Уравнение линии как геометрического места точек. Различные виды уравнений прямой. Исследование общего уравнения прямой. Построение прямой по ее уравнению. Аналитическая геометрия Какая линия на плоскости определяется уравнением

Важнейшим понятием аналитической геометрии является уравнение линии на плоскости .

Определение. Уравнением линии (кривой) на плоскости Oxy называется уравнение, которому удовлетворяют координаты x и y каждой точки данной линии и не удовлетворяют координаты любой точки, не лежащей на этой линии (рис.1).

В общем случае уравнение линии может быть записано в виде F(x,y)=0 или y=f(x).

Пример. Найти уравнение множества точек, равноудаленных от точек А(-4;2), B(-2;-6).

Решение. Если M(x;y) – произвольная точка искомой линии (рис.2), то имеем AM=BM или

После преобразований получим

Очевидно, что это уравнение прямой MD – перпендикуляра, восстановленного из середины отрезка AB .

Из всех линий на плоскости особое значение имеет прямая линия . Она является графиком линейной функции, используемой в наиболее часто встречающихся на практике линейных экономико-математических моделях.

Различные виды уравнения прямой:

1)с угловым коэффициентом k и начальной ординатой b :

y = kx + b ,

где – угол между прямой и положительным направлением оси ОХ (рис. 3).

Особые случаи:

– прямая проходит через начало координат (рис.4):

биссектриса первого и третьего, второго и четвертого координатных углов:

y=+x, y=-x;

– прямая параллельна оси ОХ и сама ось ОХ (рис. 5):

y=b, y=0;

– прямая параллельна оси OY и сама ось ОY (рис. 6):

x=a, x=0;

2) проходящей в данном направлении (с угловым коэффициентом) k через данную точку (рис. 7):

Если в приведенном уравнении k – произвольное число, то уравнение определяет пучок прямых , проходящих через точку , кроме прямой , параллельной оси Oy.

Пример А(3,-2) :

а) под углом к оси ОХ;

б) параллельно оси OY.

Решение .

а) , y-(-2)=-1(x-3) или y=-x+1;

б) х=3.

3) проходящей через две данные точки (рис. 8):

Пример . Составить уравнение прямой, проходящей через точки А(-5,4), В(3,-2).

Решение . ,

4) уравнение прямой в отрезках (рис.9):

где a, b – отрезки, отсекаемые на осях соответственно Ox и Oy.

Пример . Составить уравнение прямой, проходящей через точку А(2,-1) , если эта прямая отсекает от положительной полуоси Oy отрезок, вдвое больший, чем от положительной полуоси Ox (рис. 10).

Решение . По условию b=2a , тогда . Подставим координаты точки А(2,-1):

Откуда a=1,5.

Окончательно получим:

Или y=-2x+3.

5) общее уравнение прямой:


Ax+By+C=0,

где a и b не равны одновременно нулю.

Некоторые важные характеристики прямых :

1) расстояние d от точки до прямой:

2) угол между прямыми и соответственно:

3) условие параллельности прямых:

или .

4) условие перпендикулярности прямых:

или .

Пример 1 . Составить уравнение двух прямых, проходящих через точку А(5,1) , одна из которых параллельна прямой 3x+2y-7=0 , а другая перпендикулярна той же прямой. Найти расстояние между параллельными прямыми.

Решение . Рисунок 11.

1) уравнение параллельной прямой Ax+By+C=0 :

из условия параллельности ;

взяв коэффициент пропорциональности, равный 1, получим А=3, В=2;

т.о. 3x+2y+C=0;

значение С найдем, подставив координаты т. А(5,1),

3*5+2*1+С=0, откуда С=-17;

уравнение параллельной прямой – 3x+2y-17=0.

2) уравнение перпендикулярной прямой из условия перпендикулярности будет иметь вид 2x-3y+C=0;

подставив координаты т. А(5,1) , получим 2*5-3*1+С=0 , откуда С=-7;

уравнение перпендикулярной прямой – 2x-3y-7=0.

3) расстояние между параллельными прямыми можно найти как расстояние от т. А(5,1) до дано прямой 3x+2y-7=0:

Пример 2 . Даны уравнения сторон треугольника:

3x-4y+24=0 (AB), 4x+3y+32=0 (BC), 2x-y-4=0 (AC).

Составить уравнение биссектрисы угла АВС .

Решение . Вначале найдем координаты вершины В треугольника:

Откуда x=-8, y=0, т.е. В(-8,0) (рис. 12).

По свойству биссектрисы расстояния от каждой точки M(x,y) , биссектрисы BD до сторон АВ и ВС равны, т.е.

Получаем два уравнения

x+7y+8=0, 7x-y+56=0.

Из рисунка 12 угловой коэффициент искомой прямой отрицательный (угол с Ох тупой), следовательно, нам подходит первое уравнение x+7y+8=0 или y=-1/7x-8/7.

В прошлом материале мы рассмотрели основные моменты, касающиеся темы прямой на плоскости. Теперь же перейдем к изучению уравнения прямой: рассмотрим, какое уравнение может называться уравнением прямой, а также то, какой вид имеет уравнение прямой на плоскости.

Определение уравнения прямой на плоскости

Допустим, что есть прямая линия, которая задана в прямоугольной декартовой системе координат O х у.

Определение 1

Прямая линия – это геометрическая фигура, которая состоит из точек. Каждая точка имеет свои координаты по осям абсцисс и ординат. Уравнение, которое описывает зависимость координат каждой точки прямой в декартовой системе O x y , называется уравнением прямой на плоскости.

Фактически, уравнение прямой на плоскости – это уравнение с двумя переменными, которые обозначаются как x и y . Уравнение обращается в тождество при подстановке в него значений любой из точек прямой линии.

Давайте посмотрим, какой вид будет иметь уравнение прямой на плоскости. Этому будет посвящен весь следующий раздел нашей статьи. Отметим, что существует несколько вариантов записи уравнения прямой. Объясняется это наличием нескольких способов задания прямой линии на плоскости, и также различной спецификой задач.

Познакомимся с теоремой, которая задает вид уравнения прямой линии на плоскости в декартовой системе координат O x y .

Теорема 1

Уравнение вида A x + B y + C = 0 , где x и y – переменные, а А, В и C – это некоторые действительные числа, из которых A и B не равны нулю, задает прямую линию в декартовой системе координат O x y . В свою очередь, любая прямая линия на плоскости может быть задана уравнением вида A x + B y + C = 0 .

Таким образом, общее уравнение прямой на плоскости имеет вид A x + B y + C = 0 .

Поясним некоторые важные аспекты темы.

Пример 1

Посмотрите на рисунок.

Линия на чертеже определяется уравнением вида 2 x + 3 y - 2 = 0 , так как координаты любой точки, составляющей эту прямую, удовлетворяют приведенному уравнению. В то же время, определенное количество точек плоскости, определяемых уравнением 2 x + 3 y - 2 = 0 , дают нам прямую линию, которую мы видим на рисунке.

Общее уравнение прямой может быть полным и неполным. В полном уравнении все числа А, В и C отличны от нуля. Во всех остальных случаях уравнение считается неполным. Уравнение вида A x + B y = 0 определяет прямую линию, которая проходит через начало координат. Если A равно нулю, то уравнение A x + B y + C = 0 задает прямую, расположенную параллельно оси абсцисс O x . Если B равно нулю, то линия параллельна оси ординат O y .

Вывод: при некотором наборе значений чисел А, В и C с помощью общего уравнения прямой можно записать любую прямую линию на плоскости в прямоугольной системе координат O х у.

Прямая, заданная уравнением вида A x + B y + C = 0 , имеет нормальный вектор прямой с координатами A , B .

Все приведенные уравнения прямых, которые мы рассмотрим ниже, могут быть получены из общего уравнения прямой. Также возможен и обратный процесс, когда любое из рассматриваемых уравнений может быть приведено к общему уравнению прямой.

Разобраться во всех нюансах темы можно в статье «Общее уравнение прямой». В материале мы приводим доказательство теоремы с графическими иллюстрациями и подробным разбором примеров. Особое внимание в статье уделяется переходам от общего уравнения прямой к уравнениям других видов и обратно.

Уравнение прямой в отрезках имеет вид x a + y b = 1 , где a и b – это некоторые действительные числа, которые не равны нулю. Абсолютные величины чисел a и b равны длине отрезков, которые отсекаются прямой линией на осях координат. Длина отрезков отсчитывается от начала координат.

Благодаря уравнению можно легко построить прямую линию на чертеже. Для этого необходимо отметить в прямоугольной системе координат точки a , 0 и 0 , b , а затем соединить их прямой линией.

Пример 2

Построим прямую, которая задана формулой x 3 + y - 5 2 = 1 . Отмечаем на графике две точки 3 , 0 , 0 , - 5 2 , соединяем их между собой.

Эти уравнения, имеющие вид y = k · x + b должны быть нам хорошо известны из курса алгебры. Здесь x и y – это переменные, k и b – это некоторые действительные числа, из которых k представляет собой угловой коэффициент. В этих уравнениях переменная у является функцией аргумента x .

Дадим определение углового коэффициента через определение угла наклона прямой к положительному направлению оси O x .

Определение 2

Для обозначения угла наклона прямой к положительному направлению оси O x в декартовой системе координат введем величину угла α . Угол отсчитывается от положительного направления оси абсцисс до прямой линии против хода часовой стрелки. Угол α считается равным нулю в том случае, если линия параллельна оси O x или совпадает с ней.

Угловой коэффициент прямой – это тангенс угла наклона этой прямой. Записывается это следующим образом k = t g α . Для прямой, которая располагается параллельно оси O y или совпадает с ней, записать уравнение прямой с угловым коэффициентом не представляется возможным, так как угловой коэффициент в этом случае превращается в бесконечность (не существует).

Прямая, которая задана уравнением y = k · x + b , проходит через точку 0 , b на оси ординат. Это значит, что уравнение прямой с угловым коэффициентом y = k · x + b , задает на плоскости прямую линию, которая проходит через точку 0 , b и образует угол α с положительным направлением оси O x , причем k = t g α .

Пример 3

Изобразим прямую линию, которая определяется уравнением вида y = 3 · x - 1 .

Эта линия должна пройти через точку (0 , - 1) . Угол наклона α = a r c t g 3 = π 3 равен 60 градусов к положительному направлению оси O x . Угловой коэффициент равен 3

Обращаем ваше внимание, что с помощью уравнения прямой с угловым коэффициентом очень удобно искать уравнение касательной к графику функции в точке.

Больше материала по теме можно найти в статье «Уравнение прямой с угловым коэффициентом». Помимо теории там размещено большое количество графических примеров и подробный разбор задач.

Данный вид уравнения имеет вид x - x 1 a x = y - y 1 a y , где x 1 , y 1 , a x , a y - это некоторые действительные числа, из которых a x и a y не равны нулю.

Прямая линия, заданная каноническим уравнением прямой, проходит через точку M 1 (x 1 , y 1) . Числа a x и a y в знаменателях дробей представляют собой координаты направляющего вектора прямой линии. Это значит, что каноническое уравнение прямой линии x - x 1 a x = y - y 1 a y в декартовой системе координат O x y соответствует линии, проходящей через точку M 1 (x 1 , y 1) и имеющей направляющий вектор a → = (a x , a y) .

Пример 4

Изобразим в системе координат O x y прямую линию, которая задается уравнением x - 2 3 = y - 3 1 . Точка M 1 (2 , 3) принадлежит прямой, вектор a → (3 , 1) является направляющим вектором этой прямой линии.

Каноническое уравнение прямой линии вида x - x 1 a x = y - y 1 a y может быть использовано в случаях, когда a x или a y равно нулю. Наличие ноля в знаменателе делает запись x - x 1 a x = y - y 1 a y условной. Уравнение можно записать следующим образом a y (x - x 1) = a x (y - y 1) .

В том случае, когда a x = 0 , каноническое уравнение прямой принимает вид x - x 1 0 = y - y 1 a y и задает прямую линию, которая расположена параллельно оси ординат или совпадает с этой осью.

Каноническое уравнение прямой при условии, что a y = 0 , принимает вид x - x 1 a x = y - y 1 0 . Такое уравнение задает прямую линию, расположенную параллельно оси абсцисс или совпадающую с ней.

Больше материала на тему канонического уравнения прямой смотрите здесь. В статье мы приводим целый ряд решений задач, а также многочисленные примеры, которые позволяют лучше овладеть темой.

Параметрические уравнения прямой на плоскости

Данные уравнения имеют вид x = x 1 + a x · λ y = y 1 + a y · λ , где x 1 , y 1 , a x , a y - это некоторые действительные числа, из которых a x и a y не могут быть одновременно равны нулю. В формулу вводится дополнительный параметр λ , который может принимать любые действительные значения.

Назначение параметрического уравнения в том, чтобы установить неявную зависимости между координатами точек прямой линии. Для этого и вводится параметр λ .

Числа x , y представляют собой координаты некоторой точки прямой. Они вычисляются по параметрическим уравнениям прямой при некотором действительном значении параметра λ .

Пример 5

Предположим, что λ = 0 .

Тогда x = x 1 + a x · 0 y = y 1 + a y · 0 ⇔ x = x 1 y = y 1 , т. е. точка с координатами (x 1 , y 1) принадлежит прямой.

Обращаем ваше внимание на то, что коэффициенты a x и a y при параметре λ в данном виде уравнений представляют собой координаты направляющего вектора прямой линии.

Пример 6

Рассмотрим параметрические уравнения прямой линии вида x = 2 + 3 · λ y = 3 + λ . Прямая, заданная уравнениями, в декартовой системе координат проходит через точку (x 1 , y 1) и имеет направляющий вектор a → = (3 , 1) .

Больше информации ищите в статье «Параметрические уравнения прямой на плоскости».

Нормальное уравнение прямой имеет вид, A x + B y + C = 0 , где числа А, В, и C таковы, что длина вектора n → = (A , B) равна единице, а C ≤ 0 .

Нормальным вектором линии, заданной нормальным уравнением прямой в прямоугольной системе координат O х у, является вектор n → = (A ,   B) . Эта прямая проходит на расстоянии C от начала координат в направлении вектора n → = (A , B) .

Еще одним вариантом записи нормального уравнения прямой линии является cos α · x + cos β · y - p = 0 , где cos α и cos β - это два действительных числа, которые представляют собой направляющие косинусы нормального вектора прямой единичной длины. Это значит, что n → = (cos α , cos β) , справедливо равенство n → = cos 2 α + cos 2 β = 1 , величина p ≥ 0 и равна расстоянию от начала координат до прямой.

Пример 7

Рассмотрим общее уравнение прямой - 1 2 · x + 3 2 · y - 3 = 0 . Это общее уравнение прямой является нормальным уравнением прямой, так как n → = A 2 + B 2 = - 1 2 2 + 3 2 = 1 и C = - 3 ≤ 0 .

Уравнение задает в декартовой системе координат 0ху прямую линию, нормальный вектор которой имеет координаты - 1 2 , 3 2 . Линия удалена от начала координат на 3 единицы в направлении нормального вектора n → = - 1 2 , 3 2 .

Обращаем ваше внимание на то, что нормальное уравнение прямой на плоскости позволяет находить расстояние от точки до прямой на плоскости.

Если в общем уравнении прямой A x + B y + C = 0 числа А, В и С таковы, что уравнение A x + B y + C = 0 не является нормальным уравнением прямой, то его можно привести к нормальному виду. Подробнее об этом читайте в статье «Нормальное уравнение прямой».

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Скачать с Depositfiles

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

Лекция № 7. Тема 1 : Линии на плоскости и их уравнения

1.1. Линии и их уравнения в декартовой системе координат

В аналитической геометрии линии на плоскости рассматриваются как геометрическое место точек (г.м.т.), обладающих одинаковым свойством, общим для всех точек линии.

Определение. Уравнение линии
– это уравнение с двумя переменными
х и у , которому удовлетворяют координаты любой точки линии и не удовлетворяют координаты никакой другой точки, не лежащей на данной линии.

Верно и обратное, т.е. любое уравнение у

вида , вообще говоря, в декартовой

системе координат (ДСК) определяет линию

как г.м.т., координаты которых удовлетворяют

этому уравнению. О х

Замечание 1. Не всякое уравнение вида определяет линию. Например, для уравнения
не существует точек, координаты, которых удовлетворяли бы этому уравнению. Такие случаи в дальнейшем рассматривать не будем.
Это случай так называемых мнимых линий.

Пример 1. Составить уравнение окружности радиуса R с центром в точке
.

Для любой точки , лежащей у М

на окружности, в силу определения R

окружности как г.м.т., равноудаленных

от точки , получаем уравнение х

1.2. Параметрические уравнения линий

Существует ещё один способ задавать линию на плоскости при помощи уравнений, которые называются параметрическими :

Пример 1. Линия задана параметрическими уравнениями

Требуется получить уравнение этой линии в ДСК.

Исключим параметр t . Для этого возведём обе части этих уравнений в квадрат и сложим

Пример 2. Линия задана параметрическими уравнениями


а

Требуется получить уравнение

этой линии в ДСК. — а а

Поступим аналогично, тогда получим

а

Замечание 2. Следует отметить, что параметром t в механике явля-ется время.

1.3. Уравнение линии в полярной системе координат

ДСК является не единственным способом определять положение точки и, следовательно, задавать уравнение линии. На плоскости часто целесо-образно использовать так называемую полярную систему координат (ПСК).

ПСК будет определена, если задать точку О – полюс и луч ОР, исхо-дящий из этой точки, который называется полярной осью. Тогда положение любой точки определяется двумя числами: полярным радиусом
и полярным углом – угол между

полярной осью и полярным радиусом.

Положительное направление отсчета

полярного угла от полярной оси

считается против часовой стрелки.

Для всех точек плоскости
, О Р

а для однозначности полярного угла считается
.

Если начало ДСК совместить с

полюсом, а ось Ох направить по

полярной оси, то легко убедиться у

в связи между полярными и

декартовыми координатами:


О х Р

Обратно,

(1)

Если уравнение линии в ДСК имеет вид , то в ПСК — Тогда из этого уравнения можно получить урав-нение в виде

Пример 3. Составить уравнение окружности в ПСК, если центр окружности находится в полюсе.

Используя формулы перехода (1) от ДСК к ПСК, получим

Пример 4. Составить уравнение окружности,

если полюс на окружности, а полярная ось у

проходит через диаметр.

Поступим аналогично

О 2 R х

R

Данное уравнение можно получить и

из геометрических представлений (см. рис.).

Пример 5. Построить график линии

Перейдём к ПСК. Уравнение

примет вид
О

График линии построим с а

учётом его симметрии и ОДЗ

функции:

Данная линия называется лемнискатой Бернулли .

1.4. Преобразование системы координат.

Уравнение линии в новой системе координат

1. Параллельный перенос ДСК. у

Рассмотрим две ДСК, имеющие М

одинаковое направление осей, но

различные начала координат.

В системе координат Оху точка

относительно системы
О х

имеет координаты
. Тогда имеем

и

В координатной форме полученное векторное равенство имеет вид

или
. (2)

Формулы (2) представляют собой формулы перехода от «старой» системы координат Оху к «новой» системе координат и наоборот.

Пример 5. Получить уравнение окружности выполнив параллельный перенос системы координат в центр окружности.

Из формул (2) следует
у О

Как известно, любая точка на плоскости определяется двумя координатами в какой- либо системе координат. Системы координат могут быть различными в зависимости от выбора базиса и начала координат.

Определение: Уравнением линии называется соотношение y = f(x) между координатами точек, составляющих эту линию.

Отметим, что уравнение линии может быть выражено параметрическим способом, то есть каждая координата каждой точки выражается через некоторый независимый параметр t . Характерный пример – траектория движущейся точки. В этом случае роль параметра играет время.

Различные виды уравнения прямой

Общее уравнение прямой.

Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно, т.е. А 2 + В 2 ¹ 0. Это уравнение первого порядка называют общим уравнением прямой.

В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

C = 0, А ¹ 0, В ¹ 0 – прямая проходит через начало координат

А = 0, В ¹ 0, С ¹ 0 { By + C = 0}- прямая параллельна оси Ох

В = 0, А ¹ 0, С ¹ 0 { Ax + C = 0} – прямая параллельна оси Оу

В = С = 0, А ¹ 0 – прямая совпадает с осью Оу

А = С = 0, В ¹ 0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.

Уравнение прямой, проходящей через две точки.

Пусть в пространстве заданы две точки M 1 (x 1 , y 1 , z 1) и M 2 (x 2, y 2 , z 2), тогда уравнение прямой, проходящей через эти точки:

Если какой- либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель. На плоскости записанное выше уравнение прямой упрощается:

если х 1 ¹ х 2 и х = х 1 , еслих 1 = х 2 .

Дробь = k называется угловым коэффициентом прямой.

Уравнение прямой по точке и угловому коэффициенту.

Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

и обозначить , то полученное уравнение называется уравнением прямой с угловым коэффициентом k.

Уравнение прямой в отрезках.

Если в общем уравнении прямой Ах + Ву + С = 0 С ¹ 0, то, разделив на –С, получим: или

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.

Нормальное уравнение прямой.

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется нормирующем множителем, то получим

xcosj + ysinj - p = 0 –

нормальное уравнение прямой.

Знак ± нормирующего множителя надо выбирать так, чтобы m×С < 0.

р – длина перпендикуляра, опущенного из начала координат на прямую, а j - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

Угол между прямыми на плоскости.

Если заданы две прямые y = k 1 x + b 1 , y = k 2 x + b 2 , то острый угол между этими прямыми будет определяться как

Две прямые параллельны, если k 1 = k 2 .

Две прямые перпендикулярны, если k 1 = -1/k 2 .

Теорема. Прямые Ах + Ву + С = 0 и А 1 х + В 1 у + С 1 = 0 параллельны, когда пропорциональны коэффициенты А 1 = lА, В 1 = lВ. Если еще и С 1 = lС, то прямые совпадают.

Координаты точки пересечения двух прямых находятся как решение системы двух уравнений.

Расстояние от точки до прямой.

Теорема. Если задана точка М(х 0 , у 0), то расстояние до прямой Ах + Ву + С =0 определяется как


Лекция 5

Введение в анализ. Дифференциальное исчисление функции одной переменной.

ПРЕДЕЛ ФУНКЦИИ

Предел функции в точке.

0 a - D a a + D x

Рисунок 1. Предел функции в точке.

Пусть функция f(x) определена в некоторой окрестности точки х = а (т.е. в самой точке х = а функция может быть и не определена)

Определение. Число А называется пределом функции f(x) при х®а, если для любого e>0 существует такое число D>0, что для всех х таких, что

0 < ïx - aï < D

верно неравенство ïf(x) - Aï< e.

То же определение может быть записано в другом виде:

Если а - D < x < a + D, x ¹ a, то верно неравенство А - e < f(x) < A + e.

Запись предела функции в точке:

Определение .

Если f(x) ® A 1 при х ® а только при x < a, то - называется пределом функции f(x) в точке х = а слева, а если f(x) ® A 2 при х ® а только при x > a, то называется пределом функции f(x) в точке х = а справа.

Приведенное выше определение относится к случаю, когда функция f(x) не определена в самой точке х = а, но определена в некоторой сколь угодно малой окрестности этой точки.

Пределы А 1 и А 2 называются также односторонними пределами функции f(x) в точке х = а. Также говорят, что А – конечный предел функции f(x).

Уравнение линии как геометрического места точек. Различные виды уравнений прямой. Исследование общего уравнения прямой. Построение прямой по ее уравнению

Уравнением линии называется уравнение с переменными x и y , которому удовлетворяют координаты любой точки этой линии и только они.

Входящие в уравнение линии переменные x и y называются текущими координатами, а буквенные постоянные - параметрами.

Чтобы составить уравнение линии как геометрического места точек, обладающих одинаковым свойством, нужно:

1) взять произвольную (текущую) точку M (x , y ) линии;
2) записать равенством общее свойство всех точек M линии;
3) входящие в это равенство отрезки (и углы) выразить через текущие координаты точки M (x , y ) и через данные в задаче.


В прямоугольных координатах уравнение прямой на плоскости задается в одном из следующих видов:

1. Уравнение прямой с угловым коэффициентом

y = kx + b , (1)

где k - угловой коэффициент прямой, т. е. тангенс того угла, который прямая образует с положительным направлением оси Ox , причем этот угол отсчитывается от оси Ox к прямой против часовой стрелки, b - величина отрезка, отсекаемого прямой на оси ординат. При b = 0 уравнение (1) имеет вид y = kx и соответствующая ему прямая проходит через начало координат.

Уравнением (1) может быть определена любая прямая на плоскости, не перпендикулярная оси Ox .

Уравнение прямой с угловым коэффициентом разрешено относительно текущей координаты y .

2. Общее уравнение прямой

Ax + By + C = 0. (2)

Частные случаи общего уравнения прямой.

Поделиться