Функции комплекса гольджи в клетке человека. Функции комплекс гольджи. Функции гладкой эндоплазматической сети

Комплекс Гольджи расположен около ядра вслед за ЭПР и часто вблизи центриоли, образован стопкой из 3-10 уплощенных и слегка изогнутых цистерн с расширенными концами. Место созревания и сортировки белков.

Во многих клетках животных, например в нервных, он имеет форму сложной сети, расположенной вокруг ядра. В клетках растений и простейших комплекс Гольджи представлен отдельными тельцами серповидной или палочковидной формы. Строение этого органоида сходно в клетках растительных и животных организмов, несмотря на разнообразие его формы.

В состав комплекса Гольджи входят: полости, ограниченные мембранами и расположенные группами (по 5-10); крупные и мелкие пузырьки, расположенные на концах полостей. Все эти элементы составляют единый комплекс.

Цистерны к. Г. образуют три основных компартмента: цис-сторона, транс-сторона, промежуточный компартмент. С к.Г.

18. Комплекс Гольджи, его строение и функции. Лизосомы. Их строение и функции. Типы лизосом.

тесно связан и всегда рассматривается вместе транс-сеть Гольджи.

Цис-сторона (формирующаяся) включает цистерны, обращенные к расширенным элементам гранулярной эндоплазматической сети, а также небольшие транспортные пузырьки.

Транс-сторона (зрелая) образована цистернами, обращенными к вакуолям и секреторным гранулам. На небольшом расстоянии от краевой цистерны лежит транс-сеть Г.

Промежуточный компартмент включает небольшое количество цистерн между цис- и транс-сторонами.

Функции комплекса Гольджи

1.Модификация секреторного продукта: ферменты к.Г. гликозилируют белки и липиды, образующиеся здесь гликопротеины, протеогликаны, гликолипиды и сульфатированные гликозаминогликаны предназначены для последующей секреции.

2.Концентрирование секреторных продуктов происходит в конденсирующих вакуолях, расположенных на транс стороне.

3.Упаковка секреторного продукта, образование участвующих в экзоцитозе секреторных гранул.

4.Сортировка и упаковка секреторного продукта, образование секреторных гранул.

Комплекс Гольджи выполняет много важных функций. По каналам эндоплазматической сети к нему транспортируются продукты синтетической деятельности клетки — белки, углеводы и жиры. Все эти вещества сначала накапливаются, а затем в виде крупных и мелких пузырьков поступают в цитоплазму и либо используются в самой клетке в процессе ее жизнедеятельности, либо выводятся из нее и используются в организме. Например, в клетках поджелудочной железы млекопитающих синтезируются пищеварительные ферменты, которые накапливаются в полостях органоида. Затем образуются пузырьки, наполненные ферментами. Они выводятся из клеток в проток поджелудочной железы, откуда перетекают в полость кишечника. Еще одна важная функция этого органоида заключается в том, что на его мембранах происходит синтез жиров и углеводов (полисахаридов), которые используются в клетке и которые входят в состав мембран. Благодаря деятельности комплекса Гольджи происходят обновление и рост плазматической мембраны.

Комплекс Гольджи участвует в накоплении продуктов, синтезированных в эндоплазматической сети, в их химической перестройке и созревании. В цистернах комплекса Гольджи происходит синтез полисахаридов, их комплексирование с белковыми молекулами. Одна из главных функций комплекса Гольджи - формирование готовых секреторных продуктов, которые выводятся за пределы клетки путем экзоцитоза. Важнейшими для клетки функциями комплекса Гольджи также являются обновление клеточных мембран, в том числе и участков плазмолеммы, а также замещение дефектов плазмолеммы в процессе секреторной деятельности клетки. Комплекс Гольджи считается источником образования первичных лизосом, хотя их ферменты синтезируются и в гранулярной сети.

Комплекс Гольджи представляет собой стопку мембранных мешочков (цистерн) и связанную с ней систему пузырьков.

На наружной, вогнутой стороне стопки из пузырьков, отпочковывающихся от глад. ЭПС, постоянно формируются новые цистерны, а на внутренней стороне цистерны превращаются обратно в пузырьки.

Основная функция комплекса Гольджи - транспорт веществ в цитоплазму и внеклеточную среду, а также синтез жиров и углеводов. Комплекс Гольджи участвует в росте и обновлении плазматической мембраны и в формировании лизосом.

Комплекс Гольджи был открыт в 1898 г. К. Гольджи. Располагая крайне примитивным оборудованием и ограниченным набором реактивов, он сделал открытие, благодаря которому совместно с Рамон-и-Кахалом получил Нобелевскую премию. Он обработал нервные клетки раствором бихромата, после чего добавил нитраты серебра и осмия. С помощью осаждения солей осмия или серебра с клеточными структурами Гольджи обнаружил в нейронах темноокрашенную сеть, которую назвал внутренним сетчатым аппаратом. При окраске общими методами пластинчатый комплекс не накапливает красителей, поэтому зона его концентрации видна как светлый участок. Например, вблизи ядра плазмоцита видна светлая зона, соответствующая области расположения органеллы.

Чаще всего комплекс Гольджи прилежит к ядру. При световой микроскопии он может распределяться в виде сложных сетей или отдельных диффузно расположенных участков (диктиосом). Форма и положение органеллы не имеют принципиального значения и могут изменяться в зависимости от функционального состояния клетки.

Комплекс Гольджи - это место конденсации и накопления продуктов секреции, вырабатываемых в других участках клетки, в основном в ЭПС. Во время синтеза белков меченные радиоизотопом аминокислоты накапливаются в гр. ЭПС, а затем их находят в комплексе Гольджи, секреторных включениях или лизосомах. Такое явление позволяет определить значение комплекса Гольджи в синтетических процессах в клетке.

При электронной микроскопии видно, что комплекс Гольджи состоит из скоплений плоских цистерн, которые называются диктиосомами. Цистерны плотно прилежат друг к другу на расстоянии 20…25 нм. Просвет цистерн в центральной части около 25 нм, а на периферии образуются расширения - ампулы, ширина которых непостоянна. В каждой стопке около 5…10 цистерн. Кроме плотно расположенных плоских цистерн в зоне комплекса Гольджи находится большое количество мелких пузырьков (везикул), особенно по краям органеллы. Иногда они отшнуровываются от ампул.

Со стороны, прилежащей к ЭПС и к ядру, в комплексе Гольджи имеется зона, содержащая значительное количество мелких пузырьков и небольших цистерн.

Комплекс Гольджи поляризован, то есть качественно неоднороден с разных сторон.

Аппарат Гольджи

Он имеет незрелую цис-поверхность, лежащую ближе к ядру, и зрелую - транс-поверхность, обращенную к поверхности клетки. Соответственно органелла состоит из нескольких взаимосвязанных компартментов, выполняющих специфические функции.

Цис-компартмент обычно обращен к клеточному центру. Его внешняя поверхность имеет выпуклую форму. С цистернами сливаются микровезикулы (транспортные пиноцитозные пузырьки), направляющиеся из ЭПС. Мембраны постоянно обновляются за счет пузырьков и, в свою очередь, восполняют содержимое мембранных образований других компартментов. В компартменте начинается посттрансляционная обработка белков, которая продолжается в следующих частях комплекса.

Промежуточный компаргмент осуществляет гликозилирование, фосфорилирование, карбоксилирование, сульфатирование биополимерных белковых комплексов. Происходит так называемая посттрансляционная модификация полипептидных цепочек. Идет синтез гликолипидов и липопротеидов. В промежуточном компартмснте, как и в цис-компартменте, формируются третичные и четвертичные белковые комплексы.

Часть белков подвергается частичному протеолизу (разрушению), что сопровождается их трансформацией, необходимой для созревания. Таким образом, цис - и промежуточный компартменты необходимы для созревания белков и других сложных биополимерных соединений.

Транс-компартмент располагается ближе к периферии клетки. Внешняя поверхность его обычно вогнутая. Частично транс-компартмент переходит в транс-сеть - систему везикул, вакуолей и канальцев.

В клетках отдельные диктиосомы могут быть связаны друг с другом системой везикул и цистерн, примыкающих к дистальному концу скопления плоских мешков, так что образуется рыхлая трехмерная сеть - транс-сеть.

В структурах транс-компартмента и транс-сети происходят сортировка белков и других веществ, образование секреторных гранул, предшественников первичных лизосом и пузырьков спонтанной секреции. Секреторные пузырьки и прелизосомы окружают белки - клатрины.

Клатрины осаждаются на мембране формирующегося пузырька, постепенно отщепляя его от дистальной цистерны комплекса. Окаймленные пузырьки отходят от транс-сети, их перемещение гормонозависимое и контролируется функциональным состоянием клетки. Процесс транспортировки окаймленных пузырьков находится под влиянием микротрубочек. Белковые (клатриновые) комплексы вокруг пузырьков распадаются после отщепления пузырька от транс-сети и вновь формируются в момент секреции. В момент секреции белковые комплексы пузырьков взаимодействуют с белками микротрубочек, и пузырек транспортируется к наружной мембране. Пузырьки спонтанной секреции не окружены клатринами, их формирование происходит непрерывно и они, направляясь к клеточной мембране, сливаются с ней, обеспечивая восстановление цитолеммы.

В целом комплекс Гольджи участвует в сегрегации - это разделение, отделение определенных частей от основной массы, и накоплении продуктов, синтезированных в ЭПС, в их химических перестройках, созревании. В цистернах происходит синтез полисахаридов, их соединение с белками, что приводит к образованию сложных комплексов пептидогликанов (гликопротеинов). С помощью элементов комплекса Гольджи выводятся готовые секреты за пределы секреторной клетки.

Мелкие транспортные пузырьки отщепляются от гр. ЭПС в зонах, свободных от рибосом. Пузырьки восстанавливают мембраны комплекса Гольджи и доставляют в него полимерные комплексы, синтезируемые в ЭПС. Пузырьки транспортируются в цис-компартмент, где сливаются с его мембранами. Следовательно, в комплекс Гольджи поступают новые порции мембран и продуктов, синтезированных в гр. ЭПС.

В цистернах комплекса Гольджи происходят вторичные изменения в белках, синтезированных в гр. ЭПС. Эти изменения связаны с перестройкой олигосахаридных цепочек гликопротеинов. Внутри полостей комплекса Гольджи с помощью трансглюкозидаз модифицируются лизосомальные белки и белки секретов: происходит последовательная замена и наращивание олигосахаридных цепочек. Модифицирующиеся белки переходят от цистерны цис-компартмента в цистерны транс-компартмента за счет транспорта в пузырьках, содержащих белок.

В транс-компартменте белки сортируются: на внутренних поверхностях мембран цистерн располагаются белковые рецепторы, которые узнают секреторные белки, белки мембран и лизосом (гидролазы). В результате от дистальных транс-участков диктиосом отщепляются три типа мелких вакуолей: содержащие гидролазы - прелизосомы; с секреторными включениями, вакуоли, восполняющие клеточную мембрану.

Секреторная функция комплекса Гольджи заключается в том, что синтезированный на рибосомах экспортируемый белок, отделяющийся и накапливающийся внутри цистерн ЭПС, транспортируется в вакуоли пластинчатого аппарата. Затем накопленный белок может конденсироваться, образуя секреторные белковые гранулы (в поджелудочной, молочной и других железах), или оставаться в растворенном виде (иммуноглобулины в плазматических клетках). От ампулярных расширений цистерн комплекса Гольджи отщепляются пузырьки, содержащие эти белки. Такие пузырьки могут сливаться между собой, увеличиваться в размерах, образуя секреторные гранулы.

После этого секреторные гранулы начинают двигаться к поверхности клетки, соприкасаются с плазмолеммой, с которой сливаются их собственные мембраны, и содержимое гранул оказывается за пределами клетки. Морфологически этот процесс называется экструзией, или экскрецией (выбрасывание, экзоцитоз) и напоминает эндоцитоз, только с обратной последовательностью стадий.

Комплекс Гольджи может резко увеличиваться в размерах в клетках, активно осуществляющих секреторную функцию, что обычно сопровождается развитием ЭПС, а в случае синтеза белков - ядрышка.

Во время деления клетки комплекс Гольджи распадается до отдельных цистерн (диктиосом) и/или пузырьков, которые распределяются между двумя делящимися клетками и в конце телофазы восстанавливают структурную целостность органеллы. Вне деления происходит непрерывное обновление мембранного аппарата за счет пузырьков, мигрирующих из ЭПС и дистальных цистерн диктиосомы за счет проксимальных компартментов.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Вконтакте

Одноклассники

Комплекс Гольджи: описание

Как функционирует аппарат Гольджи

Аппарат Гольджи (комплекс Гольджи)- АГ

Структуру, известную сегодня как комплекс или аппарат Гольджи (АГ) впервые обнаружил в 1898 году итальянский ученый Камилло Гольджи

Подробно изучить строение комплекса Гольджи удалось значительно позже с помощью электронного микроскопа.

АГ представляет собой стопки уплощенных «цистерн» с расширенными краями. С ними связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4-х–6-ти «цистерн», является структурно-функциональной единицей аппарата Гольджи и называется диктиосомой. Число диктиосом в клетке колеблется от одной до нескольких сотен.

Аппарат Гольджи обычно расположен около клеточного ядра, вблизи ЭПС (в животных клетках часто вблизи клеточного центра).

Комплекс Гольджи

Слева – в клетке, среди других органоидов.

Справа – комплекс Гольджи с отделяющимися от него мембранными пузырьками

Все вещества, синтезированные на мембранах ЭПС переносятся в комплекс Гольджи в мембранных пузырьках , которые отпочковываются от ЭПС и сливаются затем с комплексом Гольджи. Поступившие органические вещества из ЭПС претерпевают дальнейшие биохимические превращения, накапливаются, упаковываются в мембранные пузырьки и доставляются к тем местам клетки, где они необходимы. Они участвуют в достройке клеточной мембраны или выделяются наружу (секретируются ) из клетки.

Функции аппарата Гольджи:

1 Участие в накоплении продуктов, синтезированных в эндоплазматической сети, в их химической перестройке и созревании. В цистернах комплекса Гольджи происходит синтез полисахаридов, их комплексирование с белковыми молекулами.

2) Секреторная — формирование готовых секреторных продуктов, которые выводятся за пределы клетки путем экзоцитоза.

3) Обновление клеточных мембран, в том числе и участков плазмолеммы, а также замещение дефектов плазмолеммы в процессе секреторной деятельности клетки.

4) Место образования лизосом.

5) Транспорт веществ

Лизосомы

Лизосома была открыта в 1949 г. К. де Дювом (Нобелевская премия за 1974 г.).

Лизосомы - одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,2 до 0,8 мкм), содержащие набор гидролитических ферментов — гидролаз. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов (протеиназ, нуклеаз, глюкозидаз, фосфатаз, липаз и др.), расщепляющих различные биополимеры. Расщепление веществ с помощью ферментов называют лизисом (лизис-распад).

Ферменты лизосом синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки, которые после отделения от аппарата Гольджи становятся собственно лизосомами. (Лизосомы иногда называют «желудками» клетки)

Лизосома – мембранный пузырек, содержащий гидролитические ферменты

Функции лизосом:

1. Расщепление веществ, поглощенных в результате фагоцитоза и пиноцитоза. Биополимеры расщепляются до мономеров, которые поступают в клетку и используются на ее нужды. Например, они могут быть использованы для синтеза новых органических веществ или могут подвергаться дальнейшему расщеплению для получения энергии.

2. Разрушают старые, поврежденные, избыточные органоиды. Разрушение органоидов может происходить и во время голодания клетки.

3. Осуществляют автолиз (саморазрушение) клетки (разжижение тканей в зоне воспаления, разрушение клеток хряща в процессе формирования костной ткани и др.).

Автолиз — это саморазрушение клеток, возникающее вследствие высвобождения содержимого лизосом внутри клетки. Благодаря этому лизосомы в шутку называют «орудиями самоубийства». Автолиз представляет собой нормальное явление онтогенеза, он может распространяться как на отдельные клетки, так и на всю ткань или орган, как это происходит при резорбции хвоста головастика во время метаморфоза, т. е. при превращении головастика в лягушку

Эндоплазматическая сеть, аппарат Гольджи и лизосомы образуют единую вакуолярную систему клетки, отдельные элементы которой могут переходить друг в друга при перестройке и изменении функции мембран.

Митохондрии

Строение митохондрии:
1 - наружная мембрана;
2 - внутренняя мембрана; 3 - матрикс; 4 - криста; 5 - мультиферментная система; 6 - кольцевая ДНК.

По форме митохондрии могут быть палочковидными, округлыми, спиральными, чашевидными, разветвленными. Длина митохондрий колеблется в пределах от 1,5 до 10 мкм, диаметр - от 0,25 до 1,00 мкм. Количество митохондрий в клетке может достигать нескольких тысяч и зависит от метаболической активности клетки.

Митохондрия ограничена двумя мембранами . Наружная мембрана митохондрий гладкая, внутренняя образует многочисленные складки - кристы. Кристы увеличивают площадь поверхности внутренней мембраны. Число крист в митохондриях может меняться в зависимости от потребности клетки в энергии. Именно на внутренней мембране сосредоточены многочисленные ферментные комплексы, участвующие в синтезе аденозинтрифосфата (АТФ). Здесь энергия химических связей превращается в богатые энергией (макроэргические) связи АТФ . Кроме того, в митохондриях проходит расщепление жирных кислот и углеводов с высвобождением энергии, которая накапливается и используется на процессы роста и синтеза .Внутренняя среда данных органелл называется матриксом . Она содержит кольцевые ДНК и РНК, мелкие рибосомы. Интересно, что митохондрии — полуавтономные органоиды, поскольку зависят от функционирования клетки, но в то же время могут сохранять определенную самостоятельность. Так, они способны синтезировать собственные белки и ферменты, а также размножаться самостоятельно (митохондрии содержат собственную цепочку ДНК, в которой сосредоточено до 2% ДНК самой клетки).

Функции митохондрий:

1. Преобразование энергии химических связей в макроэргические связи АТФ (митохондрии — "энергетические станции" клетки).

2. Участвуют в процессах клеточного дыхания — кислородное расщепление органических веществ.

Рибосомы

Строение рибосомы:
1 - большая субъединица; 2 - малая субъединица.

Рибосомы — немембранные органоиды, диаметр примерно 20 нм. Рибосомы состоят из двух фрагментов — большой и малой субъединиц. Химический состав рибосом — белки и рРНК. Молекулы рРНК составляют 50–63% массы рибосомы и образуют ее структурный каркас.

Во время биосинтеза белка рибосомы могут «работать» поодиночке или объединяться в комплексы - полирибосомы (полисомы) . В таких комплексах они связаны друг с другом одной молекулой иРНК.

Образуются субъединицы рибосом в ядрышке. Пройдя через поры в ядерной оболочке рибосомы попадают на мембраны эндоплазматической сети (ЭПС).

Функция рибосом: сборка полипептидной цепочки (синтез белковых молекул из аминокислот).

Цитоскелет

Клеточный цитоскелет образуется микротрубочками и микрофиламентами .

Микротрубочки представляют собой цилиндрические образования диаметром 24 нм. Их длина составляет 100 мкм-1 мм. Основной компонент — белок под названием тубулин. Он неспособен к сокращению и может разрушаться под действием колхицина.

Микротрубочки располагаются в гиалоплазме и выполняют следующие функции :

  • создают эластичный, но в то же время прочный каркас клетки, который позволяет ей сохранять форму;
  • принимают участие в процессе распределения хромосом клетки(образуют веретено деления);
  • обеспечивают перемещение органелл;
  • содержатся в клеточном центре, а также в жгутиках и ресничках.

Микрофиламенты — нити, которые размещаются под плазматической мембраной и состоят из белка актина или миозина. Они могут сокращаться, в результате чего идет перемещение цитоплазмы или выпячивание клеточной мембраны. Кроме того, данные компоненты принимают участие в образовании перетяжки при делении клетки.

Клеточный центр

Клеточный центр — органоид, состоящий из 2 мелких гранул- центриолей и лучистой сферы вокруг них — центросферы. Центриоль — это цилиндрическое тельце длиной 0,3-0,5 мкм и диаметром около 0,15 мкм. Стенки цилиндра состоят из 9 параллельно расположенных трубочек. Центриоли располагаются парами под прямым углом друг к другу. Активная роль клеточного центра обнаруживается при делении клетки. Перед делением клетки центриоли расходятся к противоположным полюсам, и возле каждой из них возникает дочерняя центриоль. Они формируют веретено деления, способствующее равномерному распределению генетического материала между дочерними клетками.

Центриоли относятся к самовоспроизводящимся органоидам цитоплазмы, они возникают в результате дупликации уже имеющихся центриолей.

Функции:

1. Обеспечение равномерного расхождения хромосом к полюсам клетки во время митоза или мейоза.

2. Центр организации цитоскелета.

Органоиды движения

Присутствуют не во всех клетках

К органоидам движения относят реснички, а также жгутики. Это миниатюрные выросты в виде волосков. Жгутик содержит 20 микротрубочек. Его основа размещается в цитоплазме и называется базальным тельцем. Длина жгутика составляет 100 мкм или более. Жгутики, которые имеют всего 10-20 мкм, называются ресничками . При скольжении микротрубочек реснички и жгутики способны колебаться, вызывая движение самой клетки. В цитоплазме могут содержаться сократительные фибриллы, которые называются миофибриллами. Миофибриллы, как правило, размещаются в миоцитах — клетках мышечной ткани, а также в клетках сердца. Они состоят из более мелких волокон (протофибрилл).

У животных и человека реснички они покрывают воздухоносные дыхательные пути и помогают избавляться от мелких твердых частиц, например, от пыли. Кроме этого, существуют еще псевдоножки, которые обеспечивают амебоидное движение и являются элементами многих одноклеточных и клеток животных (к примеру, лейкоцитов).

Аппарат Гольджи выполняет функции:

  • накапливает белки, жиры и унглеводы, а затем отдает их цитоплазме, и они используются для процессов жизнедеятельности самих клетки;
  • образование ферментов (Например, в поджелудочной железе животных клетки синтезируют пищеварительные ферменты);
  • синтез жиров и углеводов;
  • помощь в росте и обновлении плазматической мембраны

Но Основная функция комплекса Гольджи - выведение веществ, которые синтезирует клетка.

Изучение аппарата Гольджи продолжается, поэтому мы еще узнаем о новых функциях, которые природа возложила на этот комплекс.

  • Эратосфен - доклад сообщение

    Эратосфен был древнегреческим ученым из Александрии. Он родился во 2-ой половине III в. до н.э. Эратосфен был очень эрудированный человеком, его интересы распространялись практически на все существующие в ту эпоху знания и умения

  • Доклад Нефть - полезное ископаемое сообщение
  • Страна Швеция - сообщение доклад (3, 7 класс география, окружающий мир)

    Королевство Швеция – независимое государство с монархической формой правления, ограниченной конституцией. Столицей Швеции является город Стокгольм.

  • Писатель Борис Житков. Жизнь и творчество

    Борис Степанович Житков – известный русский и советский писатель. Также занимался написанием прозы, путешествиями, исследованиями, был моряком, инженером, преподавателем,

  • Писатель Марсель Пруст. Жизнь и творчество

    Марсель Пруст являлся известным писателем-романистом, представителем французского модернизма в XX веке. М.Пруст родился 10.07.1871 в деревенском пригороде французской столицы в довольно обеспеченной семье

Что общего у гнилого яблока и головастика? Процесс гниения фруктов и процесс превращения головастика в лягушку связан с одним и тем же феноменом - автолизом. Руководят им уникальные структуры клеток - лизосомы. Крошечные лизосомы размером от 0,2 до 0,4 мкм разрушают не только другие органоиды, но даже целые ткани и органы. Они содержат от 40 до 60 разных лизирующих ферментов, под действием которых ткани буквально плавятся на глазах. О структуре и функциях наших внутренних биохимических лабораторий: лизосом, аппарата Гольджи и эндоплазматической сети, - вы узнаете в нашем уроке. Также мы поговорим о клеточных включениях - особом типе клеточных структур.

Тема: Основы цитологии

Урок: Строение клетки. Эндоплазматическая сеть. Комплекс Гольджи.

Лизосомы. Клеточные включения

Мы продолжаем изучать органоиды клетки.

Все органоиды делятся на мембранные и немембранные .

Немембранные органоиды мы рассмотрели на предыдущем занятии, напомним, что к ним относятся рибосомы, клеточный центр и органоиды движения.

Среди мембранных органоидов различают одномембранные и двумембранные .

В этой части курса мы рассмотрим одномембранные органоиды: эндоплазматическую сеть, аппарат Гольджи и лизосомы .

Кроме этого, мы рассмотрим включения - непостоянные образования клетки, которые возникают и исчезают в процессе жизнедеятельности клетки.

Эндоплазматическая сеть

Одним из самых важных открытий, сделанных с помощью электронного микроскопа, было обнаружение сложной системы мембран, пронизывающей цитоплазму всех эукариотических клеток. Эта сеть мембран в дальнейшем получила название ЭПС (эндоплазматической сети) (рис. 1) или ЭПР (эндоплазматического ретикулума). ЭПС представляет систему трубочек и полостей, пронизывающей цитоплазму клетки.

Рис. 1. Эндоплазматическая сеть

Слева - среди других органоидов клетки. Справа - отдельно выделенная

Мембраны ЭПС (рис. 2) имеют такое же строение, как и клеточная или плазматическая мембрана (плазмалемма). ЭПС занимает до 50% объема клетки. Она нигде не обрывается и не открывается в цитоплазму.

Различают гладкую ЭПС и шероховатую , или гранулярную ЭПС (рис. 2). На внутренних мембранах шероховатой ЭПС располагаются рибосомы - здесь идет синтез белков.

Рис. 2. Виды ЭПС

Шероховатая ЭПС (слева) несет на мембранах рибосомы и отвечает за синтез белка в клетке. Гладкая ЭПС (справа) не содержит рибосом и отвечает за синтез углеводов и липидов.

На поверхности гладкой ЭПС (рис. 2) идет синтез углеводов и липидов. Вещества, синтезированные на мембранах ЭПС, переносятся в трубочки и затем транспортируются к местам назначения, где депонируются или используются в биохимических процессах.

Шероховатая ЭПС лучше развита в клетках, которые синтезируют белки для нужд организма, например, белковые гормоны эндокринной системы человека. А гладкая ЭПС - в тех клетках, которые синтезируют сахара и липиды.

В гладкой ЭПС накапливаются ионы кальция (важные для регуляции всей функций клеток и целого организма).

Структуру, известную сегодня как комплекс или аппарат Гольджи (АГ) (рис. 3), впервые обнаружил в 1898 году итальянский ученый Камилло Гольджи ().

Подробно изучить строение комплекса Гольджи удалось значительно позже с помощью электронного микроскопа. Эта структура содержится практически во всех эукариотических клетках, и представляет собой стопку уплощенных мембранных мешочков, т. н. цистерн, и связанную с ними систему пузырьков, называемых пузырьками Гольджи .

Рис. 3. Комплекс Гольджи

Слева - в клетке, среди других органоидов.

Справа - комплекс Гольджи с отделяющимися от него мембранными пузырьками

Во внутриклеточных цистернах накапливаются вещества, синтезированные клеткой, т. е. белки, углеводы, липиды.

В этих же цистернах вещества, поступившие из ЭПС , претерпевают дальнейшие биохимические превращения, упаковываются в мембранные пузырьки и доставляются к тем местам клетки, где они необходимы. Они участвуют в достройке клеточной мембраны или выделяются наружу (секретируются ) из клетки.

Комплекс Гольджи построен из мембран и расположен рядом с ЭПС, но не сообщается с её каналами.

Все вещества, синтезированные на мембранах ЭПС (рис. 2), переносятся в комплекс Гольджи в мембранных пузырьках , которые отпочковываются от ЭПС и сливаются затем с комплексом Гольджи, где они претерпевают дальнейшие изменения.

Одна из функций комплекса Гольджи - сборка мембран. Вещества, из которых состоят мембраны - белки и липиды, как вы уже знаете, - поступают в комплекс Гольджи из ЭПС.

В полостях комплекса собираются участки мембран, из которых образуются особые мембранные пузырьки (рис. 4), они передвигаются по цитоплазме в те места, где необходима достройка мембраны.

Рис. 4. Синтез мембран в клетке комплексом Гольджи (см. видео)

В комплексе Гольджи синтезируются практически все полисахариды, необходимые для построения клеточной стенки клеток растений и грибов. Здесь они упаковываются в мембранные пузырьки, доставляются к клеточной стенке и сливаются с ней.

Таким образом, основные функция комплекса (аппарата) Гольджи - химическое превращение синтезированных в ЭПС веществ, синтез полисахаридов, упаковка и транспорт органических веществ в клетке, формирование лизосомы.

Лизосомы (рис. 5) обнаружены у большинства эукариотических организмов, но особенно много их в клетках, которые способны к фагоцитозу. Они представляют собой одномембранные мешочки, наполненные гидролитическими или пищеварительными ферментами, такими как липазы, протеазы и нуклеазы , т. е. ферменты, которые расщепляют жиры, белки и нуклеиновые кислоты.

Рис. 5. Лизосома - мембранный пузырек, содержащий гидролитические ферменты

Содержимое лизосом имеет кислую реакцию - для их ферментов характерен низкий оптимум pH. Мембраны лизосомы изолируют гидролитические ферменты, не давая им разрушать другие компоненты клетки. В клетках животных лизосомы имеют округлую форму, их диаметр - от 0,2 до 0,4 микрон.

В растительных клетках функцию лизосом выполняют крупные вакуоли. В некоторых растительных клетках, особенно погибающих, можно заметить небольшие тельца, напоминающие лизосомы.

Скопление веществ, которые клетка депонирует, использует для своих нужд, или хранит для выделения вовне, называют клеточными включениями .

Среди них зерна крахмала (запасной углевод растительного происхождения) или гликогена (запасной углевод животного происхождения), капли жира , а также гранулы белков .

Эти запасные питательные вещества располагаются в цитоплазме свободно и не отделены от неё мембраной.

Функции ЭПС

Одна из самых важных функций ЭПС - синтез липидов . Поэтому ЭПС обычно представлена в тех клетках, где интенсивно происходит этот процесс.

Как происходит синтез липидов? В клетках животных липиды синтезируются из жирных кислот и глицерина, которые поступают с пищей (в клетках растений они синтезируются из глюкозы). Синтезированные в ЭПС липиды передаются в комплекс Гольджи, где «дозревают».

ЭПС представлена в клетках коры надпочечников и в половых железах, поскольку здесь синтезируются стероиды, а стероиды - гормоны липидной природы. К стероидам относится мужской гормон тестостерон, и женский гормон эстрадиол.

Ещё одна функция ЭПС - участие в процессах детоксикации. В клетках печени шероховатая и гладкая ЭПС участвуют в процессах обезвреживания вредных веществ, поступающих в организм. ЭПС удаляет яды из нашего организма.

В мышечных клетках присутствуют особые формы ЭПС - саркоплазматический ретикулум . Саркоплазматический ретикулум - один из видов эндоплазматической сети, который присутствует в поперечнополосатой мышечной ткани. Его основной функцией является хранение ионов кальция, и введение их в саркоплазму - среду миофибрилл.

Секреторная функция комплекса Гольджи

Функцией комплекса Гольджи является транспорт и химическая модификация веществ. Особенно хорошо это видно в секреторных клетках.

В качестве примера можно привести клетки поджелудочной железы, синтезирующие ферменты панкреатического сока, который затем выходит в проток железы, открывающийся в двенадцатиперстную железу.

Исходным субстратом для ферментов служат белки, поступающие в комплекс Гольджи из ЭПС. Здесь с ними происходят биохимические превращения, они концентрируются, упаковываются в мембранные пузырьки и перемещаются к плазматической мембране секреторной клетки. Затем они выделяются наружу посредством экзоцитоза.

Ферменты поджелудочной железы секретируются в неактивной форме, чтобы они не разрушали клетку, в которой образуются. Неактивная форма фермента называется проферментом или энзимогеном . Например, фермент трипсин, образуется в неактивной форме в виде трипсиногена в поджелудочной железе и переходит в свою активную форму - трипсин в кишечнике.

Комплексом Гольджи синтезируется также важный гликопротеин - муцин . Муцин синтезируется бокаловидными клетками эпителия, слизистой оболочки желудочно-кишечного тракта и дыхательных путей. Муцин служит барьером, защищающим расположенные под ним эпителиальные клетки от разных повреждений, в первую очередь, механических.

В желудочно-кишечном тракте эта слизь защищает нежную поверхность эпителиальных клеток от действия грубого комка пищи. В дыхательных путях и желудочно-кишечном тракте муцин защищает наш организм от проникновения патогенов - бактерий и вирусов.

В клетках кончика корня растений комплекс Гольджи секретирует мукополисахаридную слизь, которая облегчает продвижение корня в почве.

В железах на листьях насекомоядных растений, росянки и жирянки (рис. 6), аппарат Гольджи производит клейкую слизь и ферменты, с помощью которых эти растения ловят и переваривают добычу.

Рис. 6. Клейкие листья насекомоядных растений

В клетках растений комплекс Гольджи также участвует в образовании смол, камедей и восков.

Автолиз

Автолиз - это саморазрушение клеток, возникающее вследствие высвобождения содержимого лизосом внутри клетки.

Благодаря этому лизосомы в шутку называют «орудиями самоубийства». Автолиз представляет собой нормальное явление онтогенеза, он может распространяться как на отдельные клетки, так и на всю ткань или орган, как это происходит при резорбции хвоста головастика во время метаморфоза, т. е. при превращении головастика в лягушку (рис. 7).

Рис. 7. Резорбция хвоста лягушки благодаря автолизу в ходе онтогенеза

Автолиз происходит в мышечной ткани, остающейся долго без работы.

Кроме этого, автолиз наблюдается у клеток после гибели, поэтому вы могли наблюдать, как продукты питания сами портятся, если они не были заморожены.

Таким образом, мы рассмотрели основные одномембранные органоиды клетки: ЭПС, комплекс Гольджи и лизосомы, выяснили их функции в процессах жизнедеятельности отдельной клетки и организма в целом. Установили связь между синтезом веществ в ЭПС, транспортом их в мембранных пузырьках в комплекс Гольджи, «дозреванием» веществ в комплексе Гольджи и выделением их из клетки при помощи мембранных пузырьков, в том числе лизосом. Также мы говорили о включениях - непостоянных структурах клетки, которые представляют собой скопления органических веществ (крахмала, гликогена, капель масла или гранул белка). Из приведенных в тексте примеров мы можем сделать вывод о том, что процессы жизнедеятельности, которые происходят на клеточном уровне, отражаются на функционировании целого организма (синтез гормонов, автолиз, накопление питательных веществ).

Домашнее задание

1. Что такое органоиды? Чем органоиды отличаются от клеточных включений?

2. Какие группы органоидов бывают в клетках животных и растений?

3. Какие органоиды относятся к одномембранным?

4. Какие функции выполняет ЭПС в клетках живых организмов? Какие виды ЭПС выделяют? С чем это связано?

5. Что такое комплекс (аппарат) Гольджи? Из чего он состоит? Каковы его функции в клетке?

6. Что такое лизосомы? Для чего они нужны? В каких клетках нашего организма они активно функционируют?

7. Как связаны друг с другом ЭПС, комплекс Гольджи и лизосомы?

8. Что такое автолиз? Когда и где он происходит?

9. Обсудите с друзьями явление автолиза. Каково его биологическое значение в онтогенезе?

2. YouTube ().

3. Биология 11 класс. Общая биология. Профильный уровень / В. Б. Захаров, С. Г. Мамонтов, Н. И. Сонин и др. - 5-е изд., стереотип. - Дрофа, 2010. - 388 с.

4. Агафонова И. Б., Захарова Е. Т., Сивоглазов В. И. Биология 10-11 класс. Общая биология. Базовый уровень. - 6-е изд., доп. - Дрофа, 2010. - 384 с.

Комплекс Гольджи.

Комплекс Гольджи - пластинчатый комплекс, он представляет собой важнейшую мембранную органеллу, управляющую процессами внутриклеточного транспорта.
Основными функциями аппарата Гольджи являются модификация, накопление, сортировка и направление различных веществ в соответствующие внутриклеточные компартменты, а также за пределы клетки.

Строение .

Комплекс Гольджи состоит из набора окруженных мембраной уплощенных цистерн, напоминающих стопку тарелок. Каждая стопка Гольджи обычно содержит от четырех до шести цистерн, имеющих, как правило, диаметр около 1мкм. Число стопок Гольджи в клетке в значительной степени зависит от ее типа: некоторые клетки содержат одну большую стопку, тогда как в других имеются сотни очень маленьких стопок.

Функции .

1) Транспорт веществ из эндоплазматической сети.

Аппарат Гольджи не симметричен по своей структуре, цистерны с той стороны, которая ближе к клеточному ядру, содержатся наименее зрелые белки, к этим цистернам непрерывно присоединяются мембранные пузырьки, отсоединяющиеся от гранулярного эндоплазматического ретикулума.

2) Модификация белков в аппарате Гольджи

В цистернах аппарата Гольджи созревают белки предназначенные для выделения, белки встроенные в клеточную мембрану, белки лизосом и т. д. Созревающие белки последовательно перемещаются по цистернам в органеллы, в которых происходят их модификации - гликозилирование и фосфорилирование.

Гликозилирование - присоединение остатков сахаридов к органическим молекулам.
Фосфорилирование присоединение остатков фосфорной кислоты.

При кислородо-гликозилировании к белкам присоединяются сложные сахара через атом кислорода. При фосфорилировании происходит присоединение к белкам остатка ортофосфорной кислоты.
Разные цистерны аппарата Гольджи содержат разные резидентные каталитические ферменты и, следовательно, с созревающими белками в них последовательно происходят разные процессы. Понятно, что такой ступенчатый процесс должен как-то контролироваться. Действительно, созревающие белки «маркируются» специальными полисахаридными остатками по-видимому, играющими роль своеобразного «знака качества».

3) Транспорт белков из аппарата Гольджи

В конце концов от расширенной стороны Комплекса Гольджи (называется транс -Гольджи) отпочковываются пузырьки, содержащие полностью зрелые белки. Главная функция аппарата Гольджи - сортировка проходящих через него белков. В аппарате Гольджи происходит формирование «трехнаправленного белкового потока»:

  • созревание и транспорт белков плазматической мембраны;
  • созревание и транспорт выделений (секретов);
  • созревание и транспорт ферментов лизосом.
С помощью везикулярного транспорта прошедшие через аппарат Гольджи белки доставляются «по адресу» в зависимости от полученных ими в аппарате Гольджи «меток».

4) Образование лизосом

Они отпочковываются от аппарата Гольджи.

5) Транспорт белков на наружную мембрану

Модифицированные белки отсоединяются от комплекса гольджи в клеточные пузырьки (везикулы) которые их доставляют к поверхности клетки. Такие белки остаются в ее составе, а не выделяются во внешнюю среду, как те белки, что находились в полости везикулы.

3д модель

Расположение в клетке

Процесс транспортировки через Комплекс Гольджи

Анимационное представление

Зарубежное видео с детальным описанием процесса транспортировки

Строение

Комплекс Гольджи представляет собой стопку дискообразных мембранных мешочков (цистерн), несколько расширенных ближе к краям и связанную с ними систему пузырьков Гольджи. В растительных клетках обнаруживается ряд отдельных стопок (диктиосомы), в животных клетках часто содержится одна большая или несколько соединённых трубками стопок.

Транспорт веществ из эндоплазматической сети

Аппарат Гольджи асимметричен - цистерны, располагающиеся ближе к ядру клетки (цис -Гольджи) содержат наименее зрелые белки, к этим цистернам непрерывно присоединяются мембранные пузырьки - везикулы , отпочковывающиеся от гранулярного эндоплазматического ретикулума (ЭПР), на мембранах которого и происходит синтез белков рибосомами . Перемещение белков из эндоплазматической сети (ЭПС) в аппарат Гольджи происходит неизбирательно, однако не полностью или неправильно свернутые белки остаются при этом в ЭПС. Возвращение белков из аппарата Гольджи в ЭПС требует наличия специфической сигнальной последовательности (лизин-аспарагин-глутамин-лейцин) и происходит благодаря связыванию этих белков с мембранными рецепторами в цис-Гольджи.

Модификация белков в аппарате Гольджи

В цистернах Аппарата Гольджи созревают белки предназначенные для секреции , трансмембранные белки плазматической мембраны , белки лизосом и т. д. Созревающие белки последовательно перемещаются по цистернам органеллы, в которых происходит их модификации - гликозилирование и фосфорилирование . При О-гликозилировании к белкам присоединяются сложные сахара через атом кислорода . При фосфорилировании происходит присоединение к белкам остатка ортофосфорной кислоты.

Разные цистерны Аппарата Гольджи содержат разные резидентные каталитические ферменты и, следовательно, с созревающими белками в них последовательно происходят разные процессы. Понятно, что такой ступенчатый процесс должен как-то контролироваться. Действительно, созревающие белки «маркируются» специальными полисахаридными остатками (преимущественно маннозными), по-видимому, играющими роль своеобразного «знака качества».

Не до конца понятно, каким образом созревающие белки перемещаются по цистернам Аппарата Гольджи, в то время как резидентные белки остаются в большей или меньшей степени ассоциированы с одной цистерной. Существуют две взаимонеисключающие гипотезы, объясняющие этот механизм. Согласно первой (1), транспорт белков осуществляется при помощи таких же механизмов везикулярного транспорта, как и путь транспорта из ЭПР, причём резидентные белки не включаются в отпочковывающуюся везикулу. Согласно второй (2), происходит непрерывное передвижение (созревание) самих цистерн, их сборка из пузырьков с одного конца и разборка с другого конца органеллы, а резидентные белки перемещаются ретроградно (в обратном направлении) при помощи везикулярного транспорта.

Транспорт белков из аппарата Гольджи

В конце концов от транс -Гольджи отпочковываются пузырьки, содержащие полностью зрелые белки. Главная функция аппарата Гольджи - сортировка проходящих через него белков. В аппарате Гольджи происходит формирование "трехнаправленного белкового потока":

  1. созревание и транспорт белков плазматической мембраны;
  2. созревание и транспорт секретов ;
  3. созревание и транспорт ферментов лизосом.

С помощью везикулярного транспорта прошедшие через апарат Гольджи белки доставляются "по адресу" в зависимсоти от полученных ими в аппарате Гольджи "меток". Механизмы этого процесса также не до конца понятны. Известно, что транспорт белков из аппарата Гольджи требует участия специфических мембранных рецепторов, которые опознают "груз" и обеспечивают избирательную стыковку пузырька с той или иной органеллой.

Образование лизосом

Все гидролитические ферменты лизосом проходят через аппарат Гольджи, где они получают "метку" в виде специфического сахара - маннозо-6-фосфата (М6Ф)- в составе своего олигосахарида. Присоединение этой метки происходит при участии двух ферментов. Фермент N-ацетилглюкозаминфосфотрансфераза специфически опознает лизосомальные гидролазы по деталям их третичной структуры и присоединяет N-ацетилглюкозаминфосфат к шестому атому нескольких маннозных остатков олигосахарида гидролазы. Второй фермент - фосфогликозидаза - отщепляет N-ацетилглюкозамин, создавая М6Ф-метку. Затем эта метка опознается белком-рецептором М6Ф, с его помощью гидролазы упаковываются в везикулы и доставляются в лизосомы. Там, в кислой среде, фосфат отщепляется от зрелой гидролазы. При нарушении работы N-ацетилглюкозаминфосфотрансферазы из-за мутаций или пригенетических дефектах рецептора М6Ф все ферменты лизосом "по умолчанию" доставляются к наружной мембране и секретируются во внеклеточную среду. Выяснилось, что в норме некоторое количество рецепторов М6Ф также попадают на нарушную мембрану. Они возвращают случайно попавшие во внешнюю среду ферменты лизосом внутрь клетки в процессе эндоцитоза.

Транспорт белков на наружную мембрану

Как правило, ещё в ходе синтеза белки наружной мембраны встраиваются своими гидрофобными участками в мембрану эндоплазматической сети. Затем в составе мембраны везикул они доставляются в аппарат Гольджи, а оттуда - к поверхности клетки. При слиянии везикулы с плазмалеммой такие белки остаются в ее составе, а не выделяются во внешнюю среду, как те белки, что находились в полости везикулы.

Секреция

Практически все секретируемые клеткой вещества (как белковой, так и небелковой природы) проходят через аппарат Гольджи и там упаковываются в секреторные пузырьки. Так, у растений при участии диктиосом секретируется материал клеточной стенки .

Ссылки

Wikimedia Foundation . 2010 .

Поделиться