Методы химического анализа. Качественный анализ Основные разновидности физико-химических методов в аналитической химии

План лекции:

1. Общая характеристика физико-химических методов

2. Общие сведения о спектроскопических методах анализа.

3. Фотометрический метод анализа: фотоколориметрия, колориметрия, спектрофотометрия.

4. Общие сведения о нефелометрическом, люминесцентном, поляриметрическом методах анализа.

5. Рефрактометрический метод анализа.

6. Общие сведения о масс-спектральном, радиометрическом анализах.

7. Электрохимические методы анализа (потенциометрия, кондуктометрия, кулонометрия, амперометрия, полярография).

8. Хроматографический метод анализа.

Сущность физико-химических методов анализа. Их классификация.

Физико-химические методы анализа, как и химичес­кие методы, основаны на проведении той или иной хими­ческой реакции. В физических методах химические реак­ции отсутствуют или имеют второстепенное значение, хо­тя в спектральном анализе интенсивность линий всегда существенно зависит от химических реакций в угольном электроде или в газовом пламени. Поэтому иногда физи­ческие методы включают в группу физико-химических методов, так как достаточно строгого однозначного разли­чия между физическими и физико-химическими метода­ми нет, и выделение физических методов в отдельную группу не имеет принципиального значения.

Химические методы анализа были не в состоянии удов­летворить многообразные запросы практики, возросшие в результате научно-технического прогресса, развития полу­проводниковой промышленности, электроники и ЭВМ, ши­рокого применения чистых и сверхчистых веществ в техни­ке.

Применение физико-химических методов анализа на­шло свое отражение в технохимическом контроле пищевых производств, в научно-исследовательских и производственных лабораториях. Эти методы характеризуются высокой чувствительностью и быстрым выполнением анализа. Они основаны на использовании физико-химических свойств веществ.

При выполнении анализов физико-химическими методами точку эквивалентности (конец реакции) определяют не визуально, а при помощи приборов, которые фиксируют изменение физических свойств исследуемого вещества в точке эквивалентности. Для этой цели обычно применяют приборы с относительно сложными оптическими или электрическими схемами, поэтому эти методы получили название методов инструментального анализа.

Во многих случаях для выполнения анализа этими методами не требуется химическая реакция в отличие от химических методов анализа. Надо только измерить показатели каких-либо физических свойств анализируемого вещества: электропроводность, светопоглощение, светопреломление и др. Физико-химические методы позволяют вести в промышленности непрерывный контроль сырья, полуфабрикатов и готовых изделий.

Физико-химические методы анализа стали применять позднее, чем химические методы анализа, когда была установлена и изучена связь между физическими свойствами веществ и их составом.

Точность физико-химических методов сильно колеблет­ся в зависимости от метода. Наиболее высокой точностью (до 0,001%) обладает кулонометрия, основанная на изме­рении количества электричества, которое затрачивается на электрохимическое окисление или восстановление опреде­ляемых ионов или элементов. Большинство физико-хими­ческих методов имеют погрешность в пределах 2-5 %, что превышает погрешность химических методов анализа. Од­нако такое сравнение погрешностей не вполне корректно, так как оно относится к разным концентрационным облас­тям. При небольшом содержании определяемого компонен­та (около 10 -3 % и менее) классические химические методы анализа вообще непригодны; при больших концентрациях физико-химические методы успешно соперничают с хими­ческими. К числу существенных недостатков большинства физико-химических методов относится обязательное нали­чие эталонов и стандартных растворов.

Среди физико-химических методов наибольшее прак­тическое применение имеют:

1. спектральные и другие опти­ческие методы (рефрактометрия, поляриметрия);

2. электрохимические методы анализа;

3. хроматографические методы анализа.

Кроме этого выделяют еще 2 группы физико-химических методов:

1. радиометрические методы, основанные на измерении радиоактивного излучения данного элемента;

2. масс-спектрометрические методы анализа, основанные на определении масс отдельных ионизированных атомов, молекул и радикалов.

Наиболее обширной по числу методов и важной по практическому значению является группа спектральных и других оптических методов. Эти методы основаны на взаимодействии веществ с электромагнитным излучени­ем. Известно много различных видов электромагнитных излучений: рентгеновское излучение, ультрафио­летовое, видимое, инфракрасное, микроволновое и радио­частотное. В зависимости от типа взаимодействия элект­ромагнитного излучения с веществом оптические методы классифицируются следующим образом.

На измерении эффектов поляризации молекул вещест­ва основаны рефрактометрия, поляриметрия.

Анализируемые вещества могут поглощать электромаг­нитное излучение и на основе использования этого явления выделяют группу абсорбционных оптических методов.

Поглощение света атомами анализируемых веществ используется в атомно-абсорбционном анализе . Способ­ность поглощать свет молекулами и ионами в ультрафио­летовой, видимой и инфракрасной областях спектра поз­волила создать молекулярно-абсорбционный анализ (ко­лориметрию, фотоколориметрию, спектрофотометрию).

Поглощение и рассеяние света взвешенными частица­ми в растворе (суспензии) привело к появлению методов турбидиметрии и нефелометрии .

Методы, основанные на измерении интенсивности из­лучения, возникающего в результате выделения энергии возбужденными молекулами и атомами анализируемого вещества, называются эмиссионными методами . К молекулярно-эмиссионным методам относят люминесценцию (флуоресценцию), к атомно-эмиссионным - эмиссионный спектральный анализ и пламенную фотометрию.

Электрохимические методы анализа основаны на изме­рении электрической проводимости (кондуктометрия ); разности потенциалов (потенциометрия ); количества элект­ричества, прошедшего через раствор (кулонометрия ); за­висимости величины тока от приложенного потенциала (вольт-амперометрия).

В группу хроматографических методов анализа входят методы газовой и газожидкостной хроматографии, рас­пределительной, тонкослойной, адсорбционной, ионооб­менной и других видов хроматографии.

Спектроскопические методы анализа: общие сведения

Понятие о спектроскопическом методе анализа, его разновидности

Спектроскопические методы анализа - физические методы, основанные на взаимодействии электромагнит­ного излучения с веществом. Взаимодействие приводит к различным энергетическим переходам, которые регис­трируют инструментально в виде поглощения излучения, отражения и рассеяния электромагнитного излучения.

Классификация:

Эмиссионный спектральный анализ основан на изуче­нии спектров испускания (излучения) или эмиссионных спектров различных веществ. Разновидностью этого анализа является фотометрия пламени, основанная на измерении интенсивности излучения атомов, возбуж­даемого нагреванием вещества в пламени.

Абсорбционный спектральный анализ основан на изу­чении спектров поглощения анализируемых веществ. Если происходит поглощение излучения атомами, то абсорбция называется атомной, а если молекулами, то - молекулярной. Различают несколько видов аб­сорбционного спектрального анализа:

1. Спектрофотометрия - учитывает поглощение ана­лизируемым веществом света с определенной дли­ной волны, т.е. поглощение монохроматического из­лучения.

2. Фотометрия – основана на измерении по­глощения анализируемым веществом света не строго монохроматического излучения.

3. Колориметрия основана на измерении поглоще­ния света окрашенными растворами в видимой час­ти спектра.

4. Нефелометрия основана на измерении интенсив­ности света, рассеянного твердыми частицами, взве­шенными в растворе, т.е. света, рассеянного суспен­зией.

Люминесцентная спектроскопия использует свечение исследуемого объекта, возникающее под действием ультрафиолетовых лучей.

В зависимости от того, в какой части спектра про­исходит поглощение или излучение, различают спект­роскопию в ультрафиолетовой, видимой и инфракрас­ной областях спектра.

Спектроскопия - чувствительный метод определения более 60 элементов. Его применяют для анализа много­численных материалов, включая биологические среды, вещества растительного происхождения, цементы, стек­ла и природные воды.

Фотометрические методы анализа

Фотометрические методы анализа основаны на избира­тельном поглощении света анализируемым веществом или его соединением с подходящим реагентом. Интенсив­ность поглощения можно измерять любым способом, неза­висимо от характера окрашенного соединения. Точность метода зависит от способа измерения. Различают колори­метрический, фотоколориметрический и спектрофотометрический методы.

Фотоколориметрический метод анализа.

Фотоколориметрический метод анализа позволяет количест­венно определить интенсивность поглощения света анали­зируемым раствором с помощью фотоэлектроколориметров (иногда их называют просто фотоколориметрами). Для этого готовят серию стандартных растворов и вычер­чивают зависимость светопоглощения определяемого ве­щества от его концентрации. Эта зависимость называется градуировочным графиком. В фотоколориметрах свето­вые потоки, проходящие через раствор, имеют широкую область поглощения - 30-50 нм, поэтому свет здесь явля­ется полихроматическим. Это приводит к потере воспро­изводимости, точности и избирательности анализа. Достоинства фотоколориметра заключается в простоте конструкции и высокой чувствительности благодаря большой светосиле источника излучения – лампы накаливания.

Колориметрический метод анализа.

Колориметрический метод анализа основан на измерении поглощения света веществом. При этом сравнивают интенсивность окраски, т.е. оптическую плотность, исследуемого раствора с окраской (оптической плотностью) стандартного раствора, концентрация которого известна. Метод весьма чувствителен и применяется для определения микро- и полумикроколичеств.

Для проведения анализа колориметрическим методом требуется значительно меньше времени, чем химическим путем.

При визуальном анализе добиваются равенства интенсивности окрашивания анализируемого и окрашиваемого раствора. Этого можно достигнуть 2 путями:

1. уравнивают окраску, изменяя толщину слоя;

2. подбирают стандартные растворы разных концентраций (метод стандартных серий).

Однако визуально невозможно установить количествен­но, во сколько раз один раствор окрашен интенсивнее дру­гого. В этом случае можно установить только одинаковую окраску анализируемого раствора при сравнении его со стандартным.

Основной закон поглощения света.

Если световой поток, интенсивность которого I 0 , направить на раствор, находящийся в плоском стеклянном сосуде (кювете), то одна часть его интенсивностью I r , отражается от поверхности кюветы, другая часть интенсивностью I а поглощается раствором и третья часть интенсивностью I t проходит через раствор. Между этими величинами имеется зависимость:

I 0 = I r + I а + I t (1)

Т.к. интенсивность I r отраженной части светового потока при работе с одинаковыми кюветами постоянна и незначительна, то в расчетах ею можно пренебречь. Тогда равенство (1) принимает вид:

I 0 = I а + I t (2)

Это равенство характеризует оптические свойства раствора, т.е. его способность поглощать ил пропускать свет.

Интенсивность поглощенного света зависит от числа окрашенных частиц в растворе, которые поглощают свет больше, чем растворитель.

Световой поток, проходя через раствор, теряет часть интенсивности – тем большую, чем больше концентрация и толщина слоя раствора. Для окрашенных растворов существует зависимость, называемая законом Бугера – Ламберта – Бера (между степенью поглощения света, интенсивностью падающего света, концентрацией окрашенного вещества и толщиной слоя).

По этому закону, поглощение монохроматографического света, прошедшего через слой окрашенной жидкости, пропорционально концентрации и толщине слоя его:

I = I 0 ·10 - kCh ,

где I – интенсивность светового потока, прошедшего через раствор; I 0 – интенсивность падающего света; С – концентрация, моль/л ; h – толщина слоя, см ; k – мольный коэффициент поглощения.

Мольный коэффициент поглощения k – оптическая плотность раствора, содержащего 1 моль/л поглощающего вещества, при толщине слоя 1 см. Он зависит от химической природы и физического состояния поглощающего свет вещества и от длины волны монохроматического света.

Метод стандартных серий.

Метод стандартных серий основан на получении одинаковой интенсивности окраски исследуемого и стандартного растворов при одинаковой толщине слоя. Окраску исследуемого раствора сравнивают с окраской ряда стандартных растворов. При одинаковой интенсивности окраски концентрации исследуемого и стандартного растворов равны.

Для приготовления серии стандартных растворов берут 11 пробирок одинаковой формы, размера и из одинакового стекла. Наливают из бюретки стандартный раствор в постепенно возрастающем количестве, например: в 1 пробирку 0,5 мл , во 2ую 1 мл , в 3ю 1,5 мл , и т.д. – до 5 мл (в каждую следующую пробирку на 0,5 мл больше, чем в предыдущую). Во все пробирки наливают равные объемы раствора, который дает с определяемым ионом цветную реакцию. Растворы разбавляют так, чтобы уровни жидкости во всех пробирках были одинаковы. Пробирки закрывают пробками, тщательно перемешивают содержимое и размещают в штативе по возрастающим концентрациям. Таким образом получают цветную шкалу.

К исследуемому раствору в одинаковой пробирке прибавляют столько же реактива, разбавляют водой до того же объема, как и в других пробирках. Закрывают пробкой, тщательно перемешивают содержимое. Окраску исследуемого раствора сравнивают с окраской стандартных растворов на белом фоне. Растворы должны быть хорошо освещены рассеянным светом. Если интенсивность окраски исследуемого раствора совпадает с интенсивностью окраски одного из растворов цветной шкалы, то концентрации этого и исследуемого растворов равны. Если же интенсивность окраски исследуемого раствора промежуточная между интенсивностью двух соседних растворов шкалы, то его концентрация равна средней концентрации этих растворов.

Применение метода стандартных растворов целесообразно только при массовом определении какого-нибудь вещества. Заготовленная серия стандартных растворов служит относительно короткое время.

Метод уравнивания интенсивности окраски растворов.

Метод уравнивания интенсивности окраски исследуемого и стандартного растворов производится путем изменения высоты слоя одного из растворов. Для этого в 2 одинаковых сосуда помещают окрашенные растворы: исследуемый и стандартный. Изменяют высоту слоя раствора в одном из сосудов до тех пор, пока интенсивность окраски в обоих растворах не станет одинаковой. В этом случае определяют концентрацию исследуемого раствора С иссл. , сравнивая ее с концентрацией стандартного раствора:

С иссл. = С ст ·h ст / h иссл,

где h ст и h иссл – высота слоя соответственно стандартного и исследуемого раствора.

Приборы, служащие для определения концентраций исследуемых растворов методом уравнивания интенсивности окраски, называются колориметрами.

Различают визуальные и фотоэлектрические колориметры. При визуальных колориметрических определениях интенсивность окраски измеряют непосредственным наблюдением. Фотоэлектрические методы основаны на использовании фотоэлементов-фотоколориметров. В зависимости от интенсивности падающего пучка света в фотоэлементе возникает электрический ток. Сила тока, вызванная воздействием света, измеряется гальванометром. Отклонение стрелки показывает интенсивность окраски.

Спектрофотометрия.

Фотометрический метод основан на измерении по­глощения анализируемым веществом света не строго монохроматического излучения.

Если в фотометрическом методе анализа использовать монохроматическое излучение (излучение одной длины волны), то такой способ называют спектрофотометрией . Степень монохроматичности потока электромагнитного излучения определяют минимальным интервалом длин волн, который выделяется используемым монохроматором (светофильтром, дифракционной решеткой или призмой) из сплошного потока электромагнитного излучения.

К спектрофотометрии относят также область изме­рительной техники, объединяющую спектрометрию, фотометрию и метрологию и занимающуюся разработкой системы методов и приборов для количественных изме­рений спектральных коэффициентов поглощения, отраже­ния, излучения, спектральной яркости как характеристик сред, покрытий, поверхностей, излучателей.

Стадии спектрофотометрического исследования:

1) проведение химической реакции для получения систем, удобных для проведения спектрофотометричес­кого анализа;

2) измерения поглощения полученных растворов.

Сущность метода спектрофотометрии

Зависимость поглощения раствора вещества от дли­ны волны на графике изображается в виде спектра погло­щения вещества, на котором легко выделить максимум поглощения находящийся при длине волны света, максимально поглощаемой веществом. Измерение опти­ческой плотности растворов веществ на спектрофотомет­рах проводят при длине волны максимума поглощения. Это позволяет анализировать в одном растворе веще­ства, максимумы поглощения которых расположены при разных длинах волн.

В спектрофотометрии в ультрафиолетовой и видимой областях используют электронные спектры поглощения.

Они характеризуют наиболее высокие энергетические пере­ходы, к которым способен ограниченный круг соединений и функциональных групп. В неорганических соединениях электронные спектры связаны с высокой поляризацией ато­мов, входящих в молекулу вещества, и обычно появляются у комплексных соединений. У органических соединений возникновение электронных спектров вызывается перехо­дом электронов с основного на возбужденные уровни.

На положение и интенсивность полос поглощения силь­но влияет ионизация. При ионизации по кислотному типу в молекуле появляется дополнительная неподеленная пара электронов, что приводит к дополнительному батох-ромному сдвигу (сдвигу в длинноволновую область спект­ра) и повышению интенсивности полосы поглощения.

В спектре многих веществ имеется несколько полос поглощения.

Для спектрофотометрических измерений в ультрафи­олетовой и видимой областях применяется два типа при­боров - нерегистрирующие (результат наблюдают на шкале прибора визуально) и регистрирующие спектро­фотометры.

Люминесцентный метод анализа.

Люминесценция - способность к самостоятельному свечению, возникающему под различными воздействиями.

Классификация процессов, вызывающих люми­несценцию:

1)фотолюминесценция (возбуждение видимым или ультрафиолетовым светом);

2)хемилюминесценция (возбуждение за счет энергии химических реакций);

3)катодолюминесценция (возбуждение электронным ударом);

4)термолюминесценция (возбуждение нагреванием);

5)триболюминесценция (возбуждение механическим воздействием).

В химическом анализе имеют значение первые два вида люминесценции.

Классификация люминесценции по наличию пос­лесвечения . Оно может прекращаться сразу при исчез­новении возбуждения - флюоресценция или продол­жаться определенное время после прекращения возбуж­дающего воздействия - фосфоресценция . В основном используют явление флюоресценции, поэтому метод на­зван флюориметрией .

Применение флюориметрии : анализ следов метал­лов, органических (ароматических) соединений, витами­нов D, В 6 . Флюоресцентные индикаторы применяют при титровании в мутных или темно-окрашенных средах (титрование ведут в темноте, освещая титруемый ра­створ, куда добавлен индикатор, светом люминесцент­ной лампы).

Нефелометрический анализ.

Нефелометрия предложена Ф. Кобером в 1912 г. и основана на измерении интенсивности света, рассеянно­го суспензией частиц, с помощью фо­тоэлементов.

С помощью нефелометрии измеряют концентрацию веществ, нерастворимых в воде, но образующих стойкие суспензии.

Для проведения нефелометрических измерений при­меняются нефелометры , аналогичные по принципу коло­риметрам, с той лишь разницей, что при нефелометрии

При проведении фотонефелометрическогоанализа сначала по результатам определения серии стандартных растворов строят калибровочный график, затем проводят анализ исследуемого раствора и по графику определяют концентрацию анализируемого вещества. Для стабилиза­ции получаемых суспензий добавляют защитный колло­ид - раствор крахмала, желатина и др.

Поляриметрический анализ.

Электромагнитные колебания естественного света происходят во всех плоскостях, перпендикулярных к направлению луча. Кристаллическая решетка обладает способностью пропускать лучи только определенного направления. По выходе из кристалла колебания луча совершаются только в одной плоскости. Луч, колебания которого находятся в одной плоскости, называется поляризованным . Плоскость, в которой происходят колебания, называется плоскостью колебания поляризованного луча, а плоскость, перпендикулярная к ней, - плоскость поляризации .

Поляриметрический метод анализа основан на изучении поляризованного света.

Рефрактометрический метод анализа.

В основе рефрактометрического метода анализа лежит определение показателя преломления исследуемого вещества, т.к. индивидуальное вещество характеризуется определенным показателем преломления.

Технические продукты всегда содержат примеси, которые влияют на величину показателя преломления. Поэтому показатель преломления может в ряде случаев служить характеристикой чистоты продукта. Например, сорта очищенного скипидара различают по показателям преломления. Так, показатели преломления скипидара при 20° для желтого цвета, обозначенные через n 20 D (запись означает, что показатель преломления измерен при 20°С, длина волны падающего света равна 598 ммк), равны:

Первый сорт Второй сорт Третий сорт

1,469 – 1,472 1,472 – 1,476 1,476 – 1,480

Рефрактометрический метод анализа можно применять для двойных систем, например для определения концентрации вещества на водном или органическом растворах. В этом случае анализ основан на зависимости показателя преломления раствора от концентрации растворенного вещества.

Для некоторых растворов имеются таблицы зависимости показателей преломления от их концентрации. В других случаях анализируют методом калибровочной кривой: готовят серию растворов известных концентраций, измеряют их показатели преломления и строят график зависимости показателей преломления от концентрации, т.е. строят калибровочную кривую. По ней определяют концентрацию исследуемого раствора.

Показатель преломления.

При переходе луча света из одной среды в другую его направление меняется. Он преломляется. Показатель преломления равен отношению синуса угла падения к синусу угла преломления (эта величина постоянная и характерная для данной среды):

n = sin α / sin β,

где α и β – углы между направлением лучей и перпендикуляром к поверхности раздела обеих сред (рис. 1)


Показатель преломления – отношение скоростей света в воздухе и в исследуемой среде (если луч света падает из воздуха).

Показатель преломления зависит от:

1. длины волны падающего света (с увеличением длины волны показатель

преломления уменьшается);

2. температуры (с увеличением температуры показатель преломления уменьшается);

3. давления (для газов).

При обозначении показателя преломления указывают длины волны падающего света и температуру измерения. Например, запись n 20 D означает, что показатель преломления измерен при 20°С, длина волны падающего света равна 598 ммк. В технических справочниках показатели преломления приведены при n 20 D .

Определение показателя преломления жидкости.

Перед началом работы поверхность призм рефрактометра промывают дистиллированной водой и спиртом, проверяют правильность установления нулевой точки прибора и приступают к определению показателя преломления исследуемой жидкости. Для этого поверхность измерительной призмы осторожно протирают ваткой, смоченной исследуемой жидкостью, и наносят на эту поверхность несколько ее капель. Призмы закрывают и, вращая их, наводят границу светотени на крест нитей окуляра. Компенсатором устраняют спектр. При отсчете показателя преломления три десятичных знака берут по шкале рефрактометра, а четвертый – на глаз. Затем сдвигают границу светотени, снова совмещают ее с центром визирного креста и делают повторный отсчет. Т.о. производят 3 или 5 отсчетов, после чего промывают и вытирают рабочие поверхности призм. Исследуемое вещество снова наносят на поверхность измерительной призмы и проводят вторую серию измерений. Из полученных данных берут среднее арифметическое значение.

Радиометрический анализ.

Радиометрический анализ основан на измерении излучений радиоактивных элементов и применяется для количественного определения радиоактивных изотопов в исследуемом материале. При этом измеряют либо ес­тественную радиоактивность определяемого элемента, либо искусственную радиоактивность, получаемую с по­мощью радиоактивных изотопов.

Радиоактивные изотопы идентифицируют по перио­ду их полураспада или по виду и энергии испускаемого излучения. В практике количественного анализа чаще всего измеряют активность радиоактивных изотопов по их α-, β- и γ-излучению.

Применение радиометрического анализа:

Изучение механизма химических реакций.

Методом меченых атомов исследуют эффективность различных приемов внесения удобрений в почву, пути проникновения в организм микроэлементов, нанесен­ных на листья растения, и т.п. Особенно широко ис­пользуют в агрохимических исследованиях радиоактив­ные фосфор 32 Р и азот 13 N.

Анализ радиоактивных изотопов, используемых для лечения онкологических заболеваний и для определе­ния гормонов, ферментов.

Масс-спектральный анализ.

Основан на определении масс отдельных ионизированных атомов, молекул и радикалов в результате комбинированного действия электрического и магнитных полей. Регистрацию разделенных частиц проводят электрическим (масс-спектрометрия) или фотографическим (масс-спектрография) способами. Определение проводят на приборах – масс-спектрометрах или масс-спектрографах.

Электрохимические методы анализа.

Электрохимические методы анализа и исследования основаны на изучении и использовании процессов, про­текающих на поверхности электрода или в приэлектродном пространстве. Аналитический сигнал - электричес­кий параметр (потенциал, сила тока, сопротивление), ко­торый зависит от концентрации определяемого вещества.

Различают прямые и косвенныеэлектрохимические методы . В прямых методах используют зависимость силы тока от концентрации определяемого компонента. В косвенных - силу тока (потенциал) измеряют для на­хождения конечной точки титрования (точки эквивалент­ности) определяемого компонента титрантом.

К электрохимическим методам анализа относят:

1. потенциометрию;

2. кондуктометрию;

3. кулонометрию;

4. амперометрию;

5. полярографию.

Электроды, используемые в электрохимических методах.

1.Электрод сравнения и индикаторный электрод.

Электрод сравнения - это электрод с постоянным потенциалом, нечувствительный к ионам раствора. Элек­трод сравнения имеет устойчивый во времени воспроиз­водимый потенциал, не меняющийся при прохождении небольшого тока, и относительно его ведут отчет потен­циала индикаторного электрода. Используют хлорсеребряный и каломельный электроды. Хлорсеребряный элек­трод - серебряная проволока, покрытая слоем AgCI и помещенная в раствор KCI. Потенциал электрода опре­деляется концентрацией иона хлора в растворе:

Каломельный электрод состоит из металлической рту­ти, каломели и раствора KCI. Потенциал электрода зави­сит от концентрации хлорид-ионов и температуры.

Индикаторный электрод - это реагирующий на кон­центрацию определяемых ионов электрод. Индикаторный электрод изменяет свой потенциал с изменением концен­трации «потенциалопределяющих ионов». Индикаторные электроды делят на необратимые и обратимые . Скачки потенциала обратимых индикаторных электродов на меж­фазных границах зависят от активности участников элек­тродных реакций в соответствии с термодинамическими уравнениями; равновесие устанавливается достаточно быстро. Необратимые индикаторные электроды не удов­летворяют требованиям обратимых. В аналитической химии применяются обратимые электроды, для которых выполняется уравнение Нернста.

2. Металлические электроды: электронообменные и ионообменные.

Уэлектронообменного электрода на межфазной гра­нице протекает реакция с участием электронов. Электро­нообменные электроды делят на электроды первого рода и электроды второго рода . Электроды первого рода - металлическая пластина (серебро, ртуть, кадмий), погру­женная в раствор хорошо растворимой соли этого метал­ла. Электроды второго рода - металл, покрытый слоем малорастворимого соединения этого металла и погружен­ный в раствор хорошо растворимого соединения с тем же анионом (хлорсеребряный, каломельный электроды).

Ионообменные электроды - электроды, потенциал которых зависит от отношения концентраций окисленной и восстановленной форм одного или нескольких веществ в растворе. Такие электроды делаются из инертных ме­таллов, например из платины или золота.

3. Мембранные электроды представляют собой пори­стую пластинку, пропитанную жидкостью, не смешиваю­щейся с водой и способной к избирательной адсорбции определенных ионов (например, растворы хелатов Ni 2+ , Cd 2+ , Fe 2+ в органическом растворе). Работа мембранных электродов основана на возникновении разности потен­циалов на границе раздела фаз и установлении равновесия обмена между мембраной и раствором.

Потенциометрический метод анализа.

Потенциометрический метод анализа основан на измерении потенциала электрода, погруженного в раствор. При потенциометрических измерениях составляют галь­ванический элемент с индикаторным электродом и элек­тродом сравнения и измеряют электродвижущую силу (ЭДС).

Разновидности потенциометрии:

Прямая потенциометрия применяется для непосред­ственного определения концентрации по значению потен­циала индикаторного электрода при условии обратимос­ти электродного процесса.

Косвенная потенциометрия основана на том, что изменение концентрации иона сопровождается изменени­ем потенциала на электроде, погруженном в титруемый раствор.

В потенциометрическом титровании обнаруживают конечную точку по скачку потенциала, обусловленную заменой электрохимической реакции на другую в соответ­ствии со значениями Е° (стандартный электродный потенциал).

Значение по­тенциала зависит от концентрации соответствующих ионов в рас­творе. Например, потенциал серебряного электрода, погруженного в раствор соли серебра, изменяется с изменением концентрации Ag + -ионов в растворе. Поэтому, измерив потенциал электрода, погруженного в раствор данной соли неизвестной концентрации, можно определить содержание соответствующих ионов в растворе.

Электрод, по потенциалу которого судят о концентрации опре­деляемых ионов в растворе, называют индикаторным электродом.

Потенциал индикаторного электрода определяют, сравнивая его с потенциалом другого электрода, который принято называть электродом сравнения. В качестве электрода сравнения может быть применен только такой электрод, потенциал которого остает­ся неизменной при изменении концентрации определяемых ионов. В качестве электрода сравнения применяют стандартный (нор­мальный) водородный электрод.

На практике часто в качестве электрода сравнения с извест­ным значением электродного потенциала пользуются не водород­ным, а каломельным электродом (рис. 1). Потенциал каломель­ного электрода с насыщенным раствором КО при 20 °С равен 0,2490 В.

Кондуктометрический метод анализа.

Кондуктометрический ме­тод анализа основан на измерении электропроводности растворов, изменяющейся в результате химических реакций.

Электропроводность раствора зависит от природы электролита, его температуры и концентрации растворенного вещества. Элек­тропроводность разбавленных растворов обусловлена движением катионов и анионов, отличающихся различной подвижностью.

С повышением температуры электропроводность увеличивает­ся, так как увеличивается подвижность ионов. При данной темпе­ратуре электропроводность раствора электролита зависит от его концентрации: как правило, чем выше концентрация, тем больше электропроводность! Следовательно, электропроводность данного раствора служит показателем концентрации растворенного ве­щества и обусловливается подвижностью ионов.

В простейшем случае кондуктометрического количественного определения, когда в растворе содержится только один электро­лит, строят график зависимости электропроводности раствора ана­лизируемого вещества от его концентрации. Определив электро­проводность исследуемого раствора, по графику находят концент­рацию анализируемого вещества.

Так, электропроводность баритовой воды изменяется прямо пропорционально содержанию в растворе Ва(ОН) 2 . Эта зависи­мость графически выражается прямой линией. Чтобы определить содержание Ва(ОН) 2 в баритовой воде неизвестной концентрации, надо определить ее электропроводность и по калибровочному гра­фику найти концентрацию Ва(ОН)2, соответствующую этому зна­чению электропроводности. Если через раствор Ва(ОН) 2 , электро­проводность которого известна, пропустить измеренный объем га­за, содержащего диоксид углерода, то С0 2 реагирует с Ва(ОН) 2:

Ва(ОН) 2 + С0 2 ВаС0 3 + Н 2 0

В результате этой реакции содержание Ва(ОН) 2 в растворе уменьшится и электропроводность баритовой воды понизится. Из­мерив электропроводность баритовой воды после поглощения ею С0 2 , можно определить, насколько понизилась концентрация Ва(ОН) 2 в растворе. По разности концентраций Ва(ОН) 2 в бари­товой воде легко рассчитать количество поглощенной

Подавляющее большинство сведений о веществах, их свойствах и химических превращениях получено с помощью химических или физико-химических экспериментов. Поэтому основным методом, применяемым химиками, следует считать химический эксперимент.

Традиции экспериментальной химии складывались веками. Еще тогда, когда химия не была точной наукой, в древние времена и в эпоху средневековья, ученые и ремесленники иногда случайно, а иногда и целенаправленно открывали способы получения и очистки многих веществ, находивших применение в хозяйственной деятельности: металлов, кислот, щелочей, красителей и т. д. Накоплению таких сведений немало способствовали алхимики (см. Алхимия).

Благодаря этому уже к началу XIX в. химики хорошо владели основами экспериментального искусства, в особенности методами очистки всевозможных жидкостей и твердых веществ, что позволило им совершить немало важнейших открытий. И все же наукой в современном смысле этого слова, точной наукой химия начала становиться только в XIX в., когда был открыт закон кратных отношений и разрабатывалось атомно-молекулярное учение . С этого времени химический эксперимент стал включать в себя не только изучение превращений веществ и способов их выделения, но и измерения различных количественных характеристик.

Современный химический эксперимент включает множество разнообразных измерений. Изменились и оборудование для постановки опытов, и химическая посуда. В современной лаборатории не встретишь самодельных реторт - на смену им пришло стандартное стеклянное оборудование, производимое промышленностью и приспособленное специально для выполнения той или иной химической процедуры. Стали стандартными и приемы работы, которые в наше время уже не приходится каждому химику изобретать заново. Описание наилучших из них, проверенных многолетним опытом, можно найти в учебниках и руководствах.

Методы изучения вещества сделались не только более универсальными, но и гораздо более разнообразными. Все большую роль в работе химика играют физические и физико-химические методы исследования, предназначенные для выделения и очистки соединений, а также для установления их состава и строения.

Классическая техника очистки веществ отличалась чрезвычайной трудоемкостью. Известны случаи, когда химики тратили на выделение индивидуального соединения из смеси годы труда. Так, соли редкоземельных элементов удавалось выделить в чистом виде лишь после тысяч дробных кристаллизаций. Но и после этого чистоту вещества далеко не всегда можно было гарантировать.

Совершенство техники достигло такого высокого уровня, что стало возможным точное определение скорости даже «мгновенных», как полагали раньше, реакций, например образования молекул воды из катионов водорода H + и анионов OH − . При начальной концентрации обоих ионов, равной 1 моль/л, время этой реакции составляет несколько стомиллиардных долей секунды.

Физико-химические методы исследования специально приспосабливают и для обнаружения короткоживущих промежуточных частиц, образующихся в ходе химических реакций. Для этого приборы снабжают либо быстродействующими регистрирующими устройствами, либо приставками, обеспечивающими работу при очень низких температурах. Такими способами успешно фиксируют спектры частиц, продолжительность жизни которых при обычных условиях измеряется тысячными долями секунды, например свободных радикалов.

Кроме экспериментальных методов в современной химии широко применяются расчеты. Так, термодинамический расчет реагирующей смеси веществ позволяет точно предсказать ее равновесный состав (см.

Количественный анализ выражается последовательностью экспериментальных методов, определяющих в образце исследуемого материала содержание (концентрации) отдельных составляющих и примесей. Его задача - определить количественное соотношение химсоединений, ионов, элементов, составляющих образцы исследуемых веществ.

Задачи

Качественный и количественный анализ являются разделами аналитической химии. В частности, последний решает различные вопросы современной науки и производства. Этой методикой определяют оптимальные условия проведения химико-технологических процессов, контролируют качество сырья, степень чистоты готовой продукции, в том числе и лекарственных препаратов, устанавливают содержание компонентов в смесях, связь между свойствами веществ.

Классификация

Методы количественного анализа подразделяют на:

  • физические;
  • химические (классические);
  • физико-химические.

Химический метод

Базируется на применении различных видов реакций, количественно происходящих в растворах, газах, телах и т. д. Количественный химический анализ подразделяют на:

  • Гравиметрический (весовой). Заключается в точном (строгом) определении массы анализируемого компонента в исследуемом веществе.
  • Титриметрический (объемный). Количественный состав исследуемой пробы определяют путем строгих измерений объема реагента известной концентрации (титранта), который взаимодействует в эквивалентных количествах с определяемым веществом.
  • Газовый анализ. Базируется на измерении объема газа, который образуется или поглощается в результате химической реакции.

Химический количественный анализ веществ считается классическим. Это наиболее разработанный метод анализа, который продолжает развиваться. Он точен, прост в исполнении, не требует спецаппаратуры. Но применение его иногда сопряжено с некоторыми трудностями при исследовании сложных смесей и сравнительно небольшой чертой чувствительности.

Физический метод

Это количественный анализ, базирующийся на измерении величин физических параметров исследуемых веществ или растворов, которые являются функцией их количественного состава. Подразделяется на:

  • Рефрактометрию (измерение величин показателя преломления).
  • Поляриметрию (измерение величин оптического вращения).
  • Флуориметрию (определение интенсивности флуоресценции) и другие

Физическим методам присущи экспрессность, низкий предел определения, объективность результатов, возможность автоматизации процесса. Но они не всегда специфичны, так как на физическую величину влияет не только концентрация исследуемого вещества, но и присутствие других веществ и примесей. Их применение часто требует использования сложной аппаратуры.

Физико-химические методы

Задачи количественного анализа - измерение величин физических параметров исследуемой системы, которые появляются или изменяются в результате проведения химических реакций. Эти методы характеризуются низким пределом обнаружения и скоростью исполнения, требуют применения определенных приборов.

Гравиметрический метод

Это старейшая и наиболее разработанная технология количественного анализа. По сути, аналитическая химия началась с гравиметрии. Комплекс действий позволяет точно измерять массу определяемого компонента, отделенного от других компонентов проверяемой системы в постоянной форме химического элемента.

Гравиметрия является фармакопейным методом, который отличается высокой точностью и воспроизводимостью результатов, простотой исполнения, однако трудоемок. Включает приемы:

  • осаждения;
  • отгонки;
  • выделения;
  • электрогравиметрию;
  • термогравиметрические методы.

Метод осаждения

Количественный анализ осаждения основан на химической реакции определяемого компонента с реагентом-осадителем с образованием малорастворимого соединения, которое отделяют, затем промывают и прокаливают (высушивают). На финише выделенный компонент взвешивают.

Например, при гравиметрическом определении ионов Ва 2+ в растворах солей как осадитель используют серную кислоту. В результате реакции образуется белый кристаллический осадок BaSO 4 (осажденная форма). После прожарки этого осадка формируется так называемая гравиметрическая форма, полностью совпадающая с осажденной формой.

При определении ионов Са 2+ осадителем может быть оксалатная кислота. После аналитической обработки осадка осажденная форма (СаС 2 О 4) превращается в гравиметрическую форму (СаО). Таким образом, осажденная форма может как совпадать, так и отличаться от гравиметрической формы по химической формуле.

Весы

Аналитическая химия требует высокоточных измерений. В гравиметрическом методе анализа используют особо точные весы как основной прибор.

  • Взвешивания при требуемой точности ±0,01 г проводят на аптечных (ручных) или технохимических весах.
  • Взвешивания при требуемой точности ±0,0001 г осуществляют на аналитических весах.
  • При точности ±0,00001 г - на микротерезах.

Техника взвешивания

Осуществляя количественный анализ, определение массы вещества на технохимических или технических весах проводят следующим образом: исследуемый предмет помещают на левую чашу весов, а уравновешивающие грузики - на правую. Процесс взвешивания заканчивают при установлении стрелки весов в среднем положении.

В процессе взвешивания на аптечных весах центральное кольцо удерживают левой рукой, локтем опираясь на лабораторный стол. Затухание коромысла во время взвешивания может быть ускорено легким прикосновением дна чаши весов к поверхности стола.

Аналитические весы монтируют в отдельных отведенных лабораторных помещениях (весовых комнатах) на специальных монолитных полках-подставках. Для предотвращения влияния колебаний воздуха, пыли и влаги весы защищают специальными стеклянными футлярами. Во время работы с аналитическими весами следует придерживаться следующих требований и правил:

  • перед каждым взвешиванием проверяют состояние весов и устанавливают нулевую точку;
  • взвешиваемые вещества помещают в тару (бюкс, часовое стекло, тигель, пробирку);
  • температуру веществ, подлежащих взвешиванию, доводят до температуры весов в весовой комнате в течение 20 минут;
  • весы не следует нагружать сверх установленных предельных нагрузок.

Этапы гравиметрии по методу осаждения

Гравиметрический качественный и количественный анализ включают следующие этапы:

  • расчета масс навески анализируемой пробы и объема осадителя;
  • взвешивания и растворения навески;
  • осаждения (получение осажденной формы определяемого компонента);
  • удаления осадков из маточного раствора;
  • промывания осадка;
  • высушивания или прокаливания осадка до постоянной массы;
  • взвешивания гравиметрической формы;
  • вычисления результатов анализа.

Выбор осадителя

При выборе осадителя - основы количественного анализа - учитывают возможное содержание анализируемого компонента в пробе. Для увеличения полноты удаления осадка используют умеренный избыток осадителя. Используемый осадитель должен обладать:

  • специфичностью, селективностью относительно определяемого иона;
  • летучестью, легко удаляться при высушивании или прокаливании гравиметрической формы.

Среди неорганических осадителей наиболее распространены растворы: HCL; Н 2 SO 4 ; H 3 PO 4 ; NaOH; AgNO 3 ; BaCL 2 и другие. Среди органических осадителей предпочтение отдается растворам диацетилдиоксима, 8-гидроксихинолина, оксалатной кислоте и другим, образующим с ионами металлов внутрикомплексные устойчивые соединения, обладающие преимуществами:

  • Комплексные соединения с металлами, как правило, имеют незначительную растворимость в воде, обеспечивая полноту осаждения ионов металла.
  • Адсорбционная способность внутрикомплексных осадков (молекулярная кристаллическая решетка) ниже адсорбционной способности неорганических осадков с ионным строением, что дает возможность получить чистый осадок.
  • Возможность селективного или специфического осаждения ионов металла в присутствии других катионов.
  • Благодаря относительно большой молекулярной массе гравиметрических форм уменьшается относительная ошибка определения (в противовес использованию неорганических осадителей с небольшой молярной массой).

Процесс осаждения

Это важнейший этап характеристики количественного анализа. При получении осажденной формы необходимо минимизировать расходы за счет растворимости осадка в маточном растворе, уменьшить процессы адсорбции, окклюзии, соосаждения. Требуется получить достаточно крупные частицы осадка, не проходящие через фильтрационные поры.

Требования к осажденной форме:

  • Компонент, который определяют, должен количественно переходить в осадок и соответствовать значению Ks≥10 -8 .
  • Осадок не должен содержать посторонних примесей и быть устойчивым относительно внешней среды.
  • Осажденная форма должна как можно полнее превращаться в гравиметрическую при высушивании или прокаливании исследуемого вещества.
  • Агрегатное состояние осадка должно соответствовать условиям его фильтрации и промывки.
  • Предпочтение отдают кристаллическим осадком, содержащим крупные частицы, имеющим меньшую абсорбционную способность. Они легче фильтруются, не забивая поры фильтра.

Получение кристаллического осадка

Условия получения оптимального кристаллического осадка:

  • Осаждения проводят в разбавленном растворе исследуемого вещества разведенным раствором осадителя.
  • Добавляют раствор осадителя медленно, каплями, при осторожном перемешивании.
  • Осаждения проводят в горячем растворе исследуемого вещества горячим растворителем.
  • Иногда осаждения проводят при наличии соединений (например, небольшого количества кислоты), которые незначительно повышают растворимость осадка, но не образуют с ним растворимых комплексных соединений.
  • Осадок оставляют в исходном растворе на некоторое время, в течение которого происходит «вызревание осадка».
  • В случаях, когда осажденная форма образуется в виде аморфного осадка, его пытаются получить гуще для упрощения фильтрации.

Получение аморфного осадка

Условия получения оптимального аморфного осадка:

  • К горячему концентрированному раствору исследуемого вещества добавляют концентрированный горячий раствор осадителя, что способствует коагуляции частиц. Осадок становится гуще.
  • Добавляют осадитель быстро.
  • При необходимости в исследуемый раствор вводят коагулянт - электролит.

Фильтрация

Методы количественного анализа включают такой важный этап, как фильтрация. Фильтрование и промывание осадков проводят, используя или стеклянные фильтры, или бумажные, не содержащие золы. Бумажные фильтры различны по плотности и размерам пор. Плотные фильтры маркируются голубой лентой, менее плотные - черной и красной. Диаметр бумажных фильтров, не содержащих золы, 6-11 см. Перед фильтрацией сливают прозрачный раствор, находящийся над осадком.

Электрогравиметрия

Количественный анализ может осуществляться методом электрогравиметрии. Исследуемый препарат удаляют (чаще всего из растворов) в процессе электролиза на одном из электродов. После окончания реакции электрод промывают, высушивают и взвешивают. По увеличению массы электрода определяют массу вещества, образовавшегося на электроде. Так анализируют сплав золота и меди. После отделения золота в растворе определяют ионы меди, скапливаемые на электроде.

Термогравиметрический метод

Осуществляется измерением массы вещества во время его непрерывного нагрева в определенном интервале температур. Изменения фиксируются специальным устройством - дериватографом. Оно оборудовано термотерезами непрерывного взвешивания, электрической печью для нагрева исследуемого образца, термопарой для измерения температур, эталоном и самописцем непрерывного действия. Изменение массы образца автоматически фиксируется в виде термогравиграмы (дериватограмы) - кривой изменения массы, построенной в координатах:

  • время (или температура);
  • потеря массы.

Вывод

Результаты количественного анализа должны быть точными, правильными и воспроизводимыми. С этой целью используют соответствующие аналитические реакции или физические свойства вещества, правильно выполняют все аналитические операции и применяют надежные способы измерения результатов анализа. Во время выполнения любого количественного определения обязательно должна проводиться оценка достоверности результатов.

Методом анализа называют принципы, положенные в основу анализа вещества, то есть вид и природу энергии, вызывающей возмущение химических частиц вещества.

В основе анализа лежит зависимость между фиксируемым аналитическим сигналом от наличия или концентрации определяемого вещества.

Аналитический сигнал – это фиксируемое и измеряемое свойство объекта.

В аналитической химии методы анализа классифицируют по характеру определяемого свойства и по способу регистрации аналитического сигнала:

1.химические

2.физические

3.физико-химические

Физико-химические методы называют инструментальными или измерительными, так как они требуют применения приборов, измерительных инструментов.

Рассмотрим полную классификацию химических методов анализа.

Химические методы анализа - основаны на измерении энергии химической реакции.

В ходе реакции изменяются параметры, связанные с расходом исходных веществ или образованием продуктов реакции. Эти изменения можно либо наблюдать непосредственно (осадок, газ, цвет), либо измерять такие величины, как расход реагента, массу образующегося продукта, время реакции и т.д.

По цели проведения методы химического анализа подразделяют на две группы:

I.Качественный анализ – заключается в обнаружении отдельных элементов (или ионов), из которых состоит анализируемое вещество.

Методы качественного анализа классифицируются:

1. анализ катионов

2. анализ анионов

3. анализ сложных смесей.

II.Количественный анализ – заключается в определении количественного содержания отдельных составных частей сложного вещества.

Количественные химические методы классифицируют:

1. Гравиметрический (весовой) метод анализа основан на выделении определяемого вещества в чистом виде и его взвешивании.

Гравиметрические методы по способу получения продукта реакции делят:



а) химиогравиметрические методы основаны на измерении массы продукта химической реакции;

б) электрогравиметрические методы основаны на измерении массы продукта электрохимической реакции;

в) термогравиметрические методы основаны на измерении массы вещества, образующегося при термическом воздействии.

2. Волюмометрические методы анализа основаны на измерении объема реагента, израсходованного на взаимодействие с веществом.

Волюмометрические методы в зависимости от агрегатного состояния реагента делят на:

а) газоволюметрические методы, которые основаны на избирательном поглощении определяемого компонента газовой смеси и измерением объема смеси до и после поглощения;

б) ликвидоволюметрические (титриметрические или объёмные) методы основаны на измерении объема жидкого реагента, израсходованного на взаимодействие с определяемым веществом.

В зависимости от типа химической реакции выделяют методы объемного анализа:

· протолитометрия – метод, основанный на протекании реакции нейтрализации;

· редоксометрия – метод, основанный на протекании окислительно-восстановительных реакциях;

· комплексонометрия – метод, основанный на протекании реакции комплексообразования;

· методы осаждения – методы, основанные на протекании реакций образования осадков.

3. Кинетические методы анализа основаны на определении зависимости скорости химической реакции от концентрации реагирующих веществ.

Лекция № 2. Стадии аналитического процесса

Решение аналитической задачи осуществляется путем выполнения анализа вещества. По терминологии ИЮПАК анализом[‡] называют процедуру получения опытным путем данных о химическом составе вещества.

Независимо от выбранного метода проведение каждого анализа складывается из следующих стадий:

1) отбор пробы (пробоотбор);

2) подготовка пробы (пробоподготовка);

3) измерение (определение);

4) обработка и оценка результатов измерений.

Рис1. Схематическое изображение аналитического процесса.

Отбор проб

Проведение химического анализа начинают с отбора и подготовки пробы к анализу. Следует отметить, что все стадии анализа связаны между собой. Так, тщательно измеренный аналитический сигнал не дает правильной информации осодержании определяемого компонента, если неправильно проведен отбор или подготовка пробы к анализу. Погрешность при отборе пробы часто опреде­ляет общую точность определения компонента и делает бессмысленным ис­пользование высокоточных методов. В свою очередь отбор и подготовка пробы зависят не только от природы анализируемого объекта, но и от способа изме­рения аналитического сигнала. Приемы и порядок отбора пробы и ее подготов­ки настолько важны при проведении химического анализа, что обычно предпи­сываются Государственным стандартом (ГОСТ).

Рассмотрим основные правила отбора проб:

· Результат может быть правильным только в том случае, если проба достаточно представительна , то есть точно отражает состав материала, из которого она была отобрана. Чем больше материала отобрано для пробы, тем она представительней. Однако с очень большой пробой трудно работать, это увеличивает время анализа и расходы на него. Таким образом, отбирать пробу нужно так, чтобы она была представительной и не очень большой.

· Оптимальная масса пробы обусловлена неоднородностью анализируемого объекта, размером частиц, с которых начинается неоднородность, и требованиями к точности анализа.

· Для обеспечения представительности пробы необходимо обеспечить однородность партии. Если сформировать однородную партию не удается, то следует использовать расслоение партии на однородные части.

· При отборе проб учитывают агрегатное состояние объекта.

· Должно выполняться условие по единообразию способов отбора проб: случайный отбор, периодический, шахматный, многоступенчатый отбор, отбор «вслепую», систематический отбор.

· Один из факторов, который нужно учитывать при выборе способа отбора пробы – возможность изменения состава объекта и содержания определяемого компонента во времени. Например, переменный состав воды в реке, изменение концентрации компонентов в пищевых продуктах и т.д.

Подавляющее большинство сведений о веществах, их свойствах и химических превращениях получено с помощью химических или физико-химических экспериментов. Поэтому основным методом, применяемым химиками, следует считать химический эксперимент.

Традиции экспериментальной химии складывались веками. Еще тогда, когда химия не была точной наукой, в древние времена и в эпоху средневековья, ученые и ремесленники иногда случайно, а иногда и целенаправленно открывали способы получения и очистки многих веществ, находивших применение в хозяйственной деятельности: металлов, кислот, щелочей, красителей и т. д. Накоплению таких сведений немало способствовали алхимики (см. Алхимия).

Благодаря этому уже к началу XIX в. химики хорошо владели основами экспериментального искусства, в особенности методами очистки всевозможных жидкостей и твердых веществ, что позволило им совершить немало важнейших открытий. И все же наукой в современном смысле этого слова, точной наукой химия начала становиться только в XIX в., когда был открыт закон кратных отношений и разрабатывалось атомно-молекулярное учение. С этого времени химический эксперимент стал включать в себя не только изучение превращений веществ и способов их выделения, но и измерения различных количественных характеристик.

Современный химический эксперимент включает множество разнообразных измерений. Изменились и оборудование для постановки опытов, и химическая посуда. В современной лаборатории не встретишь самодельных реторт - на смену им пришло стандартное стеклянное оборудование, производимое промышленностью и приспособленное специально для выполнения той или иной химической процедуры. Стали стандартными и приемы работы, которые в наше время уже не приходится каждому химику изобретать заново. Описание наилучших из них, проверенных многолетним опытом, можно найти в учебниках и руководствах.

Методы изучения вещества сделались не только более универсальными, но и гораздо более разнообразными. Все большую роль в работе химика играют физические и физико-химические методы исследования, предназначенные для выделения и очистки соединений, а также для установления их состава и строения.

Классическая техника очистки веществ отличалась чрезвычайной трудоемкостью. Известны случаи, когда химики тратили на выделение индивидуального соединения из смеси годы труда. Так, соли редкоземельных элементов удавалось выделить в чистом виде лишь после тысяч дробных кристаллизаций. Но и после этого чистоту вещества далеко не всегда можно было гарантировать.

Современные методы хроматографии позволяют быстро отделить вещество от примесей (препаративная хроматография) и проверить его химическую индивидуальность (аналитическая хроматография). Кроме того, для очистки веществ широко применяются классические, но сильно усовершенствованные приемы перегонки, экстракции и кристаллизации, а также такие эффективные современные методы, как электрофорез, зонная плавка и т. д.

Задача, встающая перед химиком-синтетиком после выделения чистого вещества, - установить состав и строение его молекул - относится в значительной мере к аналитической химии. При традиционной технике работы она также была весьма трудоемкой. Практически в качестве единственного метода измерения применялся до этого элементный анализ, который позволяет установить простейшую формулу соединения.

Для определения истинной молекулярной, а также структурной формулы нередко приходилось изучать реакции вещества с различными реагентами; выделять в индивидуальном виде продукты этих реакций, в свою очередь устанавливая их строение. И так далее - пока на основании этих превращений строение неизвестного вещества не становилось очевидным. Поэтому установление структурной формулы сложного органического соединения нередко отнимало очень много времени, причем полноценной считалась такая работа, которая завершалась встречным синтезом - получением нового вещества в соответствии с установленной для него формулой.

Этот классический метод был чрезвычайно полезен для развития химии в целом. В наше время он применяется редко. Как правило, выделенное неизвестное вещество после элементного анализа подвергается исследованию с помощью масс-спектрометрии, спектрального анализа в видимом, ультрафиолетовом и инфракрасном диапазонах, а также ядерного магнитного резонанса. Для обоснованного вывода структурной формулы требуется применение целого комплекса методов, причем их данные обычно дополняют друг друга. Но в ряде случаев однозначного результата обычные методы не дают, и приходится прибегать к прямым методам установления структуры, например к рентгеноструктурному анализу.

Физико-химические методы находят применение не только в синтетической химии. Не меньшее значение они имеют и при изучении кинетики химических реакций, а также их механизмов. Основная задача любого опыта по изучению скорости реакции - точное измерение изменяющейся во времени, и притом обычно очень небольшой, концентрации реагирующего вещества. Для решения этой задачи в зависимости от природы вещества можно использовать и хроматографические методы, и различные виды спектрального анализа, и методы электрохимии (см. Аналитическая химия).

Совершенство техники достигло такого высокого уровня, что стало возможным точное определение скорости даже «мгновенных», как полагали раньше, реакций, например образования молекул воды из катионов водорода и анионов . При начальной концентрации обоих ионов, равной 1 моль/л, время этой реакции составляет несколько стомиллиардных долей секунды.

Физико-химические методы исследования специально приспосабливают и для обнаружения короткожи-вущих промежуточных частиц, образующихся в ходе химических реакций. Для этого приборы снабжают либо быстродействующими регистрирующими устройствами, либо приставками, обеспечивающими работу при очень низких температурах. Такими способами успешно фиксируют спектры частиц, продолжительность жизни которых при обычных условиях измеряется тысячными долями секунды, например свободных радикалов.

Кроме экспериментальных методов в современной химии широко применяются расчеты. Так, термодинамический расчет реагирующей смеси веществ позволяет точно предсказать ее равновесный состав (см. Равновесие химическое).

Расчеты молекул на основе квантовой механики и квантовой химии стали общепризнанными и во многих случаях незаменимыми. Эти методы опираются на весьма сложный математический аппарат и требуют применения самых совершенных электронных вычислительных машин - ЭВМ. Они позволяют создавать модели электронного строения молекул, которые объясняют наблюдаемые, измеримые свойства малоустойчивых молекул или промежуточных частиц, образующихся в ходе реакций.

Методы исследования веществ, разработанные химиками и физико-химиками, приносят пользу не только в химии, но и в смежных науках: физике, биологии, геологии. Без них уже не могут обойтись ни промышленность, ни сельское хозяйство, ни медицина, ни криминалистика. Физико-химические приборы занимают почетное место на космических аппаратах, с помощью которых исследуются околоземное пространство и соседние планеты.

Поэтому знание основ химии необходимо каждому человеку независимо от его профессии, а дальнейшее развитие ее методов - одно из важнейших направлений научно-технической революции.


Поделиться