтеза полипептида или РНК. Средняя длина гена -около 1000 пар оснований. Последовательность оснований в каждом гене уникальна.

Между генами находятся спейсеры - неинформативные отрезки ДНК различной длины (иногда более 20 000 пар оснований), которые имеют значение для регулирования транскрипции со­седнего гена.

Транскрипируемые спейсеры купируются при транскрипции вме­сте с геном, и их комплементарные копии появляются в пре-и-РНК по обе стороны от копии гена. Даже внутри самого ге­на имеются (только у эукариот и их вирусов) неинформатив­ные последовательности, так называемые интроны, которые тоже транскрипируются. При процессинге все копии интронов и большинство копий спейсеров вырезаются с помощью фер­ментов.

Нетранскрипируемые спейсеры встречаются между генами для гистонов, а также между генами для р-РНК.

Избыточные гены представлены большим числом (до 10 4 и бо­лее) идентичных копий. Это гены :

Для т-РНК;

5S-PHK и гистонов;

Для продуктов, синтезируемых в больших количествах.

Копии расположены непосредственно друг за другом и разре­шены идентичными спейсерами. У морского ежа гены для гис­тонов Н 4 , Н 2 ь, Н 2а и Hi лежат друг за другом, и эта генная по­следовательность повторяется в ДНК больше 100 раз.

3. Повторяющиеся последовательности - это последовательности нуклеотидов, многократно представленные в ДНК. Умеренно повторяющиеся последовательности - последовательности дли­ной в среднем 300 пар нуклеотидов с 10 2 -10 4 повторениями. К ним относятся избыточные гены, а также большинство спейсеров.

Высокоповторяющиеся последовательности с 10 5 -10 6 повторе­ниями образуют конститутивный гетерохроматин. Они всегда неинформативны. Это в основном короткие последовательно­сти, в них обнаруживается чаще всего 7-10 и лишь редко - только 2 (например, AT) или, наоборот, свыше 300 пар нук­леотидов. Они группируются вместе, одна повторяющаяся по­следовательность идет непосредственно за другой. ДНК высокоповторяющегося хроматина называют "сателлит-ными ДНК" по их поведению при аналитических процедурах фракционирования. Около 75% всего хроматина не участвует в транскрипции: это высокоповторяющиеся последовательности и нетраснкрипируемые спейсеры.

4. В изолированном хроматине участки двойной спирали ДНК об­виваются вокруг молекул гистонов, так что здесь возникает су­перспираль первого порядка. Комплексы ДНК с гистоном назы­вают нуклеосомами. Они имеют форму диска или линзы и размеры около 10 Ч 10 Ч 5 нм. В одну нуклеосому входят :

8 молекул гистонов:

Центральный тетрамер из двух молекул Нз и двух Н 4 ; и отдельно по два Н 2а и Н 2 ь;

Участок ДНК (около 140 пар оснований), который образует примерно 1,25 витка спирали и прочно связан с центральным тетрамером.

Между нуклеосомами лежат участки спирали из 30-100 пар оснований без суперспиральной структуры; здесь связывается гистон Hi

В нашивном хроматине ДНК еще больше укорочена в результа­те малоизученной дальнейшей спирализации (суперспирали высших порядков), которая, очевидно, фиксируется благодаря гистону Hi (и некоторым негистоновым белкам). При переходе к интерфазе эухроматин разрыхляется, так как некоторые из суперспиралей более высокого порядка раскру­чиваются. Это происходит, вероятно, в результате конформа-ционных изменений гистонов и ослабления взаимодействий между молекулами Hi Хроматиновые структуры толщиной 10- 25 нм (основные хроматиновые нити или спирали) видны и во время интерфазы.

1. Виды хроматина

2. Гены, спейсеры

3. Последовательность нуклеотодов в ДНК

4. Пространственная организация ДНК

1. Во время покоя между актами деления определенные участки хромосом и целые хромосомы остаются компактными. Эти участки хроматина называют гетерохроматином. Он хорошо прокрашивается.

После деления ядра хроматин разрыхляется и в таком виде на­зывается эухроматином. Гетерохроматин в отношении транс­крипции неактивен, а в отношении репликации ДНК ведет се­бя иначе, чем эухроматин.

Факультативный гетерохроматин бывает гетерохроматичным только временами. Он информативен, т. е. содержит гены. Ко­гда он переходит в эухроматическое состояние, эти гены могут становиться доступными для транскрипции. Из двух гомоло­гичных хромосом одна может быть гетерохроматической. Эта факультативная гетерохроматизация тканеспецифична и в оп­ределенных тканях не происходит.

Конститутивный гетерохроматин всегда гетерохроматичен. Он состоит из многократно повторяющихся последовательно­стей оснований, неинформативен (не содержит генов) и по­этому всегда неактивен в отношении транскрипции. Его мож­но видеть и во время деления ядер. Он встречается :

Чаще всего у центромеры;

На концах хромосом (включая сателлиты);

Вблизи организатора ядрышка;

Вблизи гена 5S-PHK.

Гетерохроматин, прежде всего факультативный, во время ин­терфазы может объединяться в интенсивно окрашивающийся хромоцентр, который находится в большинстве случаев у края клеточного ядра или ядрышка.

2. Каждая хромосома - это непрерывная двойная спираль ДНК, ко­торая у высших организмов состоит более чем из 10 8 пар осно­ваний. В хромосомах высших растений и животных каждая двойная спираль ДНК (диаметром 2 нм) имеет длину от одно­го до нескольких сантиметров. В результате многократного за­кручивания она упакована в хроматиду длиной несколько мик­рометров.

Вдоль этой двойной спирали линейно распределены гены, ко­торые составляют вместе до 25% ДНК.

Ген - это функциональная единица ДНК, содержащая информа­цию для синтеза полипептида или РНК. Средняя длина гена -около 1000 пар оснований. Последовательность оснований в каждом гене уникальна.

Между генами находятся спейсеры - неинформативные отрезки ДНК различной длины (иногда более 20 000 пар оснований), которые имеют значение для регулирования транскрипции со­седнего гена.

Транскрипируемые спейсеры купируются при транскрипции вме­сте с геном, и их комплементарные копии появляются в пре-и-РНК по обе стороны от копии гена. Даже внутри самого ге­на имеются (только у эукариот и их вирусов) неинформатив­ные последовательности, так называемые интроны, которые тоже транскрипируются. При процессинге все копии интронов и большинство копий спейсеров вырезаются с помощью фер­ментов.

Нетранскрипируемые спейсеры встречаются между генами для гистонов, а также между генами для р-РНК.

Избыточные гены представлены большим числом (до 10 4 и бо­лее) идентичных копий. Это гены :

Для т-РНК;

5S-PHK и гистонов;

Для продуктов, синтезируемых в больших количествах.

Копии расположены непосредственно друг за другом и разре­шены идентичными спейсерами. У морского ежа гены для гис­тонов Н 4 , Н 2 ь, Н 2а и Hi лежат друг за другом, и эта генная по­следовательность повторяется в ДНК больше 100 раз.

3. Повторяющиеся последовательности - это последовательности нуклеотидов, многократно представленные в ДНК. Умеренно повторяющиеся последовательности - последовательности дли­ной в среднем 300 пар нуклеотидов с 10 2 -10 4 повторениями. К ним относятся избыточные гены, а также большинство спейсеров.

Высокоповторяющиеся последовательности с 10 5 -10 6 повторе­ниями образуют конститутивный гетерохроматин. Они всегда неинформативны. Это в основном короткие последовательно­сти, в них обнаруживается чаще всего 7-10 и лишь редко - только 2 (например, AT) или, наоборот, свыше 300 пар нук­леотидов. Они группируются вместе, одна повторяющаяся по­следовательность идет непосредственно за другой. ДНК высокоповторяющегося хроматина называют "сателлит-ными ДНК" по их поведению при аналитических процедурах фракционирования. Около 75% всего хроматина не участвует в транскрипции: это высокоповторяющиеся последовательности и нетраснкрипируемые спейсеры.

4. В изолированном хроматине участки двойной спирали ДНК об­виваются вокруг молекул гистонов, так что здесь возникает су­перспираль первого порядка. Комплексы ДНК с гистоном назы­вают нуклеосомами. Они имеют форму диска или линзы и размеры около 10 Ч 10 Ч 5 нм. В одну нуклеосому входят :

8 молекул гистонов:

Центральный тетрамер из двух молекул Нз и двух Н 4 ; и отдельно по два Н 2а и Н 2 ь;

Участок ДНК (около 140 пар оснований), который образует примерно 1,25 витка спирали и прочно связан с центральным тетрамером.

Между нуклеосомами лежат участки спирали из 30-100 пар оснований без суперспиральной структуры; здесь связывается гистон Hi

В нашивном хроматине ДНК еще больше укорочена в результа­те малоизученной дальнейшей спирализации (суперспирали высших порядков), которая, очевидно, фиксируется благодаря гистону Hi (и некоторым негистоновым белкам). При переходе к интерфазе эухроматин разрыхляется, так как некоторые из суперспиралей более высокого порядка раскру­чиваются. Это происходит, вероятно, в результате конформа-ционных изменений гистонов и ослабления взаимодействий между молекулами Hi Хроматиновые структуры толщиной 10- 25 нм (основные хроматиновые нити или спирали) видны и во время интерфазы.

Транскрипционно-активный хроматин - гены, передающие свою информацию путем синтеза РНК, в результате дальней­шей деспирализации еще больше разрыхляется. По некоторым данным, в соответствующих участках спирали ДНК гистон Hi или отсутствует, или химически изменен, например фосфори-лирован.

Структура нуклеосом также изменяется или полностью разру­шается (в генах для р-РНК в ядрышке). Двойная спираль в от­дельных местах раскручивается. В этих процессах, по-види­мому, участвуют определенные негистоновые белки, скапли­вающиеся в транскрипируемых участках ДНК.

Вопрос 38. Набор хромосом

/. Геном. Плоидностъ клеток

2. Политенные хромосомы

1. Весь фонд генетической информации каждого клеточного ядра - геном - распределен между некоторым постоянным числом хромосом (п). Это число специфично для каждого вида или подвида. У лошадиной аскариды оно равно 1, у кукурузы - 10, у человека - 23, у водоросли Netrium digitus - около 600. Хромосомы одного набора различаются по следующим критериям :

Величине;

Картине хромомер;

Положению перетяжек;

В зависимости от кратности набора хромосом - плоидности - клетки делятся :

На гаплоидные;

Диплоидные;

Полиплоидные.

Гаплоидными называются клетки, которые содержат одинарный набор хромосом («), например половые клетки.

Если клетки содержат двойной набор хромосом (2 П), они дип­лоидные, так как генетическая информация в них представлена дважды. Диплоидны почти все соматические клетки высших растений и животных. Они содержат один отцовский и один материнский набор хромосом.

В полиплоидных клетках имеется несколько наборов хромосом (4 П, 8 П, 16 П и т. д.). Эти клетки часто особенно активны в мета­болическом отношении, например многие клетки печени у млекопитающих.

Гаплоидные клетки образуются из диплоидных в результате мейоза, а диплоидные из гаплоидных - в результате оплодо­творения.

Полиплоидные клетки возникают из диплоидных путем эндо-митоза - преждевременно прерванного деления ядра: после полной репликации и разделения хроматид дочерние хромосо­мы остаются в одном клеточном ядре, вместо того чтобы рас­пределиться между двумя ядрами. Этот процесс может повто­ряться многократно.

Аномалии при образовании половых клеток могут приводить к полиплоидии всего организма. При неполной репликации неко­торые части генома, например гетерохроматин, не реплициру­ются и остаются после эндомитоза диплоидными, в отличие от других частей, которые становятся полиплоидными.

Амплификация генов - это многократная сверхрепликация, ко­гда реплицируются только определенные гены, которые стано­вятся полиплоидными (гены для р-РНК в ядрышке).

Хромосомы диплоидного ядра могут быть сгруппированы по­парно, по две гомологичные хромосомы. Большинство из них (так называемые аутосомы) попарно идентичны. Только две половые хромосомы, определяющие пол особи, у самцов не­одинаковы - это хромосомы X и Y (гетерохромосомы). Боль­шую часть Y-хромосомы занимает конститутивный гетерохро­матин. У самок имеются две Х-хромосомы. Однако у бабочек, птиц и ряда других животных дело обстоит наоборот: самцы имеют набор XX, самки - XY.

2. Политенные хромосомы (гигантские хромосомы) содержат во много раз больше ДНК, чем обычные. Они не изменяют своей формы на протяжении цикла деления и достигают длины до 0,5 мм и толщины 25 мкм. Они встречаются, например, в слюн­ных железах двукрылых (мух и комаров), в макронуклеусе инфу­зорий и в тканях завязи бобов. Чаще всего они видны в гаплоид­ном числе, так как гомологичные хромосомы тесно спарены. Политения возникает в результате эндорепликации. По срав­нению с эндомитозом это еще более редуцированный процесс деления - после репликации хроматиды не разделяются (про­цесс повторяется многократно). При этом разные отрезки ДНК умножаются в различной степени :

Участки центромер - незначительно;

Большинство информативных областей - приблизительно в 1000 раз;

Некоторые - более чем в 30 000 раз.

Поэтому политенные хромосомы представляют собой пучки из бесчисленных хроматид, разделенных не полностью. Хромати­ды растянуты, гомологичные хромомеры образуют темные диски, тесно расположенные вдоль хромосомы. Эти диски раз­делены более светлыми полосами. Вероятно, на хроматиде один диск и одна промежуточная полоса образуют помимо спейсера один ген (реже несколько генов), который, по-видимому, находится в диске. Политенные хромосомы чрезвы­чайно бедны гетерохроматином.

На политенных хромосомах отдельные диски временами разду­ваются в пуфы (кольца Бальбиани). Там гомологичные хрома­тиды отделяются друг от друга, гомологичные хромомеры раз­двигаются и возникает разрыхленная структура транскрипци-онно-активного хроматина. В пуфах содержится меньше гис-тона Hi, чем в дисках, вместо него здесь находится фермент РНК-полимераза (что указывает на синтез РНК). В промежуточных полосах тоже мало гистона Hi, но есть РНК-полимераза и, возможно, происходит хотя бы незначи­тельный синтез РНК.

Хроматин представляет собой массу генетического вещества, состоящего из ДНК и белков, которые конденсируются с образованием хромосом во время деления эукариотических . Хроматин содержится в наших клеток.

Основная функция хроматина состоит в том, чтобы сжать ДНК в компактную единицу, которая будет менее объемной и сможет войти в ядро. Хроматин состоит из комплексов небольших белков, известных как гистоны и ДНК.

Гистоны помогают организовать ДНК в структуры, называемые нуклеосомами, обеспечивая фундамент для обертывания ДНК. Нуклеосома состоит из последовательности нитей ДНК, которые обертываются вокруг набора из восьми гистонов, называемых октомерами. Нуклеосома дополнительно складывается с получением хроматинового волокна. Хроматиновые волокна свертываются и конденсируются с образованием хромосом. Хроматин позволяет осуществить ряд клеточных процессов, включая репликацию ДНК, транскрипцию, восстановление ДНК, генетическую рекомбинацию и деление клеток.

Эухроматин и гетерохроматин

Хроматин внутри клетки может быть уплотнен в различной степени в зависимости от стадии клетки в . Хроматин в ядре содержится в виде эухроматина или гетерохроматина. Во время интерфазы, клетка не делится, а подвергается периоду роста. Большая часть хроматина находится в менее компактной форме, известной как эухроматин.

ДНК подвергается воздействию эухроматина, что позволяет проводить репликацию и транскрипцию ДНК. Во время транскрипции двойная спираль ДНК разматывается и открывается, чтобы можно было скопировать , кодирующие белки. Репликация и транскрипция ДНК необходимы для того, чтобы клетка синтезировала ДНК, белки и при подготовке к делению клеток ( или ).

Небольшой процент хроматина существует как гетерохроматин во время интерфазы. Этот хроматин плотно упакован, что не позволяет проводить транскрипцию гена. Гетерохроматин окрашивается красителями в более темный цвет, чем эухроматин.

Хроматин в митозе:

Профаза

Во время профазы митоза волокна хроматина превращаются в хромосомы. Каждая реплицированная хромосома состоит из двух хроматид, соединенных в .

Метафаза

Во время метафазы хроматин становится чрезвычайно сжатым. Хромосомы выровнены на метафазной пластинке.

Анафаза

Во время анафазы парные хромосомы () отделяются и вытягиваются микротрубочками веретена деления на противоположные полюса клетки.

Телофаза

В телофазе каждая новая перемещается в свое собственное ядро. Хроматиновые волокна разматываются и становятся менее уплотненными. После цитокинеза образуются две генетически идентичные . Каждая клетка имеет одинаковое количество хромосом. Хромосомы продолжают разматывать и удлинять образующий хроматин.

Хроматин, хромосома и хроматида

У людей часто возникают проблемы с различием терминов: хроматин, хромосома и хроматида. Хотя все три структуры состоят из ДНК и находятся внутри ядра, каждый из них определяется отдельно.

Хроматин состоит из ДНК и гистонов, которые упакованы в тонкие волокна. Эти волокна хроматина не конденсируются, но могут существовать либо в компактной форме (гетерохроматин), либо менее компактной форме (эухроматин). Процессы, включая репликацию ДНК, транскрипцию и рекомбинацию, встречаются в эухроматине. При делении клеток хроматин конденсируется с образованием хромосом.

Представляют собой одноцепочечные структуры конденсированного хроматина. Во время процессов деления клеток через митоз и мейоз, хромосомы реплицируются, чтобы гарантировать, что каждая новая дочерняя клетка получает правильное количество хромосом. Дублицированная хромосома является двухцепочечной и имеет привычную форму X. Две нити идентичны и связаны в центральной области, называемой центромером.

Является одна из двух нитей реплицированных хромосом. Хроматиды, соединенные центромером, называются сестринскими хроматидами. В конце клеточного деления сестринские хроматиды отделяются от дочерних хромосом в новообразованных дочерних клетках.

Хроматин – основной компонент клеточного ядра – достаточно легко получить из выделенных интерфазных ядер и из выделенных митотических хромосом. Для этого используют его свойство переходить в растворенное состояние при экстракции водными растворами с низкой ионной силой или просто деионизованной водой. При этом участки хроматина набухают и переходят в гель. Чтобы такие препараты перевести в настоящие растворы, необходимы сильные механические воздействия: встряхивание, перемешивание, дополнительная гомогенизация. Это, конечно, приводит к частичному разрушению исходной структуры хроматина, дробит его на мелкие фрагменты, но практически не меняет его химического состава.

Фракции хроматина, полученные из разных объектов, обладают довольно однообразным набором компонентов. Было найдено, что суммарный химический состав хроматина из интерфазных ядер и митотических хромосом мало отличаются друг от друга. Главными компонентами хроматина являются ДНК и белки, среди которых основную массу составляют гистоны и негистоновые белки (см табл. 3).

Таблица 3. Химический состав хроматина. Содержание белков и РНК дано по отношению к ДНК

В среднем в хроматине около 40% приходится на ДНК и около 60 % на белки, среди которых специфические ядерные белки-гистоны , составляют от 40 до 80% от всех белков, входящих в состав выделенного хроматина. Кроме того в состав хроматиновой фракциии входят мембранные компоненты, РНК, углеводы, липиды, гликопротеиды. Вопрос о том, насколько эти минорные компоненты входят в структуру хроматина еще не решен. Так, например, РНК может представлять собой транскрибируемую РНК, которая еще не потеряла связь с матрицей ДНК. Другие же минорные компоненты могут представлять собой вещества соосажденных фрагментов ядерной оболочки.

В структурном отношении хроматин представляет собой нитчатые комплексные молекулы дезоксирибонуклеопротеида (ДНП), которые состоят из ДНК, ассоциированной с гистонами (см. рис. 57). Поэтому укоренилось другое название хроматина – нуклеогистон . Именно за счет ассоциации гистонов с ДНК образуются очень лабильные, изменчивые нуклеиново-гистоновые комплексы, где отношения ДНК: гистон равно примерно единице, т.е. они присутствуют в равных весовых количествах. Эти нитчатые фибриллы ДНП и есть элементарные хромосомные или хроматиновые нити, толщина которых в зависимости от степени упаковки ДНК может колебаться от 10 до 30 нм. Эти фибриллы ДНП могут в свою очередь дополнительно компактизоваться с образованием более высоких уровней структуризации ДНП, вплоть до митотической хромосомы. Роль некоторых негистоновых белков заключается именно в образовании высоких уровней компактизации хроматина.

ДНК хроматина

В препарате хроматина на долю ДНК приходится обычно 30-40%. Эта ДНК представляет собой двухцепочечную спиральную молекулу подобно чистой выделенной ДНК в водных растворах. Об этом говорят многие экспериментальные данные. Так, при нагревании растворов хроматина наблюдается повышение оптической плотности раствора, так называемый гиперхромный эффект, связанный с разрывом межнуклеотидных водородных связей между цепями ДНК, подобно тому, что происходит при нагревании (плавлении) чистой ДНК.

Вопрос о размере, длине молекул ДНК в составе хроматина имеет важное значение для понимания структуры хромосомы в целом. При стандартных методах выделения ДНК хроматина обладает молекулярной массой 7-9 х 10 6 , что значительно меньше молекулярной массы ДНК из кишечной палочки (2,8 х 10 9). Такую сравнительно малую молекулярную массу ДНК из препаратов хроматина можно объяснить механическими повреждениями ДНК в процессе выделения хроматина. Если же выделять ДНК в условиях, исключающих встряхивание, гомогенизацию и другие воздействия, то удается из клеток получить молекулы ДНК очень большой длины. Длина молекул ДНК из ядер и хромосом эукариотических клеток может быть изучена с помощью метода светооптической радиоавтографии, подобно тому как это изучалось на прокариотических клетках.

Было обнаружено, что в составе хромосом длина индивидуальных линейных (в отличие от прокариотических хромосом) молекул ДНК может достигать сотен микрометров и даже нескольких сантиметров. Так, у разных объектов были получены молекулы ДНК от 0,5 мм до 2 см. Эти результаты показали, что есть близкое совпадение между расчетной длиной ДНК на хромосому и радиоавтографическим наблюдением.

После мягкого лизиса клеток эукариот можно прямо определять молекулярные массы ДНК физико-химическими методами. Было показано, что максимальная молекулярная масса молекулы ДНК дрозофилы равна 41 х 10 9 , что соответствует длине около 2 см. У некоторых дрожжей на хромосому приходится молекула ДНК с молекулярной массой 1 х 10 8 -10 9 , которая имеет размеры около 0,5 мм.

Такие длинные ДНК представляют собой одну молекулу, а не несколько более коротких, сшитых гуськом с помощью белковых связок, как считали некоторые исследователи. К этому заключению пришли после того, как оказалось, что длина молекул ДНК не изменяется после обработки препаратов протеолитическими ферментами.

Общее количество ДНК, входящее в ядерные структуры клеток, в геном организмов, колеблется от вида к виду, хотя у микроорганизмов количество ДНК на клетку значительно ниже, чем у беспозвоночных, высших растений и животных. Так, у мыши на ядро приходится почти в 600 раз больше ДНК, чем у кишечной палочки. Сравнивая количество ДНК на клетку у эукариотических организмов, трудно уловить какие-либо корреляции между степенью сложности организма и количеством ДНК на ядро. Примерно одинаковое количество ДНК имеют такие различные организмы как лен, морской еж, окунь (1,4-1,9 пг) или рыба голец и бык (6,4 и 7 пг).

Значительны колебания количества ДНК в больших таксономических группах. Среди высших растений количество ДНК у разных видов может отличаться в сотни раз, так же, как и среди рыб, в десятки раз отличается количество ДНК у амфибий.

У некоторых амфибий в ядрах количество ДНК больше, чем в ядрах человека в 10-30 раз, хотя генетическая конституция человека несравненно сложнее, чем у лягушек. Следовательно, можно предполагать, что «избыточное» количество ДНК у более низко организованных организмов либо не связано с выполнением генетической роли, либо число генов повторяется то или иное число раз.

Таблица 4 . Содержание ДНК в клетках некоторых объектов (пг, 10 -12 г)

Разрешить эти вопросы оказалось возможным на основании изучения кинетики реакции ренатурации или гибридизации ДНК. Если фрагментированные молекулы ДНК в растворах подвергнуть тепловой денатурации, а затем инкубировать их при температуре несколько более низкой, чем та, при которой происходит денатурация, то идет восстановление исходной двуспиральной структуры фрагментов ДНК за счет воссоединения комплементарных цепей – ренатурация. Для ДНК вирусов и прокариотических клеток было показано, что скорость такой ренатурации прямо зависит от величины генома; чем больше геном, чем больше количество ДНК на частицу или клетку, тем больше нужно времени для случайного сближения комплементарных цепей и специфической реассоциации большего числа разных по нуклеотидной последовательности фрагментов ДНК (рис. 53). Характер кривой реассоциации ДНК прокариотических клеток указывает на отсутствие повторяющихся последовательностей оснований в геноме прокариот; все участки их ДНК несут уникальные последовательности, число и разнообразие которых отражает степень сложности генетической композиции объектов и, следовательно, их общей биологической организации.

Совсем другая картина реассоциации ДНК наблюдается у эукариотических организмов. Оказалось, что в состав их ДНК входят фракции, которые ренатурируют с гораздо более высокой скоростью, чем можно было бы предполагать на основании размера их генома, а также фракция ДНК, ренатурирующая медленно, подобно уникальным последовательностям ДНК прокариот. Однако для эукариот требуется значительно большее время для ренатурации этой фракции, что связано с общим большим размером их генома и с большим числом различных уникальных генов.

В той части ДНК эукариотов, которая отличается высокой скоростью ренатурации, различают две подфракции: 1) фракцию с высоко или часто повторяющимися последовательностями, где сходные участки ДНК могут быть повторены 10 6 раз; 2) фракцию умеренно повторяющихся последовательностей, встречающихся в геноме 10 2 -10 3 раз. Так, у мыши во фракцию ДНК с часто повторяющимися последовательностями входит 10% от общего количества ДНК на геном и 15% приходится на фракцию с умеренно повторяющимися последовательностями. Остальные 75% от всей ДНК мыши представлены уникальными участками, соответствующими большому числу различных неповторяющихся генов.

Фракции с часто повторяющимися последовательностями могут обладать иной плавучей плотностью, чем основная масса ДНК, и поэтому могут быть выделены в чистом виде, как так называемые фракции сателлитной ДНК . У мыши эта фракция имеет плотность, равную 1,691 г/мл, а основная часть ДНК - 1,700 г/мл. Эти различия плотности определяются различиями в нуклеотидном составе. Например, у мыши в этой фракции имеется 35% Г и Ц пар, а в основном пике ДНК - 42%.

Как оказалось, сателлитная ДНК, или фракция ДНК с часто повторяющимися последовательностями, не участвует в синтезе основных типов РНК в клетке, не связана с процессом синтеза белка. Этот вывод сделан был на основании того, что ни один из типов РНК клетки (тРНК, иРНК, рРНК) не гибридизируется с сателлитными ДНК. Следовательно, на этих ДНК нет последовательностей, отвечающих за синтез клеточных РНК, т.е. сателлитные ДНК не являются матрицами для синтеза РНК, не участвуют в транскрипции.

Существует гипотеза о том, что высокоповторяющиеся последовательности, не участвующие непосредственно в синтезе белков, могут нести информацию, играющую важную структурную роль в сохранении и функционировании хромосом. К ним могут быть отнесены многочисленные участки ДНК, связанные с белками остова интерфазного ядра (см. ниже), участки начала репликации или транскрипции, а также участки ДНК, регулирующие эти процессы.

Методом гибридизации нуклеиновых кислот прямо на хромосомах (in situ ) была изучена локализация этой фракции. Для этого на изолированной сателлитной ДНК с помощью бактериальных ферментов синтезировали меченую 3 Н-уридином РНК. Затем цитологический препарат с хромосомами подвергали такой обработке, при которой происходит денатурация ДНК (повышенная температура, щелочная среда и др.). После этого на препарат помещали меченную 3 Н РНК и добивались гибридизации между ДНК и РНК. Радиоавтографически было обнаружено, что большая часть метки локализуется в зоне первичных перетяжек хромосом, в зоне их центромерных участков. Метка обнаруживалась также и в других участках хромосом, но очень слабо (рис. 54).

За последние 10 лет сделаны большие успехи в изучении центромерных ДНК , особенно у дрожжевых клеток. Так у S. cerevisiae центромерная ДНК состоит из повторяющихся участков по 110 п.н. Она состоит из двух консервативных участков (I и III) и центрального элемента (II), обогащенного АТ-парами оснований. Сходное строение ДНК центромеры имеют хромосомы дрозофилы. Центромерная ДНК человека (альфоидная сателлитная ДНК) состоит из тандема мономеров по 170 п.н., организованных в группы димеров или пентамеров, которые в свою очередь образуют большие последовательности по 1-6 х 10 3 п.н. Такая самая большая единица повторена 100-1000 раз. С этой специфической центромерной ДНК комплексируются особые центромерные белки, участвующие в образовании кинетохора , структуры, обеспечивающей связь хромосом с микротрубочками веретена и в движении хромосом в анафазе (см. ниже).

ДНК с высокоповторяющимися последовательностями обнаружена также в теломерных участках хромосом многих эукариотических организмов (от дрожжей до человека). Здесь чаще всего встречаются повторы, в которые входят 3-4 гуаниновых нуклеотида. У человека теломеры содержат 500-3000 повторов TTAGGG. Эти участки ДНК выполняют особую роль - ограничивать хромосому с концов и предотвращать ее укорачивание в процессе многократной репликации.

Недавно было найдено, что высокоповторяющиеся последовательности ДНК интерфазных хромосом связываются специфически с белками - ламинами, подстилающими ядерную оболочку, и участвуют в заякоревании растянутых деконденсированных интерфазных хромосом, тем самым определяют порядок в локализации хромосом в объеме интерфазного ядра.

Сделано предположение, что сателлитная ДНК может участвовать в узнавании гомологичных районов хромосом при мейозе. По другим предположениям, участки с часто повторяющимися последовательностями играют роль разделителей (спейсеров) между различными функциональными единицами хромосомной ДНК, например между репликонами (см. ниже).

Как оказалось, фракция умеренно повторяющихся (от 10 2 до 10 5 раз) последовательностей принадлежит к пестрому классу участков ДНК, играющих важную роль в процессах создания аппарата белкового синтеза. В эту фракцию входят гены рибосомных ДНК, которые могут быть повторены у разных видов от 100 до 1000 раз. В эту фракцию входят многократно повторенные участки для синтеза всех тРНК. Более того, некоторые структурные гены, ответственные за синтез определенных белков, также могут быть многократно повторены, представлены многими копиями. Такими являются гены для белков хроматина - гистонов, повторяющихся до 400 раз.

Кроме того, в эту фракцию входят участки ДНК с разными последовательностями (по 100-400 нуклеотидных пар), также многократно повторенными, но рассеянными по всему геному. Их роль еще не до конца ясна. Высказывается предположение, что такие участки ДНК могут представлять собой акцепторные или регуляторные участки разных генов.

Итак, ДНК эукариотических клеток гетерогенна по составу, содержит несколько классов последовательностей нуклеотидов: часто повторяющиеся последовательности (> 10 6 раз), входящие во фракцию сателлитной ДНК и не транскрибирующиеся; фракция умеренно повторяющихся последовательностей (10 2 -10 5), представляющих блоки истинных генов, а также короткие последовательности, разбросанные по всему геному; фракция уникальных последовательностей, несущая информацию для большинства белков клетки.

Исходя из этих представлений становятся понятными те различия в количестве ДНК, которые наблюдаются у разных организмов: они могут быть связаны с неодинаковой долей тех или иных классов ДНК в геноме организмов. Так, например, у амфибии Amphiuma (у которой ДНК в 20 раз больше, чем у человека) на долю повторяющихся последовательностей приходится до 80% от всей ДНК, у луков - до 70, у лосося - до 60% и т.п. Истинное же богатство генетической информации должна отображать фракция уникальных последовательностей. Не нужно забывать, что в нативной, нефрагментированной молекуле ДНК хромосомы все участки, включающие уникальные, умеренно и часто повторяющиеся последовательности, связаны в единую гигантскую ковалентную цепь ДНК.

Молекулы ДНК гетерогенны не только по участкам разной нуклеотидной последовательности, но и различны в отношении их синтетической активности.

Репликация эукариотических ДНК

Бактериальная хромосома реплицируется как одна структурная единица, имеющая одну стартовую точку репликации и одну точку терминации. Таким образом бактериальная циклическая ДНК является одним репликоном . От стартовой точки репликация идет в двух противоположных направлениях, так что по мере синтеза ДНК образуется так называемый глазок репликации, ограниченный с двух сторон репликационными вилками, что хорошо видн при электронномикроскопическом изучении вирусных и бактериальных реплицирующихся хромосом.

У эукариотических клеток организация репликации иного характера – полирепликоннная.. Как уже говорилось, при импульсном включении 3 НТ множественная метка появляется практически во всехмитотических хромосомах. Это означает, что одновременно в интерфазной хромосоме существует множество мест репликации и множество автономных точек начала репликации. Более подробно это явление было изучено с помощью радиоавтографии меченых молекул, выделенных ДНК (рис. 55).Если клетки были импульсно мечены 3 НТ, то в световом микроскопе на автографах выделенных ДНК можно видеть участки восстановленного серебра в виде пунктирных линий. Это небольшие отрезки ДНК, которые успели реплицироваться, а между ними расположены участки нереплицированной ДНК, которая не оставила радиоавтографа и поэтому остается невидимой. По мере увеличения времени контакта 3 НТ с клеткой величина таких отрезков возрастает, а расстояние между ними уменьшается. Из этих экспериментв можно точно рассчитать скорость репликации ДНК у эукариотических организмов. Скорость движения репликационной вилки оказалась равной 1-3 т.п.н. в мин у млекопитающих, около 1 т.п.н. в мин у некоторых растений, что намного ниже скорости репликации ДНК у бактерий (50 т.п.н. в мин.). В этих же экспериментах была прямо доказана полирепликонная структура ДНК хромосом эукариот: по длине хромосомной ДНК, вдоль нее, располагается множество независимых участков репликации – репликонов. По расстоянию между средними точками смежных метящихся репликонов, т.е. по расстоянию между двумя соседними стартовыми точками репликации, можно узнать величину отдельных репликонов. В среднем величина репликонову высших животных составляет около 30 мкм или 100 т.п.н. Следовательно, в гаплоидном наборе млекопитающих должно быть 20 000-30 000 репликонов. У низших эукариот величина репликонов меньше, около 40 т.п.н. Так у дрозофилы на геном приходится 3500 репликонов, а у дрожжей – 400. Как говорилось, синтез ДНК в репликоне идет в двух противоположных направлениях. Это легко доказывается радиоавтографически: если клеткам после импульсной метки дать продолжить синтезировать ДНК некоторое время в среде без 3 НТ, то произойдет падение включения его в ДНК, будет происходить как бы разбавление метки, и на радиоавтографе можно будет видеть симметричное, с двух сторон реплицируемого участка, уменьшение количества зерен восстановленного серебра.

Реплицирующиеся концы или вилки в репликоне прекращают движение, когда встретятся с вилками соседних репликонов (в терминальной точке, общей для соседних репликонов). В этом месте реплицированные участки соседних репликонов объединяются в единые ковалентные цепи двух новосинтезированных молекул ДНК. Функциональное подразделение ДНК хромосом на репликоны совпадает со структурным подразделением ДНК на домены или петли, основания которых, как уже упоминалось, скреплены белковыми связками.

Таким образом весь синтез ДНК на отдельной хромосоме протекает за счет независимого синтеза на множестве отдельных репликонов, с последующим соединением концов соседних отрезков ДНК. Биологический смысл этого свойства становится ясным при сравнении синтеза ДНК у бактерий и эукариот. Так бактериальная монорепликонная хромосома длиной в 1600 мкм синтезируется со скоростью около получаса. Если бы сантиметровая молекула ДНК хромосомы млекопитающих реплицировалась тоже как монорепликонная структура, то на это ушло бы около недели (6 суток). Но если в такой хромосоме расположено несколько сот репликонов, то для полной ее репликации понадобится всего около часа. На самом же деле время репликации ДНК у млекопитающих составляет 6-8 часов. Это связано с тем, что не все репликоны отдельной хромосомы включаются одновременно.

В некоторых случаях наблюдается одновременное включение всех репликонов или же появление дополнительных точек начала репликации, что дает возможность закончить синтез всех хромосом за минимально короткое время. Это явление происходит на ранних этапах эмбриогенеза некоторых животных. Так известно, что при дроблении яиц шпорцевых лягушек Xenopus laevis синтез ДНК занимает всего 20 минут, тогда как в культуре соматических клеток этот процесс продолжается около суток. Аналогичная картина наблюдается у дрозофилы: на ранних эмбриональных стадиях весь синтез ДНК в ядре занимает 3,5 минуты, а в клетках культуры ткани – 600 минут. При этом в клетках культуры величина репликонов оказалась почти в 5 раз больше, чем у эмбрионов.

Синтез ДНК по длине отдельной хромосомы происходит неравномерно. Было обнаружено, что в индивидуальной хромосоме активные репликоны собраны в группы, репликативные единицы, которые включают в себя 20-80 точек начала репликации. Это следовало из анализа радиоавтографов ДНК, где наблюдалась именно такая сблоченность реплицирующихся отрезков. Другим основанием для представления о существовании блоков или кластеров репликонов или репликационных единиц были эксперименты с включением в ДНК аналога тимидина - 5’-бромдезоксиуридина (BrdU). Включение BrdU в интерфазный хроматин приводит к тому, что во время митоза, участки с BrdU конденсируются в меньшей степени (недостаточная конденсация), чем те участки, где включался тимидин. Поэтому те участки митотических хромосом в которые включился BrdU, будут слабо окрашиваться при дифференциальной окраске. Это позволяет на синхронизированных культурах клеток выяснить последовательность включения BrdU, т.е. последовательность синтеза ДНК по длине одной взятой хромосомы. Оказалось, что происходит включение предшественника в большие участки хромосомы. Включение разных участков происходит строго последовательно в течение S-периода. Каждая хромосома характеризуется высокой стабильностью порядка репликации по своей длине, имеет свой специфический рисунок репликации.

Кластеры репликонов, объединенные в репликационные единицы, связаны с белками ядерного матрикса (см. ниже), которые вместе с ферментами репликации образуют т.н. кластеросомы – зоны в интерфазном ядре, в которых идет синтез ДНК.

Порядок, в котором активируются репликационные единицы, может, вероятно, определяться структурой хроматина в этих участках. Так, например, зоны конститутивного гетерохроматина (вблизи центромеры) реплицируются обычно в конце S-периода, также в конце S-периода удваивается часть факультативного гетерохроматина (например, X-хромосома самок млекопитающих). Особенно четко во времени последовательность репликации участков хромосом коррелирует с рисунком дифференциальной окраски хромосом: R-сегменты относятся к ранореплицирующимся, G-сегменты соответствуют участкам хромосом с поздней репликацией. C-сегменты (центромера) – места самой поздней репликации.

Так как в разных хромосомах величина и число разных групп дифференциально окрашенных сегментов различно, то это создает картину асинхронного начала и завершения репликации разных хромосом в целом. Во всяком случае, последовательность начала и окончания репликации отдельных хромосом в наборе не беспорядочная. Существует строгая последовательность репродукции хромосом относительно других хромосом в наборе.

Длительность процесса репликации отдельных хромосом прямо не зависит от их размеров. Так крупные хромосомы человека группы А (1-3) оказываются мечеными в течение всего S-периода, так же как и более короткие хромосомы группы В (4-5).

Таким образом, синтез ДНК в геноме эукариот начинается почти одновременно на всех хромосомах ядра в начале S-периода. Но при этом происходит последовательное и асинхронное включение разных репликонов как в разных участках хромосом, так и в разных хромосомах. Последовательность репликации того или иного участка генома строго детерминирована генетически. Это последнее утверждение доказывается не только картиной включения метки в разные отрезки S-периода, но также тем, что существует строгая последовательность появления в ходе S-периода пиков чувствительности определенных генов к мутагенам.

В препарате хроматина на долю ДНК приходится обычно 30-40%. Эта ДНК представляет собой двухцепочечную спиральную молекулу. ДНК хроматина обладает молекулярной массой 7-9*10 6 . Такую сравнительно малую массу ДНК из препаратов можно объяснить механическими повреждениями ДНК в процессе выделения хроматина.

Общее количество ДНК, входящее в ядерные структуры клеток, в геном организмов, колеблется от вида к виду. Сравнивая количество ДНК на клетку у эукариотических организмов, трудно уловить какие-либо корреляции между степенью сложности организма и количеством ДНК на ядро. Примерно одинаковое количество ДНК имеют различные организмы, как лен, морской еж, окунь (1,4-1,9 пг) или рыба голец и бык (6,4 и 7 пг).

У некоторых амфибий в ядрах количество ДНК больше, чем в ядрах человека, в 10-30 раз, хотя генетическая конституция человека несравненно сложнее, чем у лягушек. Следовательно, можно предполагать, что “избыточное” количество ДНК у более низко организованных организмов либо не связано с выполнением генетической роли, либо число генов повторяется то или иное число раз.

Сателлитная ДНК, или фракция ДНК с часто повторяющимися последовательностями, может участвовать в узнавании гомологичных районов хромосом при мейозе. По другим предположениям, эти участки играют роль разделителей (спейсеров) между различными функциональными единицами хромосомной ДНК.

Как оказалось, фракция умеренно повторяющихся (от 10 2 до 10 5 раз) последовательностей принадлежит к пестрому классу участков ДНК, играющих важную роль в обменных процессах. В эту фракцию входят гены рибосомных ДНК, многократно повторенные участки для синтеза всех тРНК. Более того, некоторые структурные гены, ответственные за синтез определенных белков, также могут быть многократно повторены, представлены многими копиями (гены для белков хроматина - гистонов).

Итак, ДНК эукариотических клеток гетерогенна по составу, содержит несколько классов последовательностей нуклеотидов:

часто повторяющиеся последовательности (>10 6 раз), входящие во фракцию сателитной ДНК и не транскрибирующиеся;

фракция умеренно повторяющихся последовательностей (10 2 -10 5), представляющих блоки истинных генов, а также короткие последовательности, разбросанные по всему геному;

фракция уникальных последовательностей, несущая информацию для большинства белков клетки.

ДНК прокариотического организма представляет собой одну гигантскую циклическую молекулу. ДНК эукариотических хромосом представляет собой линейные молекулы, состоящие из тандемно (друг за другом) расположенных репликонов разного размера. Средний размер репликона около 30 мкм. Тем самым в составе генома человека должно встречаться более 50 000 репликонов, участков ДНК, которые синтезируются как независимые единицы. Эти репликоны имеют начальную и терминальную точки синтеза ДНК.

Представим себе, что у эукариотических клеток каждая из хромосомных ДНК, как и у бактерий, является одним репликоном. В этом случае при скорости синтеза 0,5 мкм в минуту (для человека) редупликация первой хромосомы с длиной ДНК около 7 см должна занять 140 000 минут, или около трех месяцев. На самом же деле благодаря полирепликонному строению молекул ДНК весь процесс занимает 7-12 ч.

Поделиться