Уравнение теплопроводности цилиндрической системе координат. Задачи теплопроводности в различных системах координат. Декартова система координат. х i = r, φ, z – цилиндрическая система координат

где с р , Дж/(кг×К) – изобарная теплоемкость; r , кг/м 3 – плотность; l , Вт/(м×К) – коэффициент теплопроводности; w х, w y , w z – проекции вектора скорости движения жидкости; q v , Вт/м 3 – объемная плотность внутреннего тепловыделения жидкости.

Уравнение (1.12) записано для случая l=const .

Дифференциальное для твердых тел называется дифференциальным уравнением теплопроводности и может быть получено из (1.12) при условии w х = w y = w z = 0, с р = с v =с:

,

где - коэффициент температуропроводности, характеризует скорость изменения температуры в теле. Значения а = f (t) для различных тел приводятся в справочниках.

Дифференциальное уравнение теплопроводности

(1.13)

описывает нестационарное температурное поле твердых тел с внутренним тепловыделением (с внутренними источниками тепла). Такими источниками тепла могут быть: джоулева теплота, выделяемая при прохождении электрического тока по проводникам; теплота, выделяемая ТВЭЛами ядерных реакторов и т.д.

Дифференциальное уравнение теплопроводности (1.13), записанное в декартовых координатах, можно представить в цилиндрических (r , z , φ) и сферических (r , φ , ψ).

В частности, в цилиндрических координатах (r – радиус; φ – полярный угол; z - аппликата) дифференциальное уравнение теплопроводности имеет вид

(1.14)

Условия однозначности

Дифференциальное уравнение описывает множество процессов теплопроводности. Чтобы выделить из этого множества конкретный процесс, необходимо сформулировать особенности этого процесса, которые называются условиями однозначности и включают в себя:

· геометрические условия , характеризующие форму и размеры тела;

· физические условия , характеризующие свойства участвующих в теплообмене тел;

· граничные условия , характеризующие условия протекания процесса на границе тела;



· начальные условия , характеризующие начальное состояние системы при нестационарных процессах .

При решении задач теплопроводности различают:

· граничные условия первого рода , когда задается распределение температуры на поверхности тела:

t c = f (x, y, z, τ) или t c =const ;

· граничные условия второго рода , когда задается плотность теплового потока на поверхности тела:

q c = f (x, y, z, τ) или q c =const ;

· граничные условия третьего рода , когда задается температура среды t ж и коэффициент теплоотдачи между поверхностью и средой.

В соответствии с законом Ньютона-Рихмана тепловой поток, передаваемый с 1м 2 поверхности в среду с температурой t ж ,

В то же время этот тепловой поток подводится к 1м 2 поверхности из глубинных слоев тела теплопроводностью

Тогда уравнение теплового баланса для поверхности тела запишется в виде

(1.15)

Уравнение (1.15) является математической формулировкой граничных условий третьего рода.

Система дифференциальных уравнений совместно с условиями однозначности представляет собой математическую формулировку задачи. Решения дифференциальных уравнений содержат константы интегрирования, которые определяются с помощью условий однозначности.

Контрольные вопросы и задания

1. Проанализируйте, какими способами передается теплота от горячей воды к воздуху через стенку батареи отопления: от воды к внутренней поверхности, через стенку, от наружной поверхности к воздуху.

2. Почему в правой части уравнения (1.3) стоит минус?

3. Проанализируйте с помощью справочной литературы зависимость λ(t) для металлов, сплавов, теплоизоляционных материалов, газов, жидкостей и ответьте на вопрос: как изменяется коэффициент теплопроводности с изменением температуры для этих материалов?

4. Как определяется тепловой поток (Q , Вт) при конвективной теплоотдаче, теплопроводности, тепловом излучении?

5. Запишите дифференциальное уравнение теплопроводности в декартовых координатах, описывающее трехмерное стационарное температурное поле без внутренних источников теплоты.

6. Запишите дифференциальное уравнение температурного поля проволоки, которая длительное время находится под напряжением при постоянной электрической нагрузке.

2. ТЕПЛОПРОВОДНОСТЬ И ТЕПЛОПЕРЕДАЧА
ПРИ СТАЦИОНАРНОМ РЕЖИМЕ

2.1. Теплопроводность плоской стенки

Дано: плоская однородная стенка толщиной δ (рис. 2.1) с постоянным коэффициентом теплопроводности λ и постоянными температурами t 1 и t 2 на поверхностях.

Определить: уравнение температурного поля t=f (x) и плотность теплового потока q , Вт/м 2 .

Температурное поле стенки описывается дифференциальным уравнением теплопроводности (1.3) при следующих условиях:

· т. к. режим стационарный;

· т.к. отсутствуют внутренние источники теплоты;

· т.к. температуры t 1 и t 2 на поверхностях стенки постоянны.

Температура стенки является функцией только одной координаты х и уравнение (1.13) принимает вид

Выражения (2.1), (2.2), (2.3) являются математической постановкой задачи, решение которой позволит получить искомое уравнение температурного поля t= f (x) .

Интегрирование уравнения (2.1) дает

При повторном интегрировании получим решение дифференциального уравнения в виде

Зависимость t= f (x) , согласно (2.5) – прямая линия (рис. 2.1), что справедливо при λ=const .

Для определения плотности теплового потока, проходящего через стенку, воспользуемся законом Фурье

С учетом получим расчетную формулу для плотности теплового потока, передаваемого через плоскую стенку,

Формулу (2.6) можно записать в виде

где

Величина называется термическим сопротивлением теплопроводности плоской стенки.

На основании уравнения

q R=t 1 – t 2

можно сделать вывод о том, что термическое сопротивление стенки прямо пропорционально перепаду температур по толщине стенки.

Учесть зависимость коэффициента теплопроводности от температуры, λ(t) , можно, если в уравнения (2.6) и (2.7) подставить значения λ ср для интервала температур t 1 –t 2 .

Рассмотрим теплопроводность многослойной плоской стенки , состоящей, например, из трех слоев
(рис. 2.2).

Дано: δ 1 , δ 2 , δ 3 , λ 1 , λ 2 , λ 3 , t 1 =const , t 4 =const .

Определить: q , Вт/м 2 ; t 2 , t 3 .

При стационарном режиме и постоянных температурах поверхностей стенки тепловой поток, передаваемый через трехслойную стенку, можно представить системой уравнений:

Температуры на границах слоев t 2 и t 3 можно рассчитать по уравнениям (2.8) – (2.10) после того, как найдена плотность теплового потока (q ) по (2.12).

Общий вид уравнения (2.12) для многослойной плоской стенки, состоящей из п однородных слоев с постоянными температурами на наружных поверхностях и , имеет вид

2.2. Теплопроводность цилиндрической стенки
при граничных условиях первого рода

Дано: Однородная цилиндрическая стенка (стенка трубы) с внутренним радиусом r 1 , наружным – r 2 , длиной , с постоянным коэффициентом теплопроводности λ , с постоянными температурами на поверхностях t 1 и t 2 .
(рис. 2.3).

Определить: уравнение температурного поля
t = f (r) , тепловой поток, передаваемый через стенку
Q , Вт.

Дифференциальное уравнение теплопроводности в цилиндрических координатах (1.14) для условий данной задачи:

принимает вид

Порядок решения системы уравнений (2.15) – (2.17) тот же, что и в случае плоской стенки: находится общий интеграл дифференциального уравнения второго порядка (2.15), который содержит две константы интегрирования
с 1 и с 2 . Последние определяются с помощью граничных условий (2.16) и (2.17) и после подстановки их значений в решение дифференциального уравнения (общий интеграл) получаем уравнение температурного поля цилиндрической стенки t = f (r) в виде

Если взять производную от правой части уравнения (2.18) и подставить в (2.19), получим расчетную формулу для теплового потока цилиндрической стенки

(2.20)

В технических расчетах часто тепловой поток вычисляется для 1 м длины трубы:

и называется линейной плотностью теплового потока .

Запишем уравнение (2.20) в виде

где термическое сопротивление теплопроводности цилиндрической стенки .

Для трехслойной цилиндрической стенки (трубы, покрытой двумя слоями тепловой изоляции) с известными постоянными температурами поверхностей (t 1 и t 4 ), с известными геометрическими размерами (r 1 , r 2 , r 3 , r 4 , ) и коэффициентами теплопроводности слоев (λ 1 , λ 2 , λ 3 ) (рис. 2.4) можно записать следующие уравнения для теплового потока Q :

Температуры на границах слоев (t 2 , t 3) можно рассчитать по уравнениям (2.21).

Для многослойной цилиндрической стенки , состоящей из п слоев, формулу (2.22) можно записать в общем виде

(2.23)

Эффективный коэффициент теплопроводности для многослойной цилиндрической стенки, как и для многослойной плоской стенки, определяется из равенства суммы термических сопротивлений многослойной стенки термическому сопротивлению однородной стенки той же толщины, что и многослойная. Так, для двухслойной тепловой изоляции трубы
(рис. 2.4) эффективный коэффициент теплопроводности (λ эф) определ ится из равенства

2.3. Теплопроводность плоской и цилиндрической стенок
при граничных условиях третьего рода (теплопередача)

Граничные условия третьего рода состоят в задании температуры жидкости (t ж) и коэффициента теплоотдачи () между поверхностью стенки и жидкостью.

Передача тепла от одной жидкости к другой через разделяющую их стенку называется теплопередачей .

Примерами теплопередачи служит перенос теплоты от дымовых газов к воде через стенку трубы парового котла, перенос тепла от горячей воды к окружающему воздуху через стенку батареи отопления и т.д.

Теплообмен между поверхностью и средой (теплоносителем) может быть конвективным , если теплоноситель – жидкость (вода, нефть и т.д.) или радиационно-конвективным , когда теплота передается путем конвективного теплообмена и излучением, если теплоноситель – газ (дымовые газы, воздух и т.д.).

Рассмотрим теплопередачу через плоскую и цилиндрическую стенки при условии только конвективного теплообмена на поверхностях. Теплопередача с радиационно-конвективным теплообменом (сложным теплообменом) на поверхностях будет рассмотрена позже.Вт/м 2 теплопередачи (Q

если a 1 и a 2 соизмеримы.

Теплопередача через многослойную цилиндрическую стенку рассчитывается по формуле

(2.35)

где F 1 и F 2 – площади внутренней и наружной поверхностей многослойной цилиндрической стенки.

Решение задач по определению температурного поля осуществляется на основании дифференциального уравнения теплопроводности, выводы которого показаны в специальной литературе. В данном пособии приводятся варианты дифференциальных уравнений без выводов.

При решении задач теплопроводности в движущихся жидкостях, характеризующих нестационарное трехмерное температурное поле с внутренними источниками теплоты, используется уравнение

Уравнение (4.10) является дифференциальным уравнением энергии в декартовой системе координат (уравнение Фурье  Кирхгофа). В таком виде оно применяется при изучении процесса теплопроводности в любых телах.

Если  x = y = z =0, т. е. рассматривается твердое тело, и при отсутствии внутренних источников теплоты q v =0, тогда уравнение энергии (4.10) переходит в уравнение теплопроводности для твердых тел (уравнение Фурье)

(4.11)

Величину С=a, м 2 сек в уравнении (4.10) называют коэффициентом температуропроводности, который является физическим параметром вещества, характеризующим скорость изменения температуры в теле при неустановившихся процессах.

Если коэффициент теплопроводности характеризует способность тел проводить теплоту, то коэффициент температуропроводности является мерой теплоинерционных свойств тела. Из уравнения (4.10) следует, что изменение температуры во времени t для любой точки пространства пропорционально величине «а», т. е. скорость изменения температуры в любой точке тела будет тем больше, чем больше коэффициент температу-ропроводности. Поэтому при прочих равных условиях выравнивание температур во всех точках пространства будет происходить быстрее в том теле, которое обладает большим коэффициентом температуропроводности. Коэффициент температуропроводности зависит от природы вещества. Например, жидкости и газы обладают большой тепловой инерционностью и, следовательно, малым коэффициентом температуропроводности. Металлы обладают малой тепловой инерционностью, так как они имеют большой коэффициент температуропроводности.

Для обозначения суммы вторых производных по координатам в уравнениях (4.10) и (4.11) можно использовать символ  2 , так называемый оператор Лапласа, и тогда в декартовой системе координат

Выражение  2 t в цилиндрической системе координат имеет вид

Для твердого тела в стационарных условиях с внутренним источником теплоты уравнение (4.10) преобразуется в уравнение Пуассона

(4.12)

Наконец, для стационарной теплопроводности и при отсутствии внутренних источников теплоты уравнение (4.10) принимает вид уравнения Лапласа

(4.13)

Дифференциальное уравнение теплопроводности в цилиндрических координатах с внутренним источником теплоты

(4.14)

4.2.6. Условия однозначности для процессов теплопроводности

Так как дифференциальное уравнение теплопроводности выведено на основе общих законов физики, то оно характеризует явление теплопроводности в самом общем виде. Поэтому можно сказать, что полученное дифференциальное уравнение характеризует целый класс явлений теплопроводности. Чтобы из бесчисленного количества выделить конкретно рассматриваемый процесс и дать его полное математическое описание, к дифференциальному уравнению необходимо присоединить математическое описание всех частных особенностей рассматриваемого процесса. Эти частные особенности, которые совместно с дифференциальным уравнением дают полное математическое описание конкретного процесса теплопроводности, называются условиями однозначности или краевыми, которые включают в себя:

а) геометрические условия, характеризующие форму и размеры тела, в котором протекает процесс;

б) физические условия, характеризующие физические свойства среды и тела (, С z , , а и др.);

в) временные (начальные) условия, характеризующие распределение температур в изучаемом теле в начальный момент времени;

г) граничные условия, характеризующие взаимодействие рассматриваемого тела с окружающей средой.

Начальные условия необходимы при рассмотрении нестационарных процессов и состоят в задании закона распределения температуры внутри тела в начальный момент времени. В общем случае начальное условие аналитически может быть записано следующим образом при =0:

t =  1 x, y, z. (4.15)

В случае равномерного распределения температуры в теле начальное условие упрощается: при =0; t=t 0 =idem.

Граничные условия могут быть заданы несколькими способами.

А. Граничные условия первого рода, задающие распределение температуры на поверхности тела t c для каждого момента времени:

t c =  2 x, y, z, . (4.16)

В частном случае, когда температура на поверхности является постоянной на протяжении всего времени протекания процессов теплообмена, уравнение (4.16) упрощается и принимает вид t c =idem.

Б. Граничные условия второго рода, задающие величину плотности теплового потока для каждой точки поверхности и любого момента времени. Аналитически это можно представить следующим образом:

q n = x, y, z, , (4.17)

где q n  плотность теплового потока на поверхности тела.

В простейшем случае плотность теплового потока по поверхности и во времени остается постоянной q n =idem. Такой случай теплообмена имеет место, например, при нагревании различных металлических изделий в высокотемпературных печах.

В. Граничные условия третьего рода, задающие температуру окружающей среды t ж и закон теплообмена между поверхностью тела и окружающей средой. Для описания процесса теплообмена между поверхностью тела и средой используется закон Ньютона.

Согласно закону Ньютона, количество теплоты, отдаваемое единицей поверхности тела в единицу времени, пропорционально разности температур тела t c и окружающей среды t ж

q = t c  t ж . (4.18)

Коэффициент теплоотдачи харктеризует интенсивность теплообмена между поверхностью тела и окружающей средой. Численно он равен количеству теплоты, отдаваемому (или воспринимаемому) единицей поверхности в единицу времени при разности температур между поверхностью тела и окружающей средой, равной одному градусу.

Согласно закону сохранения энергии, количество теплоты, которое отводится с единицы поверхности в единицу времени вследствие теплоотдачи (4.18), должно равняться теплоте, подводимой к единице поверхности в единицу времени вследствие теплопроводности из внутренних объемов тела (4.7), т. е.

, (4.19)

где n  нормаль к поверхности тела; индекс «С» указывает на то, что температура и градиент относятся к поверхности тела (при n=0).

Окончательно граничное условие третьего рода можно записать в виде

. (4.20)

Уравнение (4.20), по существу, является частным выражением закона сохранения энергии для поверхности тела.

Г. Граничные условия четвертого рода, харктеризующие условия теплообмена системы тел или тела с окружающей средой по закону теплопроводности. Предполагается, что между телами осуществляется идеальный контакт (температуры соприкасающихся поверхностей одинаковы). В рассматриваемых условиях имеет место равенство тепловых потоков, проходящих через поверхность соприкосновения:

. (4.21)

Постановка задач ТМО

Имеем объем, на который воздействуют тепловые нагрузки необходимо определить численное значение q V и распределение ее по объему.

Рис.2-Внешние и внутренние источники трения

1. Определить геометрию исследуемого объема в любой выбранной системе координат.

2. Определить физические характеристики исследуемого объема.

3. Определить условия, инициирующие процесс ТМО.

4. Уточнить законы, определяющие перенос тепла в исследуемом объеме.

5. Определить начальное тепловое состояние в исследуемом объеме.

Задачи, решаемые при анализе ТМО:

1.«Прямые» задачи ТМО

Дано: 1,2,3,4,5

Определить: распределение температур в пространстве и во времени (далее 6).

2.«Обратные» задачи ТМО (инверсные):

а) обратные граничные задачи

Дано: 1,2,4,5,6

Определить: 3;

б) обратные коэффициенты задачи

Дано: 1,3,4,5,6

Определить: 2;

в) обратная ретроспективная задача

Дано: 1,2,3,4,6

Определить: 5.

3.«Индуктивные» задачи ТМО

Дано: 1,2,3,5,6

Определить: 4.

ФОРМЫ ПЕРЕНОСА ТЕПЛА И ТЕПЛОВЫЕ ПРОЦЕССЫ

Различают 3 формы переноса тепла:

1) теплопроводность в твердых телах (определяется микрочастицами, а в металлах свободными электронами);

2) конвекция (определяется макрочастицами подвижной среды);

3) тепловое излучение (определяется электромагнитными волнами).

Теплопроводность твердых тел

Общие понятия

Поле температур – это совокупность значений температуры в исследуемом объеме, взятая в некоторый момент времени.

t(x, y, z, τ) - функция, определяющая поле температур.

Различают стационарное и нестационарное поле температур:

стационарное - t(x,y,z);

нестационарное - t(x, y, z, τ) .

Условием стационарности является:

Возьмем некое тело и соединим точки с равными температурами

Рис.3-Градиент температур и тепловой поток

grad t - градиент температуры;

с другой стороны: .

Закон Фурье ‑ тепловой поток в твердых телах пропорционален градиенту температуры, поверхности, через которую он проходит и рассматриваемому интервалу времени.

Коэффициент пропорциональности называется коэффициентом теплопроводности λ , Вт/м·К.

показывает, что тепло распространяется в направлении, противоположном вектору градиента температур.



;

Для бесконечно малой поверхности и промежутка времени:

Уравнение теплопроводности (уравнение Фурье)

Рассмотрим бесконечно малый объем: dv =dx ·dy ·dz

Рис.4-Тепловое состояние бесконечно малого объёма

Имеем ряд Тейлора:

Аналогично:

; ; .

В общем случае имеем в кубике q V . В основе вывода лежит обобщенный закон сохранения энергии:

.

В соответствии с законом Фурье:

; ; .

После преобразований имеем:

.

Для стационарного процесса:

Пространственная мерность задач определяется количеством направлений, в которых происходит перенос тепла.

Одномерная задача: ;

для стационарного процесса: ;

для :

для : ;

a - коэффициент температуропроводности, .декартова система;

k = 1 , ξ = x - цилиндрическая система;

k = 2 , ξ = x - сферическая система.

Условия однозначности

Условие однозначности это условия, позволяющее выделить из множества допустимых решений одно-единственное, соответствующее поставленной задаче.

Изучение любого физического процесса связано с установле­нием зависимости между величинами, характеризующими данный процесс. Для сложных процессов, к которым относится передача тепла теплопроводностью, при установлении зависимости между величинами удобно воспользоваться методами математической фи­зики, которая рассматривает протекание процесса не во всем изу­чаемом пространстве, а в элементарном объеме вещества в течение бесконечно малого отрезка времени . Связь между величинами, участ­вующими в передаче тепла теплопроводностью, устанавливается в этом случае так называемым дифференциальным уравнением теп­лопроводности . В пределах выбранного элементарного объема и бес­конечно малого отрезка времени становится возможным пренебречь изменением некоторых величии, характеризующих процесс.

При выводе дифференциального уравнения теплопроводности принимаются следующие допущения: физические величины λ, с р и ρ постоянны; внутренние источники тепла отсутствуют; тело одно­родно и изотропно; используется закон сохранения энергии, ко­торый для данного случая формулируется следующим образом: разность между количеством тепла, вошедшим вследствие тепло­проводности в элементарный параллелепипед за время и вышед­шим из него за то же время, расходуется на изменение внутренней энергии рассматриваемого элементарного объема. В результате приходим к уравнению:

Величину называют оператором Лапласа и обычно обозначают сокращенно 2 t (знак читается «набла»); величину λ / называют коэффициентом температуропроводности и обозначают буквой а. При указанных обозначениях дифференциальное уравнение теплопроводности принимает вид

Уравнение (1-10) называется дифференциальным уравнением теплопроводности, или уравнением Фурье, для трехмерного нестационарного температурного поля при отсутствии внутренних источников тепла. Оно является основным уравнением при изучении вопросов нагревания и охлаждения тел в процессе передачи теплоты тепло­проводностью и устанавливает связь между временным и пространст­венным изменениями температуры в любой точке поля.

Коэффициент температуропроводности а = λ/cρ является физическим параметром вещества и имеет единицу измерения м 2 /c. В нестационарных тепловых процессах величина а характеризует скорость изменения температуры. Если коэффициент теплопроводностихарактеризует способность тел проводить теплоту, то коэффициент температуропроводности а есть мера теплоинерционных свойств тел. Из уравнения (1-10) следует, что изменение температуры во времени ∂t / ∂τ для любой точки тела пропорционально величине а .Поэтому, при одинаковых условиях быстрее увеличится температура у того тела, которое имеет больший коэффициент температуропроводности. Газы имеют малые, а металлы – большие значения коэффициента температуропроводности.


Дифференциальное уравнение теплопроводности с источниками теплоты внутри тела будет иметь вид

где q v - количество выделяемой теплоты в единице объема веще­ства в единицу времени, с - массовая теплоемкость тела, ρ - плотность тела.

Дифференциальное уравнение теплопроводности в цилиндричес­ких координатах с внутренним источником теплоты будет иметь вид

где r - радиус-вектор в цилиндрической системе координат; φ - угол.

1. Дифференциальное уравнение теплопроводности без внутренних источников теплоты (= 0) :

2. Дифференциальное уравнение теплопроводности без внутренних источников теплоты в цилиндрических координатах.

В цилиндрических координатах, в которых где r – радиус-вектор, – полярный угол, уравнение будет иметь вид

Условия однозначности для процессов теплопроводности . Дифференциальное уравнение теплопроводности описывает не одно, а целый класс явлений теплопроводности. Для получения аналитического описания конкретного процесса необходимо указать его частные особенности, которые совместно с дифференциальным уравнением дают полное математическое описание конкретного процесса теплопроводности и называются условиями однозначности или краевыми условиями.

Условия однозначности включают в себя:

Геометрические условия, характеризующие форму и размеры тела, в котором протекает процесс;

Физические условия, характеризующие физические свойства среды и тела;

Временные или начальные условия, характеризующие распределение температуры в теле в начальный момент времени;

Граничные условия, характеризующие условия взаимодействия между рассматриваемым телом и окружающей средой.

Граничные условия могут быть заданы несколькими способами.

Граничными условиями первого рода задается распределение температуры на поверхности тела для каждого момента времени:

Граничными условиями второго рода задаются значения теплового потока для каждой точки поверхности тела и любого момента времени:

Граничными условиями третьего рода задаются температура окружающей среды и закон теплообмена между телом и средой, в качестве которого используют закон теплоотдачи (уравнение Ньютона-Рихмана):

Согласно этому закону плотность теплового потока на поверхности

тела пропорциональна разности температур между поверхностью стенки и окружающей средой. Коэффициент пропорциональности в этом уравнении называют коэффициентом теплоотдачи и обозначают a, [Вт/(м 2 ×К)]. Он характеризует интенсивность теплообмена между поверхностью тела и окружающей средой.

С другой стороны, эту же плотность теплового потока можно найти из уравнения:

где индекс «с» указывает на то, что градиент температуры рассчитывается на поверхности тела. Получаем аналитическое выражение для граничных условий третьего рода:

Граничными условиями четвертого рода рассматривается случай, когда два или большее количество тел плотно соприкасаются между собой. В этом случае тепловой поток, прошедший через поверхность одного тела, пройдет и через поверхность другого тела (тепловые потери в месте контакта отсутствуют).


Лекция 2. Раздел 2. Теплопроводность при стационарном режиме

Поделиться